TD网络优化自学笔记
- 格式:doc
- 大小:323.50 KB
- 文档页数:8
一、硬件知识1、计算机系统的组成包括硬件系统和软件系统硬件系统分为三种典型结构:(1)单总线结构(2)、双总线结构(3)、采用通道的大型系统结构中央处理器CPU包含运算器和控制器。
2、指令系统指令由操作码和地址码组成。
3、存储系统分为主存-辅存层次和主存-Cache层次Cache作为主存局部区域的副本,用来存放当前最活跃的程序和数据。
计算机中数据的表示Cache的基本结构:Cache由存储体、地址映像和替换机构组成。
4、通道是一种通过执行通道程序管理I/O操作的控制器,它使CPU与I/O操作达到更高的并行度。
5、总线从功能上看,系统总线分为地址总线(AB)、数据总线(DB)、控制总线(CB)。
6、磁盘容量记计算非格式化容量=面数*(磁道数/面)*内圆周长*最大位密度格式化容量=面数*(磁道数/面)*(扇区数/道)*(字节数/扇区)7、数据的表示方法原码和反码[+0]原=000...00 [-0]原=100...00 [+0]反=000...00 [-0]反=111 (11)正数的原码=正数的补码=正数的反码负数的反码:符号位不变,其余位变反。
负数的补码:符号位不变,其余位变反,最低位加1。
二、操作系统操作系统定义:用以控制和管理系统资源,方便用户使用计算机的程序的集合。
功能:是计算机系统的资源管理者。
特性:并行性、共享性分类:多道批处理操作系统、分时操作系统、实时操作系统、网络操作系统。
进程:是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。
进程分为三种状态:运行状态(Running)、就绪状态(Ready)、等待状态(Blocked)。
作业分为三种状态:提交状态、后备运行、完成状态。
产生死锁的必要条件:(1)、互斥条件:一个资源一次只能被一个进程所使用;(2)、不可抢占条件:一个资源仅能被占有它的进程所释放,而不能被别的进程强行抢占;(3)、部分分配条件:一个进程已占有了分给它的资源,但仍然要求其它资源;(4)、循环等待条件:在系统中存在一个由若干进程形成的环形请求链,其中的每一个进程均占有若干种资源中的某一种,同时每一个进程还要求(链上)下一个进程所占有的资源。
TD重要知识点—基础一、基本概念1、UTRAN系统结构这些接口是网优必须记住的,Uu和Iu接口是开放的,Iub和Iur一般不开放。
2、工作频段A频段:2010-2025MHz(目前主用,共9个频点,室内一般用3个)F频段:1880-1920MHz(热点区域使用)9404 9412 94203、3G技术比较4、TD技术优势频谱利用率高,易于使用非对称频段, 无需具有特定双工间隔的成对频段 适合传输上下行不对称的数据业务上行和下行使用相同频率载频,有利于智能天线技术的实现5、帧结构DwPTS:下行导频时隙,结构如下:用于下行同步和小区初搜SYNC-DL码共有32种,用于区分相邻小区,不扩频、不加扰。
UpPTS:上行导频时隙,结构如下:用于上行初始同步和随机接入,以及切换时邻小区测量SYNC-UL码共有256种,分为32个码组(每组8个SYNC-UL码),对应32个SYNC-DL 码,不扩频、不加扰。
GP:保护时隙,结构如下:用于下行到上行转换的保护⏹在小区搜索时,确保DwPTS可靠接收,防止干扰UL工作⏹在随机接入时,确保UpPTS提前发射,防止干扰DL工作GP决定了TD系统基站最大覆盖距离=(96chip/1.28Mcps×光速)/ 2=11.25公里TS0~TS6:常规时隙,结构如下:Midamble码:中间码,又称训练序列,主要作用为:⏹测量:信号强度和信号质量(BER),用于功率控制、切换等算法⏹上行同步保持:Midamble码的时延做为同步偏移调整的依据⏹信道估计:利用Midamble码接收信号,评估无线传播过程中的多址干扰(MAI)和多径干扰(ISI)情况,评估结果用于联合检测物理层控制信息:物理层过程(如小区搜索、随机接入、功率控制、上行同步调整等)的控制信号6、TD系统中的码表7、物理信道的分类与功能主公共控制物理信道P-CCPCH:承载传输信道BCH,用于发送系统消息(System Information)扩频因子SF=16;固定配置在TS0的前两个码道:Cch 16, 0和Cch 16, 1路测RSCP(手机接收电平)的测量信道寻呼指示信道PICH:用于发送寻呼指示(Page Indicator)扩频因子SF=16,一般配置在TS0寻呼指示(PI) 的长度LPI=2,4或8 ,以一个无线帧为周期。
L e s s o n 5 主题:华为TD-LTE基站数据配置时间:-07.29主讲:王智慧()教材:《TD-LTE数据配置与调测》、《TD-LTE上机指导书》(华为、纸质)要点:一、概要:1、基站配置顺序:(1)全局/设备参数配置;(2)传输参数配置;(3)无线参数配置。
2、eNB传输规划原则:(1)高层参数(S1-AP、SCTP):由eNB和MME协商;(2)低层参数(IP、MAC、PHY,需过路由):由eNB和传输(RT中间传输网)协商。
3、物理小区标识规划:PhysicalCellID(PCI),0-503。
二、BBU板件配置原则1、BBU3910A:(1)刀片式单板(BladeBBU),集成主控、传输、电源、事中、基带、互联(预留)和监控7大模块,不可拆分;(2)其中,UMDU单板(基带模块,提供到RRU的CPRI口)槽号(Slot#)需固定配置为6。
2、BBU3900常见板件和槽位对应关系:详见Lesson14.4.6,复习。
三、RRU配置原则1、组网方式(按RRU和BBU连接的方式分):(1)链型;(2)负荷分担:双光纤,室外8T8R;(3)环型:环头和环尾属于不同接口板,可达到热备份的目的。
2、RRU配置框号编号规则:3、8通道RRU的天线口配对使用原则:(1)2T2R:4对,AE、BF、CG、DH配对使用;(2)4T4R:2对,ABEF、CDGH配对使用。
4、典型场景的RRU对应配置应用:四、传输数据配置1、接入层:汇聚层:核心层按4:3:2收敛配置带宽;2、估算每站峰值带宽约等于300MBps,平均带宽取峰值带宽的1/3。
五、无线数据配置参见配置实例。
六、配置实例(《TD-LTE上机指导书》,P87)1、准备命令(1)LSTNODE ——查看eNB基本信息(2)确认参数表,重点确认RRU型号、要求频段、nTnR等2、配置全局数据(P104表)(1)ADDENODEBFUNCTION ——增加eNB基本站型信息(2)SETEQUIPMENT ——设置BBU-RRU接口类型(3)ADDCNOPERATOR ——增加运营商信息(4)ADDCNOPERATORTA ——增加跟踪区信息(5)ADD CABINET——增加机柜,最多32个(6)ADD SUBRACK——增加BBU框(7)ADDBRD ——增加BBU单板,每块单板执行一次(8)ADDRRUCHAIN ——增加RRU链环(9)ADDRRU ——增加RRU信息(10)ADDGPS ——增加GPS信息(11)SETCLKMODE ——设置时钟工作模式(12)SETCLKSYNCMODE ——设置基站时钟同步模式(13)SETMNTMODE ——设置基站工程模式3、单站传输数据配置(P117表)3.1底层配置:(14)ADDETHPORT ——增加以太端口(15)ADDDEVIP ——增加设备IP地址(16)ADDIPRT ——增加静态路由信息(17)ADDVLANMAP ——根据下一跳增加VLAN标识3.2高层配置:3.2.1End-point方式:3.2.1.1控制面:(18)ADDEPGROUP ——增加端节点组(19)ADDSCTPTEMPLAE ——增加SCTP参数模板(20)ADDSCTPHOST ——分别增加S1和X2控制面本端对象(21)ADDSCTPHOST2EPGRP ——本端控制面加组(22)ADDSCTPPEER ——分别增加S1和X2控制面对端对象(23)ADDSCTPPEER2EPGRP ——对端控制面加组3.2.1.2用户面:(24)ADDUSERPLANEHOST ——分别增加S1和X2用户面本端对象(25)ADDUPHOST2EPGRP ——本端用户面加组(26)ADDUSERPLANEPEER ——(可选)增加S1和X2用户面对端(27)ADDUPPEER2EPGRP ——(可选)对端用户面加组3.2.1.3维护面:(28)ADDOMCH ——到U2000的维护通道(29)ADDS1 ——增加S1对象(30)ADDX2 ——增加X2对象3.2.2简化的End-point方式:适用于eNB的S1信令面和用户面共IP的场景。
TD-LTE网络优化项目工作思路TD-LTE网络优化流程TD-LTE网络优化包括优化项目启动、单站验证、RF优化、KPI优化和网络验收等环节。
单站验证是指保证每个小区的正常工作,验证内容包括正常接入、好中差点吞吐量在正常范围。
RF优化用于保证网络中的无线信号覆盖,并解决因RF原因导致的业务问题。
RF优化一般以簇为单位进行优化,RF优化主要参考路测数据,RF分区优化时,各个区域之间的网络边缘也需要关注和优化。
KPI优化包括对路测数据的分析和对话统数据的分析,用于弥补RF优化时没有兼顾的无线网络问题。
通过KPI优化,解决网络中存在的各种接入失败、掉线、切换失败等与业务相关的问题。
TD-LTE和2G/3G网络优化的比较TD-LTE网络优化与2G/3G优化思想相通,同样关注网络的覆盖、容量、质量等情况,通过覆盖调整、干扰调整、参数调整、故障处理等各种网络优化手段达到网络动态平衡,提高网络质量,保证用户感知。
TD-LTE与2G/3G系统不同,导致系统优化中重选、接入、切换等各种过程涉及参数不同。
TD-LTE系统的干扰与2G/3G系统的干扰来源也有较大不同,需要通过不同手段规避。
TD-LTE的小区容量会随着小区覆盖增大逐步减小,优化需关注覆盖与容量间的平衡。
LTE性能严重依赖于SINR,吞吐量会随SINR变差迅速降低。
由于同频组网,为提高LTE性能,主服务区范围比2G/3G要求更严格。
TD-LTE网络优化内容TD-LTE优化内容主要包括PCI优化、干扰排查、覆盖优化、邻区优化、系统参数优化。
PCI优化PCI干扰容易出现掉线、下载速率慢等问题。
PCI优化需要遵循以下三大原则:PCI复用至少间隔4层以上小区,大于5倍的小区半径;同一个小区的所有邻区列表中不能有相同的PCI;邻区导频位置尽量错开,即相邻小区模3后的余数不同。
干扰排查根据干扰源的不同,干扰分为两大类。
一类为内部干扰,包括GPS跑偏、设备隐性故障、天馈系统故障等。
网络学习笔记2021年6月20日23:08第1章交换技术主要内容:1、线路交换2、分组交换3、帧中继交换4、信元交换一、线路交换1、线路交换进行通信:是指在两个站之间有一个实际的物理连接,这种连接是结点之间线路的连接序列。
2、线路通信三种状态:线路建立、数据传送、线路拆除3、线路交换缺点:典型的用户/主机数据连接状态,在大部分的时间内线路是空闲的,因而用线路交换方法实现数据连接效率低下;为连接提供的数据速率是固定的,因而连接起来的两个设备必须用相同的数据率发送和接收数据,这就限制了网络上各种主机以及终端的互连通信。
二、分组交换技术1、分组交换的优点:线路利用率提高;分组交换网可以进行数据率的转换;在线路交换网络中,若通信量较大可能造成呼叫堵塞的情况,即网络拒绝接收更多的连接要求直到网络负载减轻为止;优先权的使用。
2、分组交换和报文交换主要差别:在分组交换网络中,要限制所传输的数据单位的长度。
报文交换系统却适应于更大的报文。
3、虚电路的技术特点:在数据传送以前建立站与站之间的一条路径。
4、数据报的优点:避免了呼叫建立状态,如果发送少量的报文,数据报是较快的;由于其较原始,因而较灵活;数据报传递特别可靠。
5、几点说明:路线交换基本上是一种透明服务,一旦连接建立起来,提供给站点的是固定的数据率,无论是模拟或者是数字数据,都可以通过这个连接从源传输到目的。
而分组交换中,必须把模拟数据转换成数字数据才能传输。
6、外部和内部的操作外部虚电路,内部虚电路。
当用户请求虚电路时,通过网络建立一条专用的路由,所有的分组都用这个路由。
外部虚电路,内部数据报。
网络分别处理每个分组。
于是从同一外部虚电路送来的分组可以用不同的路由。
在目的结点,如有需要可以先缓冲分组,并把它们按顺序传送给目的站点。
外部数据报,内部数据报。
从用户和网络角度看,每个分组都是被单独处理的。
外部数据报,内部虚电路。
外部的用户没有用连接,它只是往网络发送分组。
TD—LTE网络优化经验总结【摘要】在现代这个信息化的时代,信息技术的发展迅速,而无线网络的快速发展彻底改变了人与人之间的沟通方式,还有无线网络通过计算机进行操作,使人们的工作更加便捷、快速、高效,进而加快了社会现代化的进程。
然而传统的无线网络技术已经不能够满足现代工作高效、高安全的保障需求,因此对于无线网络通信技术的变革是必然的事情,目前社会科学领域中也对TD-LTE网络进行了优化,并在实际生活工作当中得到很好的应用。
本文将对TD-LTE网络的优化进行进行阐述。
【关键词】TD-LTE网络;优化;方法在现代经济的快速发展中,网络通信技术得到了飞速发展。
而TD-LTE技术由于具有较强的频谱利用效率、网络结构简洁开放、宽带传输灵活以及承载能力强等特点受到人们的青睐。
但是无线网络的发展中各种各样的网络被应用,这些网络在应用的同时也产生了一定的问题,同时也对无线网络的承载力提出了新的要求,因此需要对TD-LTE网络进行优化方能满足现代网络的使用要求。
本文具体阐述了TD-LTE的基本原理,并对目前TD-LTE网络中存在的问题给出了优化方案。
一、TD-LTE网络技术的基本原理TD-SCDMA系统经过长期的改进便产生了TD-LTE(Time Division-Long Term Evolution)网络系统,TD-LTE网络中运用的技术是OFDMA空中接口技术,在TD-LTE网络中通过此技术的运用使无线通信系统的上下行数据传输速率和频谱利用率得到显著的提高,同时还降低了系统的传输时延。
另外运用了OFDMA空中接口技术的TD-LTE网络系统还具有语音、视频点播以等多项功能。
目前,TD-LTE因为其独特的优势在设备制造和电信通信中得到了广泛的应用。
图1 TD-LTE网络系统的基本工作原理图TD-LTE网络系统的基本工作原理如图1所示。
在TD-LTE网络系统中采用的结构是较完全的基站e-Node B结构,此结构具有全新的功能,并且在TD-LTE 网络系统中是连接各节点之间传输的媒介,各节点在系统逻辑层面上的连接接口是X2接口,在系统中通过这样的连接方式使系统内部形成Mesh型网络结构,这种网络结构在系统中的功能是支持UE在整个系统中移动性,通过这样的传输方式和结构类型才保证了用户们在使用移动网络时进行平滑无缝的网络切换。
TD专业知识(非常全)问答题1.请描述td-scdma空中接口物理层结构,并简要说明各时隙中涉及的码资源分类和功能。
物理层结构物理信道帧结构systemframenumbertd-scdma帧结构每帧存有两个上/上行切换点ts0为上行时隙ts1为下行时隙三个特定时隙gp,dwpts,uppts其余时隙可以根据根据用户须要展开有效率ul/dl布局radioframe10ms5mssub-framedwptsts0gpupptsts1ts2ts3ts4ts5ts6l1gdatadatamidamble144chips675us(864chip s)所有的物理信道都使用四层结构:系统帧号、无线帧、子帧和时隙/码10.td-scdma系统有哪些技术优势?(5分)五大突出优势:1、技术优势,时分双工,智能天线、联手检测2、频率优势,155mhz频谱资源,频谱效率高3、组网优势,没有呼吸效应,网络优化与gsm类似。
4、业务优势,积极支持非对称的数据业务,提供更多mbms手机电视业务5、成本优势,采用智能天线和联合检测,不用大功率放大器,不用交专利费。
17.td-scdma系统为何有较高的频谱利用率?1时分双工(tdd)方式,针对非对称的数据业务,存有低频谱利用率。
2智能天线和联合检测技术相结合,减少系统干扰,提升系统容量,因此,频谱利用率高。
3同步码分多址(cdma)技术,下行同步技术,减少多址阻碍,提高系统容量。
4动态信道分配,td-scdma系统通过频域、时域、码域及空域的dca,并使频谱利用率以求优化14.td-scdma的帧结构中的ts0,dwpts,uppts是做什么用的?ts0~ts6用作贯穿用户数据或掌控信息。
pach来响应在uppts时隙收到的ue接入请求,调整ue的发送功率和同步偏移。
uppts就是为下行同步而设计的,当ue处在空中备案和随机互连状态时,它将首先升空uppts,当获得网络的接收者后,传送rach。
TD关键技术点1.双工技术和多址技术 (2)2.TD系统的通信模型 (2)3.TD-SCDMA的语音编码 (3)4.TD-SCDMA的信道编码\交织 (3)5.TD-SCDMA的帧结构和时隙结构 (4)6.TD-SCDMA的扩频、加扰 (5)7.TD-SCDMA的调制 (5)8.联合检测 (Joint Detection) (6)9.智能天线 (Smart Antenna) (6)10.上行同步 (Uplink Synchronization) (7)11.软件无线电 (Soft Defined Radio) (9)12.动态信道分配 (Dynamic Channel Allocation) (9)13.采用动态信道分配主要有哪些优势? (10)14.功率控制 (Power Control) (10)15.接力切换 (Baton Handover) (11)16.描述TD-SCDMA系统无线帧结构和时隙突发结构,描述TD-SCDMA下行同步码、上行同步码、Midamble码、扩频码和扰码功能和用法 (12)17.N频点配置时为什么各载频的时隙转换点必须相同? (16)18.多载波组网和N频点组网在扰码规划上有何不同? (16)19.N频点如何改善系统同频组网性能? (16)20.结合主要物理层过程(小区搜索、随机接入),描述TD-SCDMA各信道的作用. (16)21.掌握公共物理信道在系统中的配置原则,并能够根据不同业务占用码资源的情况,计算TD-SCDMA载波的理论容量。
(18)22.了解TD-SCDMA无线网络各接口的协议栈结构 (19)23.列出UE在不同场景下的工作模式和工作状态 (20)24.简要叙述引起CELL UPDATE的七种原因 (21)25.说明RL、RB和RAB的区别。
(21)26.关于系统消息的说明 (21)27.寻呼消息Paging分类,寻呼消息Paging1与Paging2的区别 (22)28.画出TD-SCDMA无线网络呼叫流程图,并列出主要信令消息 (22)29.主叫流程 (23)30.被叫流程 (23)31.RRC建立信令流程 (23)32.RAB建立信令流程 (24)33.寻呼流程 (25)34.位置更新流程 (25)35.知道硬切换和接力切换在信令流程上的区别 (25)36.阐明TDD-HSDPA的技术特点 (28)37.列出TDD-HSDPA采用的关键技术 (28)38.简述HSDPA中CQI的反馈流程 (29)39.在HSDPA中如何实现链路自适应? (29)40.HARQ与传统的ARQ有什么区别? (30)41.结合HSDPA工作流程,描述TDD-HSDPA新增物理信道的功能。
TD-LTE小区同步与搜索LTE学习笔记一、同步信号TDD-LTE系统,下行同步信号分为主、辅同步信号,优势在于保证UE能准确快速检测出主同步信号,并在已知主同步信号的前提下检测辅同步信号,加快小区搜索速度。
1个无线帧有10个子帧,每个子帧2个Slot,每个Slot有7个OFDM信号。
在频域上,每12个子载波组成一个资源单元(总共占用180KHz带宽)。
因此,频率上的一个单元资源,时间上一个持续时隙资源被称为资源块(RB)同步信号的作用LTE系统共有504个小区识别码,3个一组形成168个物理层小区识别组,对应LTE的eNodeB,范围在0~167,其中每组中的码分别对应同一eNodeB下的三个扇区,范围为0~2,可以唯一确定小区识别码;在小区搜索时,利用两个同步信号分别取得小区识别信息,得到目前UE所要接入的小区识别码1.时间同步时间同步是小区搜索中第一步,基本原理是:用本地同步序列和接收信号进行同步相关,进而获得期望的峰值,根据峰值判断出同步信号的位置。
TDD-LTE系统的时域同步检测分两个步骤:第一步检测出PSS,之后根据PSS 和SSS之间的固定关系,检测SSS当UE处于初始接入状态,对接入小区的带宽是未知的,PSS和SSS 处于整个带宽的中央,并占有1.08MHz带宽。
因此,在初始接入时,UE首先在其支持的工作频段内以100KHz的间隔在频栅上进行扫描,并在每个频点上进行PSS检测。
这一过程,UE仅仅检测1.08MHz的频带上是否存在PSS 当检测出PSS信号,可获得主同步序列的序号。
完成PSS接收和检测后,还要完成对子帧CP类型检测。
因为系统中可能是常规CP,也可能是扩展CP,对应PSS和SSS之间的距离存在两种可能,需要UE采用盲检方式识别,通常采用PSS和SSS相关峰的距离进行判断。
确定了子帧和CP类型后,SSS的位置和SSS序列也就确定了。
由于SSS序列比较复杂,且采用了两次加扰,因此检测过程相对复杂。
1、呼吸效应:用户数的增加使覆盖半径收缩。
用户数显著增加时,用户产生的自干扰呈指数级增加。
采用联合检测及智能天线技术减弱呼吸效应。
2、2000年5月TD正式成为3G标准。
3、语音、视频电话由CS域提供,FTP、WEB浏览等业务由PS域提供。
4、RNC之间接口Iur,Node B与RNC接口Iub。
RNC与核心网接口Iu。
由于TD使用硬切换,RNC之间的Iur接口通常不实现。
WCDMA要实现软切换必须有Iur口,否则只能采用硬切换。
UE和UTRAN接口Uu口。
5、下行使用扩频因子16或1,上行1、2、4、8、16。
6、TD关键技术:智能天线、联合检测、时分双工、上行同步、接力切换、动态信道分配、软件无线电、功率控制7、TD特色业务:可视电话、可视电话补充、视频留言、视频会议、视频共享、多媒体彩铃、高速无线上网。
8、CRNC:控制Node B的RNC被称为该Node B的CRNC。
控制切换时:SRNC:与CN连接,为UE提供资源的RNC叫SRNC。
交换DRNC:与CN没有连接,为UE提供资源的RNC叫DRNC。
在RNC之间迁移时:原来的SRNC被称为Source RNC,将要成为SRNC的RNC 被称为Target RNC。
9、Node B主要功能:扩频,调制,信道编码以及解扩,解调,信道解码,还包括基带信号与射频信号相互转化等功能。
10、UE开机时,首先需要与基站建立下行同步,下行同步建立后启动上行同步过程。
上行同步过程的实现通过随机接入过程来完成,上行同步过程涉及到上行同步信道UpPCH和物理随机接入信道PRACH。
11、TD工作频段:1880-1920、2010-2025、补充频段2300-2400MHz,每5M有3个频点,155/5*3=93个频点12、软切换有利有弊,有利于反向链路,以牺牲前向链路的容量为代价来提高反向链路的覆盖。
有可能同时占用两个基站的功率和码资源。
13、下行导频时隙由长为64chips 的SYNC_DL 序列和32chips 的保护间隔组成,时长75us,由此可算出TD码片速率 1.28Mcps。
TD-LTE是什么网络TD-LTE是什么意思?TD-LTE是一种无线通讯技术,而且是比3G网络(一共有三种)更快的4G网络(一共有两种)无线通讯技术中的一种。
并且TD-LTE是3G网络里面的TD-SCDMA的一个长期演进,什么意思呢?我们可以理解为可以在未来很长一段时间内都会被用到的无线通讯技术。
另外TD-LTE还是由中国主导的拥有自主知识产权的主流4G通信技术,它的共同开发者包括:上海贝尔、诺基亚西门子、大唐电信、华为技术、中兴通讯、中国移动、高通等因为TD-LTE是要在手机上广泛用的技术,我就举例从手机网络特性说下。
我们的手机要通讯、要打电话、要发短信、在线看电影、还要可视通话。
这些功能前几年的手机肯定不行,因为他们采用的是GSM网络(2G标准)只能用来发短信打电话,后来加了个GPRS技术后可以上上网。
后来采用3G标准的三种通讯技术来了,很好速度很快,可以高速上网、还可以看电影、可视通话了。
那么现在4G标准的两种通讯技术中的一种,即TD-LTE来了,它速度更快,最高网速超过100Mbps。
我发稿的前中国移动在杭州的TD-LTE网络,测试速度显示:下载一部800M的电影,一般只需要两分多钟。
这是什么概念,我相信一些用光纤网线的电脑网速都没这么快(4M/2M/1M宽带下载速度是多少)。
EARFCN频点D-LTE的频点号称为EARFCN,也就是在ARFCN基础上做了改进。
EARFCN与频率之间不再是直接对应,而是增加了一个偏置(起始值),以保证EARFCN编号连续。
FDD的EARFCN从0~35999,TDD的EARFCN从36000~65531。
目前国内使用的38频段,EARFCN的起始值为37750,频率的起始值为2.57GHz,每100kHz对应一个频点号。
比如2.6GHz,对应的EARFCN就是37750+300=38050。
在GSM系统中每个频点带宽200Khz,所以其从严格意义上讲是一个范围。
T D-L T E网络性能K P I(切换成功率)优化手册work Information Technology Company.2020YEARTD-LTE网络性能KPI(切换成功率)优化手册1切换成功率定义说明1.1指标公式1.2COUNTER定义1.2.1集团规范定义1、eNB间S1切换出请求次数:源eNB向MME发送的“切换请求”消息(HANDOVER REQUIRED)(3GPP TS 36.413),指示eNB间通过S1接口的切换出准备请求。
向不同小区发送的同一切换准备请求,需要重复统计。
2、eNB间S1切换出成功次数:源eNB收到MME发送的“UE上下文释放命令”消息(UE CONTEXT RELEASE COMMAND)(3GPP TS 36.413),指示eNB间通过S1接口的切换出执行成功。
3、eNB间X2切换出请求次数:源eNB向目标eNB发送的“切换请求”消息(HANDOVER REQUEST)(3GPP TS 36.423),指示eNB间通过X2接口的切换出准备请求。
向不同小区发送的同一切换准备请求,重复统计。
4、eNB间X2切换出成功次数:源eNB收到目标eNB发送的“UE上下文释放”消息(UE CONTEXT RELEASE)(3GPP TS 36.423),指示eNB间通过X2接口的切换出执行成功。
5、eNB内切换出请求次数:eNB向UE发送携带mobilityControlInfo 的“RRC连接重配置”消息(RRCConnectionReconfiguration),指示eNB内小区间切换出请求。
(3GPP TS 36.331)6、eNB内切换出成功次数:eNB收到UE发送的“RRC连接重配置完成”消息(RRCConnectionReconfigurationComplete),指示eNB内小区间切换出成功。
(3GPP TS 36.331)1.2.2NSN映射1、eNB间S1切换出请求次数:M8014C14:INTER_ENB_S1_HO_PREP,The number of Inter eNB S1-based Handover preparations;2、eNB间S1切换出成功次数:M8014C19:INTER_ENB_S1_HO_SUCC,The number of successful Inter eNB S1-based Handover completions;3、eNB间X2切换出请求次数:M8014C0:INTER_ENB_HO_PREP,The number of Inter-eNB X2-based Handover preparations. The Mobility management (MM) receives a listwith target cells from the RRM and decides to start an Inter-eNB X2-based Handover;4、eNB间X2切换出成功次数:M8014C7:SUCC_INTER_ENB_HO,The number of successful Inter-eNB X2-based Handover completions;5、eNB内切换出请求次数:M8009C6:ATT_INTRA_ENB_HO,The number of Intra-eNB Handoverattempts;6、eNB内切换出成功次数:M8009C7:SUCC_INTRA_ENB_HO,The number of successful Intra-eNB Handover completions;1.3信令统计点1.3.1eNB间S1切换统计点关系:M8014C14 = M8014C15 + M8014C16 + M8014C17 + M8014C18M8014C18 = M8014C19 + M8014C20(注:现网实际数据对不上)1、M8014C14:INTER_ENB_S1_HO_PREPUpdated: This counter is updated following the transmission of an S1AP:HANDOVER REQUIRED message from the source eNB to the MME if this message prepares an Inter eNB Handover.2、M8014C15:INTER_S1_HO_PREP_FAIL_TIMEUpdated: This counter is updated at the expiry of the guarding timer TS1RELOCprep if the timer was started because of the preparation of an Inter eNB Handover.3、M8014C16:INTER_S1_HO_PREP_FAIL_NORRUpdated: This counter is updated following the reception of anS1AP: HANDOVER PREPARATION FAILURE message from MME to source eNB with cause "No Radio Resources Available in Target Cell" if this message is received in response to the preparation of an Inter eNB Handover.4、M8014C17:INTER_S1_HO_PREP_FAIL_OTHERUpdated: The number of failed Inter eNB S1-based Handover preparations due to the reception of an S1AP: HANDOVER PREPARATION FAILURE message with a cause other than "No Radio Resources Available in Target Cell."5、M8014C18:INTER_ENB_S1_HO_ATTUpdated: This counter is updated following the reception of anS1AP: HANDOVER COMMAND message from the MME to the source eNB in case that this message is received in response to the preparation of an Inter eNB Handover.6、M8014C19:INTER_ENB_S1_HO_SUCCUpdated: This counter is updated following the reception of anS1AP: UE CONTEXT RELEASE COMMAND message from the MME to the source eNB with the cause value Radio Network Layer (Successful Handover) in case that this message is received for an Inter eNB Handover.7、M8014C20:INTER_ENB_S1_HO_FAILUpdated: This counter is updated following the expiry of the guarding timer TS1RELOCoverall in case that this timer was started because of an Inter eNB Handover.1.3.2eNB间X2切换Counter Counter ID NetAct nameeNB间X2切换请求次数M8014C0 INTER_ENB_HO_PREPeNB间X2切换目标小区准备失败次数M8014C2 FAIL_ENB_HO_PREP_TIME M8014C3 FAIL_ENB_HO_PREP_ACM8014C5 FAIL_ENB_HO_PREP_OTHEReNB间X2切换尝试次数M8014C6 ATT_INTER_ENB_HOeNB间X2切换成功次数M8014C7 SUCC_INTER_ENB_HOeNB间X2切换失败次数M8014C8 INTER_ENB_HO_FAIL统计点关系:M8014C0 = M8014C2 + M8014C3 + M8014C5 + M8014C6M8014C6 = M8014C7 + M8014C8(注:现网实际数据对不上)1、M8014C0:INTER_ENB_HO_PREPUpdated: This counter is updated following the transmission of an X2AP: Handover Request to the target eNB.2、M8014C2:FAIL_ENB_HO_PREP_TIMEUpdated: This counter is updated following the expiry of the guarding timer TX2RELOCprep.3、M8014C3:FAIL_ENB_HO_PREP_ACUpdated: This counter is updated following the reception of anX2AP: Handover Preparation Failure message from the target eNB.4、M8014C5:FAIL_ENB_HO_PREP_OTHERUpdated: The counter is updated if the failure detected does not match any other failure counter.5、M8014C6:ATT_INTER_ENB_HOUpdated: This counter is updated following the reception of an X2AP: Handover Request Acknowledge message from the target eNB.6、M8014C7 :SUCC_INTER_ENB_HOUpdated: This counter is updated following the reception of an X2AP:Release Resource message sent by the target eNB.7、M8014C8:INTER_ENB_HO_FAILUpdated: This counter is updated following the expiry of the guarding timer TX2RELOCoverall.1.3.3eNB内切换Counter Counter ID NetAct nameeNB内收到MR次数M8009C0 TOT_NOT_START_HO_PREP eNB内切换决断次数M8009C1 TOT_HO_DECISIONeNB内切换请求次数M8009C2 INTRA_ENB_HO_PREPeNB内切换准备失败次数M8009C3 FAIL_ENB_HO_PREP_AC M8009C5 FAIL_ENB_HO_PREP_OTHeNB内切换尝试次数M8009C6 ATT_INTRA_ENB_HO eNB内切换成功次数M8009C7 SUCC_INTRA_ENB_HO eNB内切换执行失败次数M8009C8 ENB_INTRA_HO_FAIL统计点关系:M8009C1 > M8014C2M8014C2 = M8014C3 + M8014C5 + M8014C6M8014C6 = M8014C7 + M8014C8(注:现网实际数据对不上)1、M8009C0: TOT_NOT_START_HO_PREPUpdated: The reception of an RRC Measurement Report message sent by the UE to eNB and of the RRM decision not to execute a handover. Updated to the source cell.2、M8009C1: TOT_HO_DECISIONUpdated: The reception of an RRC Measurement Report message sent by the UE to eNB and of an RRM decision to execute a handover. Updated to the source cell.3、M8009C2: INTRA_ENB_HO_PREPUpdated: An internal eNB trigger. The eNB MM receives a list with the target cells from RRM and decides on an Intra-eNB Handover. Updated to the source cell.4、M8009C6: ATT_INTRA_ENB_HOUpdated: The transmission of an RRC Connection Reconfiguration message sent by the eNB to UE, which indicates a Handover Command to the UE. Updated to the source cell.5、M8009C7: SUCC_INTRA_ENB_HOUpdated: The reception of an internal UE Context Release Request for the handover on the source side. Updated to the source cell.6、M8009C3: FAIL_ENB_HO_PREP_ACUpdated: An internal eNB trigger. The eNB MM receives a list with the target cells from the RRM. The MM or RRM AC decides not to execute an Intra-eNB Handover. Updated to the source cell.7、M8009C5: FAIL_ENB_HO_PREP_OTHUpdated: An internal eNB trigger. The eNB MM receives a list with the target cells from RRM. The MM or RRM AC decides not to execute an Intra-eNB Handover. The counter is updated if the failure detected does not match any other failure counter. Updated to the source cell.8、M8009C8: ENB_INTRA_HO_FAILUpdated: The counter is updated to the source cell when timer THOoverall expires.2影响切换成功率的因素2.1从信令流程角度分析(注:个别流程可以会有不同,但大致相当,此处仅以X2切换为例。
TD-LTE无线帧结构TD-LTE无线帧特殊时隙TD-LTE上下行配比方式TD-LTE特殊子帧配比LTE物理层过程LTE物理层过程TD-LTE关键技术频域多址技术——OFDMA/SC-FDMALTE多址技术的要求更大的带宽和带宽灵活性●随着带宽的增加,OFDMA信号仍将保持正交,而CDMA 的性能容易受到多径的影响。
●在同一个系统,OFDMA可以灵活处理多种系统带宽。
扁平化架构当分组调度的功能位于基站时,可以利用快速调度、包括频域调度来提高小区容量。
频域调度可通过OFDMA实现,而CDMA无法实现。
便于上行功放的实现SC-FDMA相比较OFDMA可以实现更低的峰均比, 有利于终端采用更高效率的功放。
简化多天线操作OFDMA相比较CDMA实现MIMO容易。
OFDM基本思想OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用,是一种多载波传输方式。
多载波传输,即使用多个载波并行传输数据,是相对于单载波传输而言的。
1.把一串高速数据流分解为若干个低速的子数据流——每个子数据流将具有低得多的速率;2.将子数据流放置在对应的子载波上;3.将多个子载波合成,一起进行传输。
OFDM将频域划分为多个子信道,各相邻子信道相互重叠,但不同子信道相互正交,这样可以最大限度地利用频谱资源。
LTE OFDM时频结构循环前缀(CP)多径效应保护间隔子载波间干扰循环前缀OFDM系统框图加入循环前缀,要牺牲一部分时间资源,降低了各个子载波的符号速率和信道容量,优点就是可以有效的抗击多径效应。
峰均比在时域上,OFDM信号是N路正交子载波信号的叠加,当这N路信号按相同极性同时取最大值时,OFDM信号将产生最大的峰值。
该峰值信号的功率与信号的平均功率之比,称为峰值平均功率比,简称峰均比(PAPR)。
在OFDM系统中,PAPR与N有关,N越大,PAPR的值越大,N=1024时,PAPR 可达30dB。
TD-LTE网络优化指导书掉话优化责任部门:审核:批准:2013 -08发布2013 -09实施大唐移动通信设备有限公司发布目录1引言 (3)2基础知识 (3)2.1“连接”与“掉话”的概念 (3)2.2正常的连接释放 (4)2.3异常的连接释放(掉话) (5)3DT/CQT常见掉话原因分析 (7)3.1弱覆盖 (7)3.2切换失败 (8)3.3邻区漏配 (10)3.4越区覆盖 (11)3.5系统设备异常 (13)3.6干扰 (14)3.7拥塞 (16)4话务统计掉话数据分析 (17)4.1掉话相关的KPI (17)4.2全局掉话率偏高问题分析(Top N) (18)4.3小区(簇)掉话率偏高问题分析 (19)5掉话问题的分析流程 (20)6典型掉话案例分析 (21)6.1弱覆盖导致的掉话 (21)6.2切换失败导致的掉话 (21)6.3邻区漏配导致的掉话 (22)1引言编写本文的目的:1. 整理了与TD-LTE系统中与保持性(掉话)相关的基本概念、信令流程、所涉及的参数。
2. 指导TD-LTE网络维护、优化过程中,与掉话相关的问题分析和定位(解决)。
2基础知识知识点:1、掉话的定义2、掉话后UE、eNodeB的操作2.1“连接”与“掉话”的概念本文所提及的“保持性”,指的是“连接”的“保持性”,更狭义地,是指“RRC连接”的“保持性”。
因此,本文所称的“掉话”,具体是指UE异常退出RRC_CONNECTED状态导致的连接中断。
图0-1NAS和AS的几种状态移动性管理(EMM)连接管理(ECM)无线资源控制(RRC)上图给出了从开机到进入激活(数据传输)状态过程中,从不同角度来看的“状态”的变化情况。
从EPS移动性管理(EMM)的角度来看,在UE成功附着之前,都认为是未登记(Deregistered)状态,直至UE发起、并成功登记。
对于EPS连接管理(ECM)来说,只有在激活态时,UE才会跟EPS是连接的,其余时间,UE处于和EPS的空闲状态。
一、网络架构VoLTE中,可以理解为IMS相当于核心控制,一个统一的控制平台,其他CS、PS等都相当于接入网,CS和PS的核心网地位下降了。
VoLTE以IMS作为核心控制层网,EPC作为接入层。
IMS本身有一个特点就是接入无关,适合全业务运营商使用。
VoLTE是将手机接入到IMS网络,手机需要移动,就需要EPC来管理用户的移动性。
在IMS看来,EPC是一个接入设备;在EPC看来,IMS是一个外部数据网。
IMS的接入边界是SBC,EPC的外联边界是PGW,所以VoLTE中EPC的PGW要与PSBC连接,然后接入IMS。
VoLTE 一个新特点是有QOS的,实现此功能的是PCRF,它也联系着两个网络。
1、IMS网络结构IMS网络各网元按照功能分为三类,第一类是负责接入的网元:SBC、P-CSCF、I-CSCF,第二类是负责核心控制的网元:S-CSCF,第三类是数据库类网元:HSS,第四类是负责业务的网元AS,AS专门负责业务,这就体现了控制和业务分离。
(1)PSBC:VoLTE的PSBC是一个集SBC、P-CSCF、ATCF、ATGW于一身的合设网元。
作为SBC网元时,它连接IMS核心网/软交换网络与外部用户接入区域,完成IMS/软交换用户的业务接入、实现不同网络环境下用户业务的互通、保障IMS/软交换网络安全、支持QoS管理、CAC话务控制、媒体管理、CDR媒体呼叫详单等功能。
内置P-CSCF网元时,P-CSCF作为IMS拜访域控制平面统一的入口点,将来自拜访域接入网络的SIP消息,包括注册、会话、Presence等消息,代理转发到其归属域的S-CSCF或I-CSCF。
内置ATCF/ATGW网元时,通过设置ATCF/ATGW功能实体于P-CSCF与I-CSCF/S-CSCF之间,对于可能发生eSRVCC切换的呼叫,将媒体流锚定到ATGW。
这样后续在发生eSRVCC切换时,只需要更新ATGW上的媒体信息,不需要更新远端(UE)的媒体信息,使整个eSRVCC 切换时间更短。
RAB:无限承载,,RAB是用户平面的承载,用于UE和CN之间传送语音、数据及多媒体业务。
RAB的指配是由CN发起,RNC执行的功能RB是一种无线承载,位于SRNC和UE之间,包括layer2和layer2以下,是向layer2提供的服务Baton:接力Enquiry查询Notify:通知Status:状态Established:建立完成Congestion:拥塞Transfer:转移,转用,调用。
Physical Commom Control Channel PCCPCH:公共物理信道Pccpch:基本公共控制物理信道辅公共控制物理信道(S-CCPCH)RSCP:接收信号码功率Received Signal Code PowerDPCH:下行信道RSSI:UE测量所得GSM网的电平值ISCP:干扰信号码功率:在特定时隙内的Midamble上测量的接收信号中的干扰C/I:信噪比,越高越好PCCPCH pach loss:公用物理信道路径遗失BLER:传输信道误块率估计Deletion:删除UE-TX POWER:手机发射功率PCCPCH SIR:公用物理信道信干比SG:信令网关MGW:还具有媒体处理设备(如码型变换器、回升消除器、会议桥等),TD TR-TCH TD拥塞信道测量信息TD Transmission Traffic Channel Measurement Information Txpwr:UE发射功率TSIR:目标SIR,用于上行内环功率控制,调节UE的发射功率,使基站收到的SIR达到TSIR 闭环发射功率控制TPC(Transmit Power Control)时间交替发射分集TSTD(Time Switched Transmit Diversity)功率调整步长:Power stamp stepRSSI:接收信号强度指示SFN:System Frame NumberParamID: *识别小区的参数,包含SYNC-DL和Basic MA Idx信息。
TD网络优化自学笔记一:TD-SCDMA的原理1:电磁场和电磁波电磁波是指变化电磁场在空间中的传播。
空间中某处电场交变变化就在周围空间产生交变磁场,交变磁场又在周围空间产生交变电场,……电场和磁场就这样交替变化逐渐由变化的区域传播出去形成电磁波。
通常,人的说话声、音乐声等各种声音的传播距离是很短的,当人大声吼叫时,能在三十米外听清楚已是不容易了。
但是声音通过无线电广播的发射与接收,却可以传到上千公里、上万公里以外,而且传送的时间人是感觉不到的。
这种传播效果的实现,是通过让声音“加载”在无线电波上进行传播的。
同时,无线电波的传播速度接近光速,在空气中传播衰减也小,这就构成能搞快速而又远距离传播的条件。
通常把声音“加载”在无线电波上的过程叫“调制”,而被当做传播交通工具的无线电波则叫“载波”。
因此,发射电磁波是为了传递信号,信号的频率低,无线电磁波的频率高,使无线电磁波随信号变叫调制(把声音“加载”在无线电波上的过程),而被当做传播交通工具的无线电磁波则叫“载波”。
把声音调制到载波的方式又有两种:使高频无线电磁波的振幅随信号改变叫调幅,使高频无线电磁波的频率随信号改变叫调频。
*调幅使载波振幅按照调制信号改变的调制方式叫调幅。
经过调幅的电波叫调幅波。
它保持着高频载波的频率特性,但包络线的形状则和信号波形相似。
调幅波的振幅大小,由调制信号的强度决定。
调幅波用英文字母AM表示。
目前,调幅制无线电广播分做长波、中波和短波三个大波段,分别由相应波段的无线电波传送信号。
中国只有中波和短波两个大波段的无线电广播。
中波广播使用的频段大致为550kHz-1600kHz,主要靠地波传播,也伴有部分天波;短波广播使用的频段约为2MHz-24MHz,主要靠天波传播,近距离内伴有地波。
*调频使载波频率按照调制信号改变的调制方式叫调频。
已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。
已调波的振幅保持不变。
调频波的波形,就像是个被压缩得不均匀的弹簧,调频波用英文字母FM表示。
目前,调频制无线电广播多用超短波(甚高频)无线电波传送信号,使用频率约为88MHz-108MHz,主要靠空间波传送信号。
移动通信系统有多种分类方法。
例如按信号性质分,可分为模拟、数字;按调制方式分,可分为调频、调相、调幅;按多址连接方式分,可分为:频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。
载波的相位对其参考相位的偏离值随调制信号的瞬时值成比例变化的调制方式,称为相位调制,或称调相。
调相和调频有密切的关系。
调相时,同时有调频伴随发生;调频时,也同时有调相伴随发生,不过两者的变化规律不同。
实际使用时很少采用调相制,它主要是用来作为得到调频的一种方法。
调相即载波的初始相位随着基带数字信号而变化,例如数字信号1对应相位180°,数字信号0对应相位0°。
这种调相的方法又叫相移键控PSK,其特点是抗干扰能力强,但信号实现的技术比较复杂。
调制又分为三种:调幅,调频和调相。
调幅用AM表示,调频用FM表示,调相拥PM表示,这个我们在听广播的时候就可以在上面找到AM.FM的标志。
TD-SCDMA:QPSK TD-HSDPA:QPSK、16QAM2:TD 网络结构和接口SRNC:Serving Radio Network Controller,服务无线网络控制器。
SRNC是针对某个具体的终端而言的,是从专用数据处理角度进行区分的,它直接和CN相连,在连接状态下,有且只有一个,主要为UE 提供Iu接口服务。
DRNC:Drift Radio Network Controller,漂移无线网络控制器。
DRNC是针对某个具体的终端而言的,从专用数据处理角度进行区分,它与CN无相连,在连接状态下,可以没有,也可以有多个,主要是为UE提供无线资源。
3:UTRAN通用协议模型AAL2 (ATM适配层2):AAL2用于支持可变比特率的面向连接业务。
并同时传送业务时钟信息。
AAL5(ATM适配层5):AAL5支持面向连接的、VBR业务,它主要用于ATM网及LANE上传输标准的IP业务。
AAL5采用了SEAL技术,并且是目前AAL推荐中最简单的一个。
AAL5提供低带宽开销和更为简单的处理需求以获得简化的带宽性能和错误恢复能力。
4:空中接口Uu由下至上,依次分为物理层(L1)、数据链路层(L2)、网络层(L3)。
其中,数据链路层包括媒体接入(MAC)子层、无线链路控制(RLC)子层、分组数据汇聚(PDCP)子层、广播/组播控制(BMC)子层。
MAC子层位于物理层之上,为物理层提供传输信道,在向RLC子层提供服务的逻辑信道之间进行信道映射,同时为逻辑信道选择合适的传输格式(TF)。
RLC一般可以分成透明(TM)、无应答(UM)、应答(AM)三种模式。
在控制面向RRC子层提供信令无线承载服务。
在用户面和PDCP子层一起提供业务无线承载服务并向BMC子层提供信息广播和多播所需的业务接入功能。
RLC协议具体包括:分割和重组、串联、填充、用户数据的传送、错误检测按序发送高层PDU、副本检测、流控、非证实数据传送模式序号检查、协议错误检测和恢复、加密、挂起和恢复功能。
RRC 协议用于向非接入层提供服务,例如用于将呼叫控制、会话管理、移动性管理等消息封装之后在控制接口传输,此外RRC 还提供对其下各层协议的控制和管理功能。
5:LU 口Iu 接口是连接UTRAN 和CN 的接口,也可以把它看成是RNS 和核心网之间的一个参考点。
它将系统分成用于无线通信的UTRAN 和负责处理交换、路由和业务控制的核心网两部分。
结构:一个CN 可以和几个RNC 相连,而任何一个RNC 和CN 之间的Iu 接口可以分成三个域:电路交换域(Iu-CS )、分组交换域(Iu-PS )它们有各自的协议模型。
功能:Iu 接口主要负责传递非接入层的控制信息、用户信息、广播信息及控制Iu接口上的数据传递等。
(注:密集城区容量受限;一般城区容量受限;郊区覆盖受限;)6:什么是TD-SCDMAP ower density (CDMA codes)1 D wPT S U pPTS物理信道帧结构3GPP定义的一个TDMA帧长度为10ms。
一个10ms的帧分成两个结构完全相同的子帧,每个子帧的时长为5ms。
这是考虑到了智能天线技术的运用,智能天线每隔5ms进行一次波束的赋形。
子帧分成7个常规时隙(TS0 ~ TS6),每个时隙长度为864chips,占675us)。
DwPTS(下行导频时隙,长度为96chips,占75us)GP(保护间隔,长度96chips,75us)UpPTS(上行导频时隙,长度160chips,125us)子帧总长度为6400chips,占5ms,得到码片速率为1.28McpsTS0总是固定地用作下行时隙来发送系统广播信息,是广播信道PCCPCH独自隙TS1总是固定地用作上行时隙。
其它的常规时隙可以根据需要灵活地配置成上对称业务的传输,上下行的转换由一个转换点(Switch Point)分开。
每个5ms的子帧有两个转换点(UL到DL和DL到UL),第一个转换点固定在TS0结束处,而第二个转换点则取决于小区上下行时隙的配置。
物理信道以及分类⒈专用物理信道DPCH⒉公共物理信道CPCH⑴主公共控制物理信道P-CCPCH⑵辅公共控制物理信道S-CCPCH⑶快速物理接入信道FPACH⑷物理随机接入信道PRACH⑸物理上行共享信道PUSCH⑹物理下行共享信道PDSCH⑺寻呼指示信道PICH常规时隙Midamble码整个系统有128 个长度为128chips 的基本midamble 码,分成32 个码组,每组4 个。
一个小区采用哪组基本midamble 码由基站决定,当建立起下行同步之后,移动台就知道所使用的midamble 码组。
Node B 决定本小区将采用这4 个基本midamble 中的哪一个。
同一时隙的不同用户将使用不同的训练序列位移。
训练序列的作用:上下行信道估计;功率测量;上行同步保持。
传输时Midamble 码不进行基带处理和扩频,直接与经基带处理和扩频的数据一起发送,在信道解码时它被用作进行信道估计。
三扇宏蜂窝58个;两扇宏蜂窝20个;全向宏蜂窝2个;两扇微蜂窝2个;RRU 3个;OTSR 10个;RF直放站7个;根据区域划分和行政区域两种情形的规划站点统计常规时隙-物理层信令TPC/SS/TFCI位置:位于midamble的两侧TPC: 调整步长是1, 2或3dBSS;最小精度是1/8个chipTFCI;分四个部分位于相邻的两个子帧内TPC和SS信令都在每一个5ms子帧内发送一次TPC和SS总是按高层分配信息的顺序采用该时隙的第一个信道码进行扩频目前SS只用于下行突发TPC:调整步长是1, 2或3dBSS:最小精度是1/8个chipGB保护时隙96 Chips保护时隙,时长75us;用于下行到上行转换的保护;在小区搜索时,确保DwPTS可靠接收,防止干扰UL工作;在随机接入时,确保UpPTS可以提前发射,防止干扰DL工作;确定基本的基站覆盖半径。
这时双向时延为GP时隙的长度(96chip),对应的无线电波传输路径为dmax=Δt×c c=光速=96/2/(1.28×106)×c=11.25km这是一般理解的TD-SCDMA最大覆盖半径。
最多48个chip的距离,才不会干扰DW的发射。
TS0空出来的话可以达到160KM7:信道映射1. 不同的双工模式TD-SCDMA系统采用TDD双工方式,无线帧传输不再需要成对频谱,使频谱的分配更加灵活;上、下行时隙可以根据不同的业务灵活分配,可同时适用于对称的语音业务和不对称的数据传输或IP业务,大大提高了频谱的利用效率。
WCDMA和CDMA2000采用FDD双工方式,比较适合于相对对称的业务,如语音,交互式实时数据传输业务等。
2. 多址及检测技术TD-SCDMA采用空分多址SDMA,码分多址CDMA,频分多址FDMA,时分多址TDMA相结合的方式,利用智能天线、联合检测和上、下行同步等技术降低同信道干扰(CCI)、码间干扰(ISI)和多址干扰(MAI),缩短了频谱复用距离,提高频谱利用效率并且有效地降低了系统成本。
WCDMA和CDMA2000采用码分多址CDMA和频分多址FDMA相结合的技术,采用智能天线导频符号辅助相干检测的技术,降低系统中各种干扰,提高频谱的利用效率。
3. 信道分配在基于CDMA技术的3G系统中,信息传输都是占用公共信道。
因而,固定信道分配(FCA)没有被采用,而是采用动态信道分配(DCA)和随机信道分配(RCA)相结合的方式。