2021年山东省济南市市中区中考数学一模试卷
- 格式:docx
- 大小:528.00 KB
- 文档页数:7
2021年山东省济南市市中区中考数学模拟试卷(4月份)一.选择题(共12小题,满分48分)1.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.0.18×107B.1.8×105C.1.8×106D.18×1052.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.3.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°4.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a75.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°6.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.不等式组的解集在数轴上可表示为()A.B.C.D.8.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.59.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米10.关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0 B.k≤0 C.k<0且k≠﹣1 D.k≤0且k≠﹣111.直线y=﹣x+与x轴,y轴交于A、B两点,若把△ABO沿直线AB翻折,点O落在第一象限的C处,则C点的坐标为()A.(,)B.(,)C.(,)D.(,)12.在平面直角坐标系xOy中,抛物线y=﹣x2+4x﹣3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,记s=x1+x2+x3,则s的取值范围为()A.5<s<6 B.6<s<7 C.7<s<8 D.8<s<9二.填空题(共6小题,满分24分,每小题4分)13.分解因式:a3﹣a= .14.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.15.方程组的解是.16.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为.17.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.18.如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是三.解答题(共9小题,满分66分)19.(6分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.20.(6分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.21.(6分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD.22.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.23.(8分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应的圆心角的度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.24.(10分)如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.25.(10分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF 所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.26.(12分)如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则= ;(2)数学思考:①如图2,若点E在线段AC上,则= (用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.27.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题1.解:1800000这个数用科学记数法可以表示为1.8×106,故选:C.2.解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.3.解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.4.解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.5.解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.6.解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.7.解:,由①得,x≥1,由②得,x>3,故此不等式组的解集为:x>3,在数轴上表示为:故选:D.8.解:∵一组数据x1,x2,x3…,x n的方差为3,∴另一组数据2x1,2x2,2x3…,2x n的方差为22×3=12.故选:C.9.解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.10.解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)≥0,解得k≤0且k≠﹣1.故选:D.11.解:过C作CD⊥x轴,∵y=﹣x+与x轴,y轴交于A、B两点分别是(1,0),(0,),∴AB=2,则∠ABO=30°,CD=,AD=,OD=,则C点的坐标为(,).故选:B.12.解:当y=0时,﹣x2+4x﹣3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=﹣x2+4x﹣3=﹣3,则C(0,﹣3),∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线的顶点坐标为(2,1),易得直线BC的解析式为y=x﹣3,∵x1<x2<x3,∴0<y1=y2=y3≤1,当y3=1时,x﹣3=1,解得x=4,∴3<x3<4,∵点P和点Q为抛物线上的对称点,∴x2﹣2=2﹣x1,∴x1+x2=4,∴s=4+x3,∴7<s<8.故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).14.解:列表如下:∴积为大于﹣4小于2的概率为=,故答案为:.15.解:,①+②得,3x=﹣6,解得,x=﹣2,把x=﹣2代入①得,y=﹣5,则方程组的解为:,故答案为:.16.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为: =π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为:﹣1.17.解:∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴1+2m>0,故m的取值范围是:m>﹣.故答案为:m>﹣.18.解:阴影部分的面积=三角形ABG的面积+三角形DFG的面积=5×(5﹣3)÷2+3×(5﹣3)÷2=5+3=8.故答案为:8.三.解答题(共9小题,满分66分)19.解:原式=+1﹣2×+=.20.解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.21.证明:(1)在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.22.解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.23.解:(1)该班全部人数:12÷25%=48人.社区服务的人数为48×50%=24,补全折线统计如图所示:(2)网络文明部分对应的圆心角的度数为360°×=45°;(3)分别用A,B,C,D表示“社区服务、助老助残、生态环保、网络文明”四个服务活动,画树状图得:∵共有16种等可能的结果,他们参加同一服务活动的有4种情况,∴他们参加同一服务活动的概率为.24.解:(1)∵直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴﹣a+2=3,﹣3+2=b,∴a=﹣1,b=﹣1,∴A(﹣1,3),B(3,﹣1),∵点A(﹣1,3)在反比例函数y=上,∴k=﹣1×3=﹣3,∴反比例函数解析式为y=﹣;(2)设点P(n,﹣n+2),∵A(﹣1,3),∴C(﹣1,0),∵B(3,﹣1),∴D(3,0),∴S△ACP=AC×|x P﹣x A|=×3×|n+1|,S△BDP=BD×|x B﹣x P|=×1×|3﹣n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3﹣n|,∴n=0或n=﹣3,∴P(0,2)或(﹣3,5);(3)设M(m,0)(m>0),∵A(﹣1,3),B(3,﹣1),∴MA2=(m+1)2+9,MB2=(m﹣3)2+1,AB2=(3+1)2+(﹣1﹣3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m﹣3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=﹣1+或m=﹣1﹣(舍),∴M(﹣1+,0)③当MB=AB时,(m﹣3)2+1=32,∴m=3+或m=3﹣(舍),∴M(3+,0)即:满足条件的M(﹣1+,0)或(3+,0).25.解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.26.解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.27.解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,M(1,4)设直线MB的解析式为y=kx+n,则有解得∴直线MB的解析式为y=﹣2x+6∵PQ⊥x轴,OQ=m,∴点P的坐标为(m,﹣2m+6)S四边形ACPQ=S△AOC+S梯形PQOC=AO•CO+(PQ+CO)•OQ(1≤m<3)=×1×3+(﹣2m+6+3)•m=﹣m2+m+;(3)线段BM上存在点N(,),(2,2),(1+,4﹣)使△NMC为等腰三角形CM=,CN=,MN=①当CM=NC时,,解得x1=,x2=1(舍去)此时N(,)②当CM=MN时,,解得x1=1+,x2=1﹣(舍去),此时N(1+,4﹣)③当CN=MN时, =解得x=2,此时N(2,2).。
山东省济南市市中区中考数学一模试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)﹣2的绝对值等于()A.﹣B.C.﹣2D.22.(3分)数字3300用科学记数法表示为()A.0.33×104B.3.3×103C.3.3×104D.33×103 3.(3分)如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5C.﹣D.﹣15.(3分)如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.6.(3分)下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4C.(x3)4=x7D.2x2⋅x3=2x57.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.8.(3分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5B.5,4C.4,4D.5,59.(3分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位10.(3分)化简÷是()A.m B.﹣m C.D.﹣11.(3分)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.12.(3分)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C 作⊙O的切线交AB的延长线于点E,则sin∠E的值是()A.B.C.D.13.(3分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1B.m<2C.m>3D.m>514.(3分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.415.(3分)如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1C.﹣1D.﹣1二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)因式分解:xy2﹣4x=.17.(3分)计算﹣(﹣1)2=.18.(3分)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.19.(3分)方程=的解是.20.(3分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.21.(3分)如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.三、解答题(本大题共8小题,共57分)22.(7分)(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=(2)解不等式组,并把解集表示在数轴上.23.(3分)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.24.(4分)如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.25.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?26.(8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.27.(9分)如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A 在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.28.(9分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.29.(9分)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.山东省济南市市中区中考数学一模试卷参考答案一、选择题(本大题共15小题,每小题3分,共45分)1.D;2.B;3.C;4.B;5.C;6.D;7.B;8.A;9.A;10.B;11.C;12.A;13.D;14.C;15.A;二、填空题(本大题共6小题,每小题3分,共18分)16.x(y+2)(y﹣2);17.4;18.;19.x=6;20.;21.;三、解答题(本大题共8小题,共57分)22.;23.;24.;25.;26.;27.(﹣3,﹣1);﹣3≤x<0或x≥3;平行四边形;28.;29.(﹣3,4);。
2021年山东省济南市中考数学一模试卷一、选择题(本大题共12小题,共48.0分)1.下列实数−3、√4、0、π中,无理数是()A. −3B. √4C. 0D. π2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.3.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为().A. 0.439×106B. 4.39×106C. 4.39×105D. 439×1034.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A. B. C. D.5.如图,BD//AC,BE平分∠ABD,交AC于点E.若∠A=40°,则∠1的度数为()A. 80°B. 70°C. 60°D. 40°6.化简m−1m ÷1−mm2是()A. mB. −mC. 1mD. −1m7. 小明的爸爸是个“健步走”运动爱好者,他们手机软件记录了某个月(30天)每天健步走的步数,并将记录结果给制成了统计表: 步数(万步) 1.11.21.31.41.5天数375123在每天所走的步数这组数据中,众数和中位数分别是( )A. 1.4,1.3B. 1.2,1.3C. 1.4,1.35D. 1.2,1.358. 已知,在Rt △ABC 中,∠C =90°,若sinA =23,BC =4,则AB 长为( )A. 6B. 4√55C. 83D. 2√139. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. {y −8x =3y −7x =4B. {y −8x =37x −y =4C. {8x −y =3y −7x =4D. {8x −y =37x −y =410. 在同一平面直角坐标系中,函数y =ax +b 与y =ax 2−bx 的图象可能是( )A.B.C.D.11. 如图,一艘轮船在A 处测的灯塔C 在北偏西15°的方向上,该轮船又从A 处向正东方向行驶20海里到达B 处,测的灯塔C 在北偏西60°的方向上,则轮船在B 处时与灯塔C 之间的距离(即BC 的长)为( )A. 40√3海里B. (20√3+10)海里C. 40海里D. (10√3+10)海里12.如图,将抛物线y=(x−1)2的图象位于直线y=4以上的部分向下翻折,得到新的图象(实线部分),若直线y=−x+m与新图象只有四个交点,求m的取值范围.()<m<3A. 34<m<7B. 34<m<7C. 43<m<3D. 43二、填空题(本大题共6小题,共24.0分)13.分解因式:m2−9=______.14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于______.15.若正多边形的一个内角等于120°,则这个正多边形的边数是______.16.如图,在扇形AOB中,∠AOB=90°,AC⏜=BC⏜,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4√2时,则阴影部分的面积为______.17.如图,线段AB的两端点分别在x轴正半轴和y轴负半轴上,(k<0)恰好经过线段且△ABO的面积为6,若双曲线y=kxAB的中点M,则k的值为______ .18.如图,在矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连接EF.已知AB=6,BC=8,则EF的长为______ .三、计算题(本大题共1小题,共6.0分)19.计算:2−2−2cos60°+|−√12|+(π−3.14)0.四、解答题(本大题共8小题,共72.0分)20.解不等式组:{x+1>03x+12≥2x−1.21.如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.22.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°.(1)求∠ABD的度数;(2)若∠CDB=30°,BC=5,求⊙O的半径.23.某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利利不低于28000元,则最少购进B品牌羽绒服多少件?24.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样,便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选种你最喜欢的支付方式,现将调查结果进行统计并绘制成两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了______ 人;在扇形统计图中,表示“现金”支付的扇形圆心角的度数为______ ;将条形统计图补充完整.(2)如果某个社区共有2000个人,那么选择微信支付的人约有______ ;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.的图25.已知一次函数y=kx+b与反比例函数y=mx象交于A(−3,2)、B(1,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上是找一点P,使|PA−PB|值最大,则点P的坐标是______ .26.某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ,BP与CQ的数量关系是______ ;(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,连接CQ,判断∠ABC和∠ACQ 的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正,方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为5,CQ=√22求正方形ADBC的边长.27.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(−1,0)和点B(3,0),该抛物线对称轴上的点P在x轴上方,线段PB绕着点P逆时针旋转90°至PC(点B 对应点C),点C恰好落在抛物线上.(1)求抛物线的表达式并写出抛物线的对称轴;(2)求点P的坐标;(3)点Q在x轴下方抛物线上,连接AC.如果∠QAB=∠ABC,求点Q的坐标.答案和解析1.【答案】D【解析】解:实数−3、√4、0、π中,无理数只有π,故选:D.由于无理数就是无限不循环小数,利用无理数的定义即可判定选择项.本题主要考查学生对无理数和有理数定义的理解及区分.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】A【解析】【分析】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形,且两个长方形有一条公共边.故选A.3.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将439000用科学记数法表示为4.39×105.故选:C.4.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故选项错误;B、不是轴对称图形,不是中心对称图形.故选项错误;C、不是轴对称图形,也不是中心对称图形.故选项错误;D、是轴对称图形,也是中心对称图形.故选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】B【解析】解:∵BD//AC,∠A=40°,∴∠ABD=140°,又∵BE平分∠ABD,∴∠1=12∠ABD=70°,故选:B.根据平行线的性质,得到∠ABD=140°,再根据BE平分∠ABD,即可得到∠1的度数.本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.6.【答案】B【解析】【分析】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找出分子分母的公因式.原式利用除法法则变形,约分即可得到结果.【解答】解:原式=−m−1m ⋅m2m−1=−m,故选B.7.【答案】C【解析】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故选:C .把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.8.【答案】A【解析】解:如图所示:∵sinA =23,BC =4,∴sinA =BCAB =23=4AB ,解得:AB =6.故选:A .直接利用已知画出直角三角形,再利用锐角三角函数关系得出答案.此题主要考查了锐角三角函数关系,正确画出直角三角形是解题关键.9.【答案】C【解析】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数−物品价值=3,②物品价值−7×人数=4,据此可列方程组.本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.10.【答案】C【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用,属于中档题.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx来说,对称轴x=b2a>0,应在y轴的右侧,故不合题意,图形错误;B.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx来说,对称轴x=b2a<0,应在y轴的左侧,故不合题意,图形错误;C.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx来说,图象开口向上,对称轴x=b2a>0,应在y轴的右侧,故符合题意;D.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而图中的抛物线y=ax2−bx图象开口向下,a<0,产生矛盾,所以图形错误;故选C.11.【答案】D【解析】解:过A作AD⊥BC于D,如图所示:在Rt△ABD中,∠ABD=30°,AB=20海里,∴AD=12AB=10(海里),BD=√3AD=√32AB=10√3(海里),∵∠ABC=90°−60°=30°,∠BAC=90°+15°=105°,∴∠C=180°−105°−30°=45°,∴△ACD是等腰直角三角形,∴CD=AD=10海里,∴BC=BD+CD=(10√3+10)海里,故选:D.过A作AD⊥BC于D,解直角三角形求出CD和BD,即可解决问题.本题考查了解直角三角形−方向角问题,正确的作出辅助线是解题的关键.12.【答案】A【解析】解:令y=4,则4=(x−1)2,解得x=3或−1,∴A(−1,4),平移直线y=−x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点A(−1,4),∴4=1+m,即m=3.②当直线位于l2时,此时l2与函数y=(x−1)2的图象有一个公共点,∴方程−x+m=x2−2x+1,即x2−x+1−m=0有两个相等实根,∴△=1−4(1−m)=0,.即m=34<m<3;由①②知若直线y=−x+m与新图象只有四个交点,m的取值范围为34故选A.根据函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:①直线经过点A(即左边的对折点),可将A点坐标代入直线的解析式中,即可求出m的值;②若直线与新函数图象有三个交点,那么当直线与该二次函数只有一个交点时,恰好满足这一条件,那么联立直线与该二次函数的解析式,可化为一个关于x的一元二次方程,那么该方程的判别式△=0,根据这一条件可确定m的取值.此题考查了二次函数图象与几何变换、一次函数的性质、函数图象交点以及根据值域确定二次函数参数取值范围的问题,综合性强,难度较大.13.【答案】(m+3)(m−3)【解析】解:m2−9=m2−32=(m+3)(m−3).故答案为:(m+3)(m−3).通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2−b2=(a+b)(a−b).此题主要考查了平方差公式分解因式,掌握平方差公式是解题的关键.14.【答案】13【解析】【试题解析】解:由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有6种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是26=13;故答案为13.首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率.此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比.15.【答案】6【解析】解:解法一:设所求正n边形边数为n,则120°n=(n−2)⋅180°,解得n=6;解法二:设所求正n边形边数为n,∵正n边形的每个内角都等于120°,∴正n边形的每个外角都等于180°−120°=60°.又因为多边形的外角和为360°,即60°⋅n=360°,∴n=6.故答案为:6.多边形的内角和可以表示成(n−2)⋅180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.16.【答案】8π−16【解析】解:∵在扇形AOB中∠AOB=90°,且AC⏜=BC⏜,∴∠COD=45°,∴OC=4√2×√2=8,∴阴影部分的面积=扇形BOC的面积−三角形ODC的面积=45π×82360−12×(4√2)2=8π−16.故答案为:8π−16.连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积−三角形ODC的面积,依此列式计算即可求解.考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.17.【答案】−3【解析】解:设点A(a,0),点B(0,b),∴OA=a,OB=−b,∵△ABO的面积为6,∴12a⋅(−b)=6,∴ab=−12,∵点C是AB中点,∴点C(a2,b2 ),∵点C在双曲线y=kx(k≠0)上,∴k=a2×b2=−3,故答案为−3.设点A(a,0),点B(0,b),由三角形面积公式可求ab=−12,由中点坐标公式可求点C(a2,b2 ),代入解析式可求k的值.本题考查反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,掌握点在图象上,点的坐标满足图象解析式是本题的关键.18.【答案】5√133【解析】解:∵四边形ABCD 是矩形,∴AB =CD =6,AD =BC =8,∠A =∠C =∠EDF =90°,∴BD =√AB 2+AD 2=√62+82=10, ∵将矩形ABCD 沿BE 所在直线折叠,使点A 落在BD 上的点M 处,∴AE =EM ,∠A =∠BME =90°,∴∠EMD =90°,∵∠EDM =∠ADB ,∴△EDM∽△BDA ,∴EDBD =EMAB ,设DE =x ,则AE =EM =8−x ,∴x 10=8−x6,解得,x =5,即DE =5,同理,△DNF∽△DCB ,∴DF BD =NFBC ,设DF =y ,则CF =NF =6−y ,∴y 10=6−y8,解得,y =103,即DF =103,∴EF =√DE 2+DF 2=√52+(103)2=5√133,故答案为:5√133. 根据勾股定理求出BD ,根据折叠的性质得到AE =EM ,CF =NF ,证明△EDM∽△BDA ,根据相似三角形的性质求出DE ,同理出去DF ,根据勾股定理计算,得到答案. 本题考查了翻折的性质,勾股定理,矩形的性质,相似三角形的判定与性质,熟练掌握翻折变换的性质、证明三角形相似是解题的关键.19.【答案】解:原式=14−2×12+2√3+1=14+2√3.【解析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:{x+1>0①3x+12≥2x−1②,解不等式①得x>−1,解不等式②得:x≤3,∴不等式组的解集为−1<x≤3.【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.21.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠B=∠DCF,在△ABE和△DCF中,{AB=DC∠B=∠DCF BE=CF,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF.【解析】首先根据平行四边形的性质可得AB=CD,AB//CD,再根据平行线的性质可得∠B=∠DCF,即可证明△ABE≌△DCF,再根据全等三角形性质可得到结论.此题主要考查了平行四边形的性质,全等三角形的判定与性质,关键是找到证明△ABE≌△DCF的条件.22.【答案】解:(1)∵∠BCD=45°,∴∠BAD=∠BCD=45°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=45°;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,BC=5,∴AB=2BC=10,∴⊙O的半径为5.【解析】(1)根据圆周角定理∠BAD=∠BCD,∠ADB=90°,求出∠BAD=45°,再根据直角三角形的性质求出答案即可;(2)连接AC,根据圆周角定理得出∠ACB=90°,∠CAB=∠CDB,再解直角三角形求出AB即可.本题考查了圆周角定理,直角三角形的性质等知识点,注意:在同圆或等圆中,同弧或等弧所对的圆周角相等,直径所对的圆周角是直角.23.【答案】解:(1)设A品牌羽绒服每件进价为x元,则B品牌羽绒服每件进价为(x+200)元,依题意得:10000x =7000x+200×2,解得:x=500,经检验,x=500是原方程的解,且符合题意,∴x+200=700.答:A品牌羽绒服每件进价为500元,B品牌羽绒服每件进价为700元.(2)设购进B品牌羽绒服y件,则购进A品牌羽绒服(80−y)件,依题意得:(800−500)(80−y)+(1200−700)y≥28000,解得:y≥20.答:最少购进B品牌羽绒服20件.【解析】(1)设A品牌羽绒服每件进价为x元,则B品牌羽绒服每件进价为(x+200)元,根据数量=总价÷单价,结合用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进B品牌羽绒服y件,则购进A品牌羽绒服(80−y)件,利用总利润=每件的利润×销售数量,结合这批羽绒服全部出售后所获利利不低于28000元,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】200 90°600人【解析】解:(1)50÷25%=200(人),即这次活动共调查了200人;在扇形统计图中,表示“现金”支付的扇形圆心角的度数=360°×25%=90°;故答案为:200,90°;“微信”支付的人数为:200×30%=60(人),“银行卡”支付的人数为200×15%= 30(人),将条形统计图补充完整如下:(2)如果某个社区共有2000个人,那么选择微信支付的人约有2000×30%=600(人),故答案为:600人;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为39=13.(1)由“现金”支付的人数除以所占百分比得出共调查的人数,再由360°乘以“现金”支付的人数所占的百分比得出圆心角度数,再求出“微信”支付的人数和“银行卡”支付的人数,补全条形统计图即可;(2)由社区总人数乘以选择微信支付的人所占的百分比即可;(3)画树状图,再由概率公式求解即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了条形统计图和扇形统计图.25.【答案】(−5,0)【解析】(1)把A(−3,2)代入y =m x 得:m =−6;∴反比例解析式为y =6x ,∴B(1,−6),把A(−3,2 ) B(1,−6)代入y =kx +b 把A 与M 代入得:{−3k +b =2k +b =−6, 解得:{k =−2b =−4, ∴直线AB 解析式为y =−2x −4;(2)设直线AB 交y 轴与C ,令x =0,则y =−4,∴C(0,−4),∴OC =4,∴S △AOB =S △OCA +S △OCB =12×4×3+12×4×1=8(3)作A 点关于x 轴的对称点A′,如图,则A′点坐标为(−3,−2),∴PA =PA′,∴|PA −PB|=|PB −PA′|≤A′B ,∴当点P 、A′、B 共线时,|PA −PB|的值最大,设直线A′B 的解析式为y =mx +n ,把A′(−3,−2)、B(1,−6)代入得{−3m +n =−2m +n =−6,解得{m =−1n =−5, ∴直线AC 的解析式为y =−x −5,令y =0,则−x −5=0,解得x =−5,∴P点坐标为(−5,0),故答案为(−5,0).(1)利用待定系数法求解即可;(2)如图设直线AB交y轴于C,则C(0,−4),根据S△AOB=S△OCA+S△OCB求解即可;(3)作A点关于x轴的对称点A′,则A′点坐标为(−3,−2),根据三角形三边的关系得到|PA−PB|=|PB−PA′|≤A′B(当点P、A′、B共线时,取等号),所以,|PA−PB|的值为A′B,然后利用待定系数法求出直线A′B的解析式,再确定该直线与x轴的交点坐标,即P点坐标.本题主要考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数的表达式,一次函数图象上点的坐标特征,三角形面积.本题属于中考常考题型.26.【答案】BP=CQ【解析】解:(1)问题发现:∵△ABC和△APQ都是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠PAQ=60°,∴∠BAP=∠CAQ,在△BAP和△CAQ中,{AB=AC∠BAP=∠CAQ AP=AQ,∴△BAP≌△CAQ(SAS),∴BP=CQ,故答案为:BP=CQ;(2)变式探究:∠ABC=∠ACQ,理由如下:∵AB=BC,∴∠BAC=180°−∠ABC2,∵AP=PQ,∴∠PAQ=180°−∠APQ2,∵∠APQ=∠ABC,∴∠BAC=∠PAQ,∴△BAC∽△PAQ,∴ABAC =APAQ,∵∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∴△BAP∽△CAQ,∴∠ABC=∠ACQ;(3)解决问题:如图3,连接AB、AQ,∵四边形ADBC是正方形,∴ABAC=√2,∠BAC=45°,∵Q是正方形APEF的中心,∴APAQ=√2,∠PAQ=45°,∴∠BAP+∠PAC=∠PAC+∠CAQ,即∠BAP=∠CAQ,∵ABAC =APAQ,∴△ABP∽△ACQ,∴CQBP =ACAB=√2,∵CQ=√22,∴BP=1,设PC=x,则BC=AC=1+x,在Rt△APC中,AP2=AC2+PC2,即52=(1+x)2+x2,解得,x1=−4(舍去),x2=3,∴正方形ADBC的边长为:3+1=4.(1)利用SAS定理证明△BAP≌△CAQ,根据全等三角形的性质解答;(2)先证明△BAC∽△PAQ,得到ABAC =APAQ,再证明△BAP∽△CAQ,根据相似三角形的性质解答即可;(3)连接AB、AQ,根据相似三角形的性质求出BP,根据勾股定理列出方程,解方程得到答案.本题考查的是正方形的性质、三角形全等的判定和性质、三角形相似的判定和性质、勾股定理的应用,掌握相似三角形的判定定理和性质定理、正方形的性质是解题的关键.27.【答案】解:(1)将A(−1,0),B(3,0)代入抛物线表达式得:{a−b+3=09a+3b+3=0,解得:{a=−1b=2,故抛物线的表达式为:y=−x2+2x+3,函数的对称轴为:x=1;(2)设抛物线对称轴交x轴于点N,过点C作CM⊥PN交抛物线对称轴于点M,如图:∵点C恰好落在抛物线上,抛物线对称轴上的点P∴设点C(m,−m2+2m+3),点P(1,s),则MC=m−1,MP=(−m2+2m+3)−s,PN=1,BN=2,∵∠PBN+∠BPN=90°,∠BPN+∠MPC=90°,∴∠MPC=∠PBN,∵∠PMC=∠BNP=90°,PB=PC,∴△PMC≌△BNP(AAS),∴PM=BN,MC=PN,∴{−m2+2m+3−s=2 m−1=1,解得:{m=2s=1,∴点P(1,1);(3)如图:由(2)可得C(2,3),且B(3,0),∴直线BC解析式为y=−3x+9,∵∠QAB =∠ABC ,∴CB//AQ ,设AQ 解析式为y =−3x +b ,把A(−1,0)代入得0=3+b ,解得b =−3,∴直线AQ 为:y =−3x −3,由{y =−3x −3y =−x 2+2x +3解得:{x 1=−1y 1=0(点A 坐标)、{x 2=6y 2=−21, ∴Q(6,−21).【解析】(1)将A 、B 两点坐标代入y =ax 2+bx +3即可得解析式,从而可得对称轴;(2)抛物线对称轴交x 轴于点N ,过点C 作CM ⊥PN 交抛物线对称轴于点M ,证明△PMC≌△BNP ,设C 和P 坐标,用全等三角形对应边相等列方程即可得到答案;(3)根据内错角相等两直线平行,得到AQ//BC ,联立解析式求解交点坐标.此题考查了二次函数、相似三角形等综合知识,解题的关键是设点坐标,表示相关线段长度列方程.。
2021山东济南中考模拟试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2021济南,1,3分)在实数0,-2,5,3中,最大的是( ) A .0 B .-2C . 5D .3【答案】D2.(2021济南,2,3分)如图所示的几何体,它的左视图是( )A .B .C .D .【答案】A3.(2021济南,3,3分)2021年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104B .5.55×104C .5.55×103D .55.5×103【答案】C4.(2021济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40°B .45°C .50°D .60°【答案】C5.(2021济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )a bA .B .C .D .【答案】B6.(2021济南,6,3分)化简a 2+ab a -b ÷aba -b的结果是( )A .a 2B .a 2a -bC .a -bbD .a +bb【答案】D7.(2021济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6 B .-3 C .3 D .6【答案】B8.(2021济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( ) A .⎩⎨⎧y -8x =3y -7x =4B .⎩⎨⎧y -8x =37x -y =4C .⎩⎨⎧8x -y =3y -7x =4D .⎩⎨⎧8x -y =37x -y =4【答案】C9.(2021济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23【答案】B出口出口10.(2021济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .63cmD .123cm【答案】C11.(2021济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1 B .x >1 C .x >-2 D .x >2【答案】A12.(2021济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m ,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .34B .3C .35D .4【答案】B13.(2021济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =32,E 为OC 上一点,OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .3105B .2 2C .354D .322EA【答案】A14.(2021济南,14,3分)二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c<0.其中正确结论的个数是( ) A .1 B .2 C .3 D .4【答案】C15.(2021济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A →B →E →G B .A →E →D →CC .A →E →B →FD .A →B →D →C【答案】D二、填空题(本大题共6小题,每小题3分,共18分)16.(2021济南,16,3分)分解因式:x 2-4x +4=__________. 【答案】(x -2)217.(2021济南,17,3分)计算:│-2-4│+(3)0=________________. 【答案】7AB第15题图1第15题图2第15题图318.(2021济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.【答案】9019.(2021济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .【答案】2020.(2021济南,20,3分)如图,过点O 的直线AB 与反比例函数y =kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y =-3kx(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.【答案】8C21.(2021济南,21,3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______________.【答案】(1,-2)三、解答题(本大题共7小题,共57分)22.(2021济南,22,7分)(1)先化简,再求值:(a +3)2-(a +2)(a +3),其中a =3. 【解】原式=a 2+6a +9-(a 2+2a +3a +6) =a 2+6a +9-a 2-2a -3a -6) =a +3. 当a =3时, 原式=3+3=6.(2)解不等式组:⎩⎪⎨⎪⎧3x -5≥2(x -2) ①x 2>x -1 ②【解】由①,得x ≥1. 由②,得x <2.∴不等式组的解集为:1≤x <2.23.(2021济南,23,7分)(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .证明:∵四边形ABCD 是矩形,ECAB∴∠B =90°,AD ∥B C. ∴∠DAF =∠BE A. ∵DF ⊥AE , ∴∠AFD =90°. ∴∠B =∠AFD =90°. 又∵AD =AE , ∴△ADF ≌△EB A. ∴AB =DF .(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.【解】∵AB 是⊙O 的直径,∴∠ADB =90°. ∵∠B =∠C =25°, ∴∠BAD =90°-25°=65°.24.(2021济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则 12000x +90001.5x =150. 解得x =120.经检验x =120是方程的解. ∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元, 25.(2021济南,25,8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:CD(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数. 【解】(1)a =10,b =0.28,c =50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本). (4)该校八年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).26.(2021济南,26,9分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx(x >0)的图象经过的B . (1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =k x(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.8141887652015105人数0本【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3, ∴B (2,4).∵反比例函数y =k x(x >0)的图象经过的B , ∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22= 5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB ,∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5.(3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .解方程组⎩⎨⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6. 把y =0代入上式,得0=-x +6.解得x =6. ∴E (6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=2 2. ∴ED =BF .27.(2021济南,27,9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB =∠AED =90°,∠CAB =∠EAD =60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF =CF ,以下是她的证明过程①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF 的度数,并判断△CEF 的形状. 问题拓展:(3)如图2,当△ADE 绕点A 逆时针旋转某个角度时,连接CE ,延长DE 交BC 的延长线于点P ,其他条件不变,判断△CEF 的形状并给出证明.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b . ∵△BGF ≌△DEF ,∴BG =DE =3a .∴CG =BC +BG =3(a +b ). ∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b,∴CB CG =CACE . 又∵∠ACB =∠ECG ,∴△ACE ∽△ECG . ∴∠CEF =∠CAB =60°. 又∵CF =EF (已证),∴△CEF 是等边三角形. (3)△CEF 是等边三角形.证明方法一:如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN . 设AC =a ,AE =b ,则BC =3a ,DE =3b . ∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°. ∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C .第27题图2第27题图1CC第27题答案图1BC在△AEC 和△BNC 中, ∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC ,∴△AEC ∽△BN C.∴∠ECA =∠NC B.∴∠ECN =90°. 又∵EF =FN , ∴CF =12EN =EF .又∵∠CEF =60°, ∴△CEF 是等边三角形.证明方法二:如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形. ∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D.∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°. 即∠DAB +∠CMF =180°+60°=240°.又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°, ∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE . 又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM . 又∵∠ACM =∠ACF +∠FCM =60°, ∴∠ACF +∠ECA =60°.即∠ECF =60°. 又∵CE =CF ,∴△CEF 是等边三角形.28.(2021济南,28,9分)第27题答案图2N第27题答案图3如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交BC 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CPA =90°时,求所有符合条件的点P 的坐标; (3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2. ①设点D 平移后的对应点为点D ′,当点D ′恰好在直线AE 上时,求m 的值; ②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF=2,∴AF =3.∴OF =1. ∴D (1,6).把A (4,0),D (1,6)分别代入 y =ax 2+bx (a ≠0),得⎩⎨⎧0=16a +4b 6=a +b .解得⎩⎨⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x .(2)连接AC ,则AC =42+62=213. ∵y =-2x 2+8x =-2(x -2)2+8, ∴抛物线M 1的对称轴是直线x =2. 设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2. ∵点M 是AC 的中点,∴点M (2,3).∴MN =2. ∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN +P 1M =3+13. ∴点P 1(2,3+13). 同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4. ①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′恰好在直线AE 上 ∴6-m =-1+4. 解得m =3.∴D ′(1,3),m =3.②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等答案图3的实数根,将该方程整理,得2x 2+9x +m +4=0. 由△=92-4×2(m +4)>0, 解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①∵1≤x ≤m (m >1),∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界). 当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3. ∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得 -m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去). ∴m ≥2+2…………………………………………………………………………③ 由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498..。
2021年山东省济南市市中区中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分)1.(4分)2021的相反数是( )A .2021-B .2021C .12021D .12021- 2.(4分)如图所示的几何体,它的俯视图正确的是( )A .B .C .D .3.(4分)数字98990000用科学记数法表示为( )A .80.989910⨯B .79.89910⨯C .89.89910⨯D .698.9910⨯4.(4分)小明在学习平行线的性质后,把含有60︒角的直角三角板摆放在自己的文具上,如图,//AD BC ,若250∠=︒,则1(∠= )A .30︒B .40︒C .45︒D .50︒5.(4分)下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾6.(4分)下列计算正确的是( )A .224a a a +=B .235()a a =C .22(2)(2)4b a a b a b +-=-D .2353()a b a b -=7.(4分)化简2933m m m ---的结果是( ) A .3m - B .3m + C .3m -+ D .33m m +- 8.(4分)某班15位同学每周体育锻炼时间情况如下表,时间/h5 6 7 8 人数(人) 2 6 5 2其中众数和中位数分别是( )A .6h ,7hB .6h ,6hC .7h ,6hD .7h ,7h9.(4分)如图,李老师用自制的直角三角形纸板去测量“步云阁”的高度,他调整自己的位置,设法使斜边DF 保持水平,边DE 与点B 在同一直线上,已知直角三角纸板中16DE cm =,12EF cm =,测得眼睛D 离地面的高度为1.8米,他与“步云阁”的水平距距离CD 为104m ,则“步云阁”的高度AB 是( )m .A .75.5B .77.1C .79.8D .82.510.(4分)关于x 的一元二次方程221x x k -=-,下列结论不正确的是( )A .当方程有实数根时2kB .当1k =时,方程的实数根为10x =,22x =C .当0k >时,方程一定有两个不相等的实数根D .若1x 、2x 为方程的两个实数根,则有12|1||1|x x -=-11.(4分)如图,曲线AB 是抛物线2481y x x =-++的一部分(其中A 是抛物线与y 轴的交点,B 是顶点),曲线BC 是双曲线(0)k y k x=≠的一部分.曲线AB 与BC 组成图形W .由点C 开始不断重复图形W 形成一组“波浪线”.若点(2020,)P m ,(,)Q x n 在该“波浪线”上,则m n +的最大值为( )A .5B .6C .2020D .202112.(4分)在平面直角坐标系中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,(,)C a b 为其特征点.若抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E .点F 的坐标为(1,0),//DE CF .若1tan 22ODE <∠<,则b 的取值范围是( ) A .548b < B .102b -< C .548b <或102b -< D .548b <<或102b -< 二、填空题(共6小题,每小题4分,满分24分.填空题请直楼填写答案,)13.(4分)分解因式:23x x -= .14.(4分)一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是黑球,从中任意摸出一个球,是黑球的概率为 .15.(4分)已知一个正多边形的每个内角都是150︒,则这个正多边形是正 边形.16.(4分)如图,在边长为8的菱形ABCD 中,60DAB ∠=︒,以点D 为圆心、菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 .17.(4分)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离()y km 与出发时间()t h 之间的函数关系如图中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离()s km 与出发时间()t h 之间的函数关系如图中折线段CD DE EF --所示,则E 点坐标为 .18.(4分)如图,菱形ABCD边长为4厘米,60A∠=︒,点M为AB的中点,点N是边AD上任一点,把A∠沿直线MN折叠,点A落在图中的点E处,当AN=厘米时,BCE∆是直角三角形.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步.)19.(6分)计算:08(2021)4sin45+--︒.20.(6分)解不等式组:2(1)33243x xxx-+<⎧⎪-⎨+>⎪⎩,并写出它的所有整数解.21.(6分)已知在矩形ABCD中,点E在BC边上,连接DE,且DE BC=,过点A作AF DE⊥于点F.求证:AB AF=.22.(8分)加强劳动教育是学校贯彻“五育并举”的重要举措,为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项:A.1小时以下;B.1~2小时(不包含2小时);C.2~3小时(包含2小时);D.3小时以上.图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计国提供的信息解等以下问题.(1)填空:本次问卷调查一共调查了名学生;(2)请将图①的条形统计图补充完整;(3)求出图②中D部分所对应的圆心角度数;(4)若该校共有1800名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)?23.(8分)如图,AB是O的直径,C是O上一点,D是AC的中点,E为OD延长线上一点,AE是O的切线,AC与BD交于点H,与CE交于点F.(1)求证:2CAE C∠=∠;(2)若9DH=,3tan4C∠=,求直径AB的长.24.(10分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?25.(10分)如图,在平面直角坐标系中,矩形ABCO 的顶点A 、C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(4,2),双曲线(0)k y x x=>交BC 于点D ,交AB 于点F ,其中32BD =. (1)求反比例函数k y x =的表达式及F 点坐标; (2)判断DF 与AC 的位置关系,并说明理由;(3)点N 在y 轴正半轴上,反比例函数图象上是否存在一点M ,使DMN ∆是以DM 为直角边的等腰直角三角形,若存在,直接写出点M 的坐标;若不存在,请说明理由.26.(12分)在ABC ∆中,AB AC =,点D 、E 分别是BC 、AC 的中点,将CDE ∆绕点C 按顺时针方向旋转一定的角度,连接BD 、AE .观察猜想(1)如图①,当60BAC ∠=︒时,填空:①AE BD= ; ②直线BD 、AE 所夹锐角为 ;类比探究(2)如图②,当90BAC ∠=︒时,试判断AE BD的值及直线BD 、AE 所夹锐角的度数,并说明理由;拓展应用(3)在(2)的条件下,若2DE =,将CDE ∆绕着点C 在平面内旋转,当点D 落在射线AC 上时,请直接写出2AE 的值.27.(12分)如图,二次函数22y ax bx =++的图象与x 轴交于点(1,0)B -、点(4,0)C 两点,与y 轴交于点A .(1)求二次函数22y ax bx =++的表达式;(2)连接AC 、AB ,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作//MN AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标;(3)在(2)的结论下,若点Q 在第一象限,且tan 2CQN ∠=,线段BQ 是否存在最值?如果存在,请直接写出最值,如果不存在,请说明理由.2021年山东省济南市市中区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.(4分)2021的相反数是( )A .2021-B .2021C .12021D .12021- 【解答】解:2021的相反数是:2021-.故选:A .2.(4分)如图所示的几何体,它的俯视图正确的是( )A .B .C .D .【解答】解:俯视图是一个正六边形,正六边形内部有一个圆.故选:A .3.(4分)数字98990000用科学记数法表示为( )A .80.989910⨯B .79.89910⨯C .89.89910⨯D .698.9910⨯【解答】解:用科学记数法表示98990000,应记作79.89910⨯.故选:B .4.(4分)小明在学习平行线的性质后,把含有60︒角的直角三角板摆放在自己的文具上,如图,//AD BC ,若250∠=︒,则1(∠= )A .30︒B .40︒C .45︒D .50︒【解答】解:如图,过F 作//FG AD ,则//FG BC ,250EFG ∴∠=∠=︒,又90AFE ∠=︒,905040AFG ∴∠=︒-︒=︒,140AFG ∴∠=∠=︒,故选:B .5.(4分)下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾【解答】解:A 、既是轴对称图形,又是中心对称图形,故本选项符合题意;B 、不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、不是中心对称图形,也不是轴对称图形,故本选项不合题意;故选:A .6.(4分)下列计算正确的是( )A .224a a a +=B .235()a a =C .22(2)(2)4b a a b a b +-=-D .2353()a b a b -=【解答】解:选项222:2A a a a +=,不符合题意;选项23236:()B a a a ⨯==,不符合题意;选项22:(2)(2)(2)(2)4C b a a b a b a b a b +-=+-=-,符合题意;选项2363:()D a b a b -=-,不符合题意;故选:C .7.(4分)化简2933m m m ---的结果是( ) A .3m - B .3m + C .3m -+ D .33m m +- 【解答】解:原式293m m -=-, (3)(3)3m m m +-=-, 3m =+.故选:B .8.(4分)某班15位同学每周体育锻炼时间情况如下表,时间/h5 6 7 8 人数(人) 2 6 5 2其中众数和中位数分别是( )A .6h ,7hB .6h ,6hC .7h ,6hD .7h ,7h【解答】解:由表可知,数据6出现次数最多,有6次,所以这组数据的众数为6h ,这组数据的中位数是第8个数据,而第8个数据是6h ,所以这组数据的中位数是6h ,故选:B .9.(4分)如图,李老师用自制的直角三角形纸板去测量“步云阁”的高度,他调整自己的位置,设法使斜边DF 保持水平,边DE 与点B 在同一直线上,已知直角三角纸板中16DE cm =,12EF cm =,测得眼睛D 离地面的高度为1.8米,他与“步云阁”的水平距距离CD 为104m ,则“步云阁”的高度AB 是( )m .A .75.5B .77.1C .79.8D .82.5【解答】解:在DEF ∆和DCB ∆中,D D ∠=∠,90DEF DCB ∠=∠=︒,DEF DCB ∴∆∆∽, ∴DE CD EF BC=, 即1610412BC =, 解得:78()BC m =,1.5AC m =,1.87879.8()AB AC BC m ∴=+=+=,即树高79.8m ,故选:C .10.(4分)关于x 的一元二次方程221x x k -=-,下列结论不正确的是( )A .当方程有实数根时2kB .当1k =时,方程的实数根为10x =,22x =C .当0k >时,方程一定有两个不相等的实数根D .若1x 、2x 为方程的两个实数根,则有12|1||1|x x -=-【解答】解:A 、原方程可以化为2(1)x k -=,当0k 时,方程有实数解,故A 不正确. B 、当1k =时,则220x x -=,解得10x =,22x =.故B 正确;C 、当0k 时,方程有实数根,∴当0k >时,方程一定有两个不相等的实数根;故C 正确;D 、当0k 时,由2(1)x k -=可以求得1x =±,则有12|1||1|x x -=-.故D 正确;故选:A .11.(4分)如图,曲线AB 是抛物线2481y x x =-++的一部分(其中A 是抛物线与y 轴的交点,B 是顶点),曲线BC 是双曲线(0)k y k x=≠的一部分.曲线AB 与BC 组成图形W .由点C 开始不断重复图形W 形成一组“波浪线”.若点(2020,)P m ,(,)Q x n 在该“波浪线”上,则m n +的最大值为( )A .5B .6C .2020D .2021 【解答】解:224814(1)5y x x x =-++=--+,∴当0x =时,1y =,∴点A 的坐标为(0,1),点B 的坐标为(1,5),点(1,5)B 在(0)k y k x=≠的图象上, 5k ∴=,点C 在5y x=的图象上,点C 的横坐标为5, ∴点C 的纵坐标是1,∴点C 的坐标为(5,1),20205404÷=,(2020,)P m ∴在抛物线2481y x x =-++的图象上,408011m =-⨯+⨯+=,点(,)Q x n 在该“波浪线”上,n ∴的最大值是5,m n ∴+的最大值为6.故选:B .12.(4分)在平面直角坐标系中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,(,)C a b 为其特征点.若抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E .点F 的坐标为(1,0),//DE CF .若1tan 22ODE <∠<,则b 的取值范围是( ) A .548b < B .102b -< C .548b <或102b -< D .548b <<或102b -< 【解答】解:由题意知,当0x =时,特征直线y b =,且其特征直线交y 轴于点E ,则点(0,)E b . //DE CF ,(2b D a ∴-,0), ∴1tan 22ODE <∠<., ∴122OE OD <<, ∴1||222b ba<<-. ∴1|2|22a <<, 114a ∴-<<-或114a <<, //DE CF ,//CE DF ,CE DF ∴=, 由题意,得12b a a+=, 222b a a ∴=-,即112()22b a =-=, 当2112()22b a =--时, 当114a -<<-时,得, 548b <<, 当114a <<时,得, 102b -<<, 综上所述:548b <<或102b -<<, 故选:D .二、填空题(共6小题,每小题4分,满分24分.填空题请直楼填写答案,)13.(4分)分解因式:23x x -= (3)x x - .【解答】解:原式(3)x x =-,故答案为:(3)x x -14.(4分)一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是黑球,从中任意摸出一个球,是黑球的概率为 14. 【解答】解:因为袋子中共有4个球,其中黑球只有1个,所以从中任意摸出一个球,是红球的概率为14, 故答案为:14. 15.(4分)已知一个正多边形的每个内角都是150︒,则这个正多边形是正 十二 边形.【解答】解:外角是:18015030︒-︒=︒,3603012︒÷︒=.则这个正多边形是正十二边形.故答案为:十二.16.(4分)如图,在边长为8的菱形ABCD 中,60DAB ∠=︒,以点D 为圆心、菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 32316π- .【解答】解:四边形ABCD 是边长为8的菱形,8AD DC AB ∴===,//AB CD ,180CDA DAB ∴∠+∠=︒,60DAB ∠=︒,120CDA ∴∠=︒,菱形ABCD 的高是DF ,90DFA ∴∠=︒,60DAB ∠=︒,30ADF ∴∠=︒,12AF AD ∴=, 8AD =,4AF ∴=,22228443DF AD AF ∴=--即43DE DG DF ===,∴阴影部分的面积2120(43)84332316EDGABCD S S S ππ⨯=-=⨯=扇形菱形,故答案为:32316π-.17.(4分)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离()y km与出发时间()t h之间的函数关系如图中线段AB所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离()s km与出发时间()t h之间的函数关系如图中折线段CD DE EF--所示,则E点坐标为9(5,144)5.【解答】解:由图可得,小丽的速度为:36 2.2516(/)km h÷=,小明的速度为:3611620(/)km h÷-=,故点E的横坐标为:936205÷=,纵坐标是:9144(2016)(1)55+⨯-=,故答案为:9(5,144)5.18.(4分)如图,菱形ABCD边长为4厘米,60A∠=︒,点M为AB的中点,点N是边AD 上任一点,把A∠沿直线MN折叠,点A落在图中的点E处,当AN=1或2厘米时,BCE∆是直角三角形.【解答】解:菱形ABCD边长为4厘米,点M为AB的中点,2AM BM∴==厘米,由翻折可知:EM AM BM==,MBE MEB∴∠=∠,①当90EBC ∠=︒时,60A ∠=︒,120ABC ∴∠=︒,30MBE MEB ∴∠=∠=︒,120BME ∴∠=︒,30AMN EMN ∴∠=∠=︒,90MNA ∴∠=︒,112AN AM ∴==厘米; ②当90BEC ∠=︒时,点E 落在菱形对角线AC 上,点M 为AB 的中点,MN 为折痕,此时BD AC ⊥于点E ,∴点N 为AD 的中点,122AN AD ∴==厘米. 所以当1AN =或2厘米时,BCE ∆是直角三角形.故答案为:1或2.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步.)19.(60(2021)4sin 45--︒.【解答】解:原式14=-1=-1=.20.(6分)解不等式组:2(1)33243x x x x -+<⎧⎪-⎨+>⎪⎩,并写出它的所有整数解. 【解答】解:()2133243x x x x ⎧-+<⎪⎨-+>⎪⎩①②, 解不等式①得:1x >,解不等式②得:5x <,∴原不等式组的解集为:15x <<,∴它的整数解为2,3,4.21.(6分)已知在矩形ABCD 中,点E 在BC 边上,连接DE ,且DE BC =,过点A 作AF DE ⊥于点F .求证:AB AF =.【解答】证明:四边形ABCD 是矩形,AF DE ⊥,//AD BC ∴,AD BC =,AB CD =,90C AFD ∠=∠=︒,ADE DEC ∴∠=∠,DE BC =,AD DE ∴=,在ADF ∆和DEC ∆中,90AFD C ADE DEC AD DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADF DEC AAS ∴∆≅∆,AF CD ∴=,AF AB ∴=;22.(8分)加强劳动教育是学校贯彻“五育并举”的重要举措,为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项:A .1小时以下;B .1~2小时(不包含2小时);C .2~3小时(包含2小时);D .3小时以上.图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计国提供的信息解等以下问题.(1)填空:本次问卷调查一共调查了200名学生;(2)请将图①的条形统计图补充完整;(3)求出图②中D部分所对应的圆心角度数;(4)若该校共有1800名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)?【解答】解:(1)10050%200÷=(名),即本次问卷调查一共调查了200名学生,故答案为:200;(2)选择D的学生有:200601003010---=(人),补全的条形统计图如右图所示;(3)图②中D部分所对应的圆心角度数是:1036018200︒⨯=︒,即图②中D部分所对应的圆心角度数是18︒;(4)30101800360200+⨯=(名),即估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上.23.(8分)如图,AB是O的直径,C是O上一点,D是AC的中点,E为OD延长线上一点,AE是O的切线,AC与BD交于点H,与CE交于点F.(1)求证:2CAE C∠=∠;(2)若9DH=,3tan4C∠=,求直径AB的长.【解答】解:(1)D是AC的中点,OE AC∴⊥,90AFE∴∠=︒,90E EAF∴∠+∠=︒,AE是O的切线,90EAO∴∠=︒,90E AOE∴∠+∠=︒,EAF AOE∴∠=∠,2AOE ACD∠=∠,2CAE ACD∴∠=∠;(2)连接AD ,在Rt ADH ∆中,DAC C ∠=∠,3tan tan 4DAC C ∴∠==, 9DH =, 12AD ∴=,在Rt BDA ∆中,3tan tan 4B C ==, 3sin 5B ∴=, 20AB ∴=.24.(10分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【解答】(1)解:设购买酒精x 瓶,消毒液y 瓶,根据题意列方程组,得10535010(130%)5(120%)260x y x y +=⎧⎨-+-=⎩. 解得,2030x y =⎧⎨=⎩. 答:每次购买的酒精和消毒液分别是20瓶,30瓶;(2)解:设能购买消毒液m 瓶,则能购买酒精2m 瓶,根据题意,得10(130%)25(120%)200m m ⨯-⋅+-⋅, 解得:10011199m =. m 为正整数,11m ∴=.所以,最多能购买消毒液11瓶.25.(10分)如图,在平面直角坐标系中,矩形ABCO 的顶点A 、C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(4,2),双曲线(0)k y x x =>交BC 于点D ,交AB 于点F ,其中32BD =. (1)求反比例函数k y x =的表达式及F 点坐标; (2)判断DF 与AC 的位置关系,并说明理由;(3)点N 在y 轴正半轴上,反比例函数图象上是否存在一点M ,使DMN ∆是以DM 为直角边的等腰直角三角形,若存在,直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)四边形ABCD 是矩形,//BC x ∴轴,∴点D 纵坐标和点B 纵坐标相同,设(,2)D x ,点(4,2)B ,2BD =,且点B 在点D 右边,342x ∴-=, 52x ∴=,5(2D ∴,2), 5k ∴=,∴所求反比例函数表达式为:5y x=; 点F 在线段AB 上,设(4,)F y ,将点F 坐标代入反比例函数表达式,得54y =, ∴点F 的坐标为5(4,)4; (2)//DF AC ,理由如下:5(4,)4F ,(4,2)B , 34BF ∴=, 又4BC =,2AB =,32BD =, ∴12BF BA BD BC == 又B B ∠=∠,BDF BCA ∴∆∆∽,BDF BCA ∴∠=∠.//DF AC ∴;(3)存在,M 的坐标为10(9,9)2或(61-,61+,).理由如下: ①当90MDN ∠=︒时,过点D 作y 轴平行线,过M 、N 分别作x 轴的平行线,与过点D 的y 轴平行线交于点G 、H ,MDN ∆是等腰直角三角形,DM ND ∴=,90MDN ∠=︒,90MDG NDH ∴∠+∠=︒,又90MDG DMG ∠+∠=︒,DMG NDH ∴∠=∠,又90G H ∠=∠=︒,()DMG NDH AAS ∴∆≅∆,NH DG ∴=, 5(2D ,2), H ∴的横坐标为52, 52NH DG ∴==, 设(,)M x y ,则点G 的纵坐标为y ,522DG y =-=, 92y ∴=, 109x ∴=, ∴点M 的坐标为10(9,9)2; ②当90DMN ∠=︒时,过点M 作x 轴平行线交y 轴于点P ,过D 分别作y 轴的平行线,与过点M 的x 轴平行线交于点Q ,MDN ∆是等腰直角三角形,MN DM ∴=,90DMN ∠=︒,90PMN QMD ∴∠+∠=︒,又90PMN PNM ∠+∠=︒,PNM QMD ∴∠=∠,又90MPN Q ∠=∠=︒,()MPN DQM AAS ∴∆≅∆,PM QD ∴=,设(,)M x y ,则点Q 的纵坐标为y ,PM x ∴=,2QD y =-,2x y ∴=-, 又5y x =, ∴52x x=+, 解得:61x =-(舍去负值),61y ∴=+,(61M ∴-,61+,),综上M 的坐标为10(9,9)2或(61-,61+,). 26.(12分)在ABC ∆中,AB AC =,点D 、E 分别是BC 、AC 的中点,将CDE ∆绕点C 按顺时针方向旋转一定的角度,连接BD 、AE .观察猜想(1)如图①,当60BAC ∠=︒时,填空:①AE BD= 1 ; ②直线BD 、AE 所夹锐角为 ;类比探究(2)如图②,当90BAC ∠=︒时,试判断AE BD 的值及直线BD 、AE 所夹锐角的度数,并说明理由;拓展应用 (3)在(2)的条件下,若2DE =,将CDE ∆绕着点C 在平面内旋转,当点D 落在射线AC 上时,请直接写出2AE 的值.【解答】解:(1)如图①中,延长BD 交AE 的延长线于T ,BT 交AC 于O .AB AC =,60BAC ∠=︒,ACB ∴∆是等边三角形,CA CB ∴=,60ACB ∠=︒,12CD BC =,12CE AC =,60ECD ACB ∠=∠=︒, CD CE ∴=,BCD ACE ∠=∠,()BCD ACE SAS ∴∆≅∆,BD AE ∴=,CBD CAE ∠=∠,∴1AE BD=, BOC AOT ∠=∠,60ATB ACB ∴∠=∠=︒,∴直线BD 、AE 所夹锐角为60︒,故答案为1,60︒.(2)如图②中,设AC 交BD 于O ,AE 交BD 于T .AB AC =,90BAC ∠=︒,ACB ∴∆是等腰直角三角形, 2CB AC ∴=,45ACB ∠=︒,12CD BC =,12CE AC =,45ECD ACB ∠=∠=︒, 2CD CE ∴=,BCD ACE ∠=∠,∴2BC CD AC CE==, BCD ACE ∴∆∆∽, ∴22AE AC BE BC ==,CBD CAE ∠=∠, BOC AOT ∠=∠,45ATB ACB ∴∠=∠=︒,∴直线BD 、AE 所夹锐角为45︒.(3)①如图③1-中,当点D 落在线段AC 上时,作EH AC ⊥于H .由题意,2DE EC =22CD DE ==,EH CD ⊥,90CED ∠=︒,112EH DH HC CD ∴====,222AC EC == 221AH AC CH ∴=-=,在Rt AEH ∆中,22222(221)11042AE AH EH =+=+=-②如图③2-中,当点D 在AC 的延长线上时,同法可得222(221)11042AE =+=+综上所述,满足条件的2AE 的值为1042±.27.(12分)如图,二次函数22y ax bx =++的图象与x 轴交于点(1,0)B -、点(4,0)C 两点,与y 轴交于点A .(1)求二次函数22y ax bx =++的表达式; (2)连接AC 、AB ,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作//MN AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标;(3)在(2)的结论下,若点Q 在第一象限,且tan 2CQN ∠=,线段BQ 是否存在最值?如果存在,请直接写出最值,如果不存在,请说明理由.【解答】(1)将(1,0)B -,(4,0)C 代入22y ax bx =++,得2016420a b a b -+=⎧⎨++=⎩, 解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线解析式213222y x x =-++. (2)过M 作MD BC ⊥于D .设(,0)N n ,MD h =. //MN BC ,BMN BAC ∴∆∆∽,2()BMN BACS h AO S ∆∆=, 2AO =,12[4(1)]52BAC S ∆=⨯⨯--=, 11(1)22BMN S MD BN h n ∆=⨯⨯=+, ∴21(1)2()25h n h +=, ∴225n h +=, AMN ABN MBN S S S ∆∆∆=-, 1122BN AO BN h =⋅-⋅, 122(1)(2)25n n +=+-, 2134()525n =--+, 当3,2AMN n S ∆=时最小. 此时点N 的坐标为3(,0)2. (3)BQ 53755. 解:如图:过点N 作NE BC ⊥交AB 于点E , 则CEN CAO ∠=∠,tan tan 2CEN CAO ∴∠=∠=, 以BE 为直径,点F 为圆心作圆F , 可知点Q 在F 上, CQN CEN ∠=∠, 当点B 、Q 、F 三点共线时,BQ 最小. BQ BF FQ =-,22355(1)()248=+++ 53755=-.。
2021年山东省济南市中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个正方体被切割后留下的立体示意图,剩余的几何体的左视图是()A.B.C.D.2.北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×1063.如图,直线l1∥l2,l3⊥l4,∠1=138°,则∠2的度数是()A.48°B.42°C.58°D.52°4.下列美丽的图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.某位病人24小时内体温折线统计图如图所示.关于这组数据,下列说法正确的是()A.极差是0.8℃B.中位数是36.9℃C.众数是36.8℃D.平均数是37.3℃6.下列运算正确的是()A.a2+a3=2a5B.(a﹣b)2=a2﹣b2C.a3•a5=a15D.(ab2)2=a2b47.如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2020次变换后,等边△ABC的顶点C的坐标为()A.(﹣2 020,)B.(﹣2 019,)C.(﹣2 018,)D.(﹣2 017,)8.两条直线y1=mx﹣n与y2=nx﹣m在同一坐标系中的图象可能是图中的()A.B.C.D.9.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP 10.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A.B.C.D.11.已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,经过点(﹣1,2)和(1,0).下列结论中,正确的是()A.a>1B.2a+b<0C.a+b≤m(am+b)(m为任意实数)D.(a+b)2<c212.﹣2的绝对值是()A.2B.﹣2C.±2D.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.已知ab=7,a+b=2,则多项式a2b+ab2+2003的值为.14.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子一次,则向上一面的数字不大于3的概率是.15.分式的值比分式的值大3,则x的值为.16.如图,正六边形ABCDEF内接于⊙O,AB=2,则图中阴影部分的面积为17.一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.那么储藏个星期再出售这批农产品可获利122000元.18.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知BF=6cm,且tan ∠BAF=,则折痕AE长是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.20.解不等式组:,并求出所有整数解之和.21.如图,在▱ABCD中,点E是AB边中点,DE与CB的延长线交于点F.求证:DE=FE.22.某大学举行了百科知识竞赛,为了解此次竞赛成绩的情况,随机抽取部分参赛学生的成绩,整理并制作出如下不完整的统计表和统计图,请根据图表信息解答以下问题:组别成绩x/分频数A组90≤x<100aB组80≤x<9012C组70≤x<808D组60≤x<706(1)表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“C”对应的圆心角度数;(4)该大学共有240人参加竞赛,若成绩在80分以上(包括80分)的为“优”等,根据抽样结果,估计该校参赛学生成绩达到“优”等的人数?23.如图,已知直线MN交⊙O于A、B两点,AC为⊙O的直径,点D在⊙O上,过点D 作⊙O的切线交直线MN于点E,∠EAD=∠DAC.(1)求证:DE⊥MN;(2)若AE=1,⊙O的半径为3,求弦AD的长.24.由于新冠疫情,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的医用口罩20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:型号甲乙价格(元/只)种类原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润.(利润=销售收入﹣投入总成本)25.如图,在平面直角坐标系中,四边形ABCD的顶点A、B在函数y =(x>0)的图象上,顶点C、D在函数y =(x>0)的图象上,其中0<m<n,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时,①点B的坐标为,点D的坐标为,BD的长为.②若点P的纵坐标为2,求四边形ABCD的面积.③若点P是BD的中点,请说明四边形ABCD是菱形.(2)当四边形ABCD为正方形时,直接写出m、n之间的数量关系.26.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE、DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF 的数量关系是.(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.27.如图,已知二次函数y=﹣x2+bx+3的图象与x轴的两个交点为A(4,0)与点C,与y 轴交于点B.(1)求此二次函数关系式和点C的坐标;(2)请你直接写出△ABC的面积;(3)在x轴上是否存在点P,使得△P AB是等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.答案一.选择题1.C;2.B;3.A;4.A;5.A;6.D;7.C;8.B;9.B;10.B;11.A;12.A;二.填空题13.2017.14..15.1.16.2π.17.15.18.5cm.三、解答题19.2.20.﹣2.21.证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵点F在CB的延长线上,∴AD∥CF,∴∠ADE=∠F.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS),∴DE=FE.22.(1)14.(2)(3)72°,(4)156人,23.(1)如图,连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵OD=OA,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴OD∥MN,∴DE⊥MN;(2)AD=.24.1)10万只、10万只;(2)当x=15时,w取得最大值,此时w=91,20﹣x=15,当安排生产甲种产品15万只、乙种产品5万只时,可使该月公司所获利润最大,最大利润是91万元.25.(1)(4,1);(4,5);4;②16;③四边形ABCD为菱形,理由如下:由①得:点B的坐标为(4,1),点D的坐标为(4,5),∵点P为线段BD的中点,∴点P的坐标为(4,3).当y=3时,3=,解得:x=,∴点A的坐标为(,3);当y=3时,3=,解得:x=,∴点C的坐标为(,3).∴P A=4﹣=,PC=﹣4=,∴P A=PC.∵PB=PD,∴四边形ABCD为平行四边形.又∵BD⊥AC,∴四边形ABCD为菱形;(2)四边形ABCD能成为正方形,此时m+n=32.26.(1)BE=DF.(2)2)如图3中,结论不成立.结论:DF=nBE,理由如下:∵AE=AB,AF=AD,AD=nAB,∴AF=nAE,∴AF:AE=AD:AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF:BE=AF:AE=n,∴DF=nBE.(3)满足条件的PD的值为6﹣4或6+4.27.(1)C的坐标为(﹣,0);(2)△ABC的面积=×AC•OB=×(4+)×3=;(3)点P的坐标为(9,0)或(﹣1,0)或(﹣4,0)或(,0).。
山东省济南市市中区2021届九年级4月中考一模数 学 测 试 题注意事项:1.本试题分第I 卷和第II 卷两部分.第I 卷满分45分;第II 卷满分75分.本试题共10页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效. 4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的算术平方根为 ( )A.2B.2-C.2±D.162.据济南市旅游局统计,2021年春节约有359525人来济旅游, 将这个旅游人数 (保留三个有效数字)用科学计数法表示为 ( )A .3.59×510B .3.60×510C .3.5 ×510D .3.6 ×510 3.下列运算正确的是 ( )A.()11a a --=--B.()23624aa -=C.()222a b a b -=-D.3252a a a +=4.如图,由几个小正方体组成的立体图形的左视图是 ( )5.已知α为锐角,sin(20)α︒-=,则α= ( ) A. 20︒ B. 40︒ C. 60︒ D. 80︒6.下列事件中确定事件是 ( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇A.B.C.D.数点朝上7.如图,把一块含有45°角的直角三角板的两个顶点放 在直尺的对边上.如果∠1=15°,则∠2的度数是( ) A .30° B .55° C .55°D .60°8.若式子23x x --有意义,则x 的取值范围为 ( )A.x ≥ 2B.x ≠3C.x ≥2或x ≠3D.x ≥2且x ≠3 9.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为 ( )A.112k -<<- B.102k <<C.01k << D.112k <<10.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.012=+xB.0122=++x xC.0322=++x xD.0322=-+x x11.二次函数211y ax x =-+的图像与222y x =-图像的形状、开口方向相同,只是位置不同,则二次函数1y 的顶点坐标是 ( ) A.(19,48--) B.(19,48-) C.(19,48) D.(19,48-)12.如图2,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为秒, ∠APB 的度数 为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是( )(图2 )13.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是( )(第7题图)A. B.C .D .14. 如图,P 1是反比例函数)0(>k x ky =在第一象限图像上的一点,点A 1 的坐标为(2,0).若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,则A 2点的坐标为( )A.2 B.2-1 C.2D.2-115.在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,………按这样的规律进行下去, 第2021个正方形的面积为( )A.2010)23(5⋅B.2010)49(5⋅C.2012)49(5⋅D.4022)23(5⋅注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.考试期间,一律不得使用计算器.第II 卷(非选择题 共72分)二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上)16.分解因式:2x 2+4x +2= . 17.当宽为3cm 的刻度尺的一边与圆相切时, 另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 cm .18. 化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 19.在一个暗箱里放有 a 个除颜色外其他完全相同的球,这a 个球中红色球只有3个,每次将球摇匀后,任意摸出一个球记下颜色再放回暗箱通过大量试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是 .20.如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于21. 将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是 cm7个小题.共57分.解答应写出文字说明、证明过程或演算步骤)22.(本题满分7分)(1)(3分)计算:2330tan 3)2(0----得 分 评卷人得 分 评卷人ADB C E FP A B C(B) D A B C (D) … (A) D l(2)(4分)解方程: xx 321=-.23. (本题满分7分)(1) (3分)一个人由山底爬到山顶,需先爬45的山坡200m ,再爬30的山坡300m ,求山的高度(结果可保留根号).(2) (4分)如图,△ABC 与△ABD 中, AD 与BC 相交于O 点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明. 你添加的条件是: . 证明:24.(本题满分8分)某楼盘准备以每平方米6000元的均价对外销售,由于国*务*院有关房地产的新政策出得 分 评卷人台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(本题满分8分)“五·一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比法分析,这个规则对双方是否公平?26. (本题满分9分)第26题图如图,反比例函数ky x=(x >0)的图象经过线段OA 的端点A ,O 为原点,作AB ⊥x 轴于点B ,点B 的坐标为(2,0),tan∠AOB=32. (1)求k 的值;(2)将线段AB 沿x 轴正方向平移到线段DC 的位置,反比例函数ky x=(x >0)的图象恰好经过DC 的中点E ,求直线AE 的函数表达式;(3)若直线AE 与x 轴交于点M 、与y 轴交于点N ,请你探索线段AN 与线段ME 的大小关系,写出你的结论并说明理由.27. (本题满分9分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=时,求线段CM的长.得分评卷人28.(本题满分9分)如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.数学答案一、选择题1.A2.B3.B4.A5. D6. C7. A8. C9.D 10.D 11.B 12.C 13. D 14. C 15. D 二、填空题16. 2()21+x1m + 19. 12 20.125 21.()16cm π+三、解答题 22.(1)原式233331-+⨯-= ………………………2分 1-=…………………………………………3分 (2)解:愿方程可化为:x =3(x -2 ) ...............4分 x =3 …………………………5分 经检验 :x =3 是原方程的解. …………………………6分 所以原方程的解是x =3 ………………………………7分 23.(1)解;依题意,可得山高200sin 45300sin 30h =+…………1分12003002=⨯……………………2分150=+………………………3分所以山高为(150+.(2)解:添加条件例举:AD =BC ;OC =OD ;∠C =∠D ;∠CAO =∠DBC 等. ……4分证明例举(以添加条件AD =BC 为例):∵ AB=AB ,∠1=∠2,BC =AD , ∴ △ABC ≌△BAD . ……………………6分∴ AC=BD . ………………………………7分24.解:(1)设平均每次下调的百分率x ,……………..1分则6000(1-x )2=4860.……………………………3分 解得:x 1=0.1,x 2=1.9(舍去).……………………5分(2)方案①可优惠:4860×100×(1-0.98)=9720元………………………6分方案②可优惠:100×80=8000元.…………………….7分答:平均每次下调的百分率10%,方案①更优惠.………………8分 25.解:(1)补全图1分,设D 地车票有x 张,则x =(x +20+40+30)×10%解得x =10.即D 地车票有10张. …………………3分(2)小胡抽到去A 地的概率为2020403010+++=15. ……………5分小李掷得数字小王掷得数字 12341 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)或者画树状图法说明(如右下图) 列表或图6分由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)∴小王掷得数字比小李掷得数字小的概率为616=38.则小王掷得数字不小于小李掷得数字的概率为318-=58…7分所以这个规则对双方不公平…………………..8分26. 解:(1)由已知条件得,在Rt △OAB 中,OB =2,tan ∠AOB =32,∴AB OB =32, ∴AB =3,∴A 点的坐标为(2,3)………………………………1分 ∴k =xy =6……………………………………2分(2)∵DC 由AB 平移得到,点E 为DC 的中点,∴点E 的纵坐标为32,…………………………………3分又∵点E 在双曲线6y x =上,∴点E 的坐标为(4,32)……………4分 设直线MN 的函数表达式为y =k 1x +b ,则1123342k b k b +=⎧⎪⎨+=⎪⎩, 解得13492k b ⎧=⎪⎪⎨⎪=⎪⎩- ,∴直线MN 的函数表达式为3942y x =-+. …5分(3)结论:AN =ME ………………………………………………6分理由:在表达式3942y x =-+中,令y =0可得x =6,令x =0可得y =92,xyO AB CD EMNF∴点M (6,0),N (0,92)……………………………7分 解法一:延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,OF =3, ∴NF =ON -OF =32,…………………………8分∵CM =6-4=2=AF ,EC =32=NF , ∴Rt △ANF ≌Rt △MEC ,∴AN =ME ………………………………9分解法二:延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,OF =3,∴NF =ON -OF =32,∴根据勾股定理可得AN =52…………………………………………8分∵CM =6-4=2,EC =32∴根据勾股定理可得EM =52∴AN =ME …………………………………………………9分 解法三:连接OE ,延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,∵S △EOM 113962222OM EC =⋅=⨯⨯=,S △AON 119922222ON AF =⋅=⨯⨯=………8分∴S △EOM = S △AON ,∵AN 和ME 边上的高相等,∴AN =ME ………………………………………9分27.(9分)解(1)BD=CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形, ∴AB=AC,AD=AF ,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC, ∴∠BAD=∠CAF,在△BAD 和△CAF 中,∴△BAD≌△CAF (SAS). ∴BD=CF .…3分(2)证明:设BG 交AC 于点M . ∵△BAD≌△CAF (已证), ∴∠ABM=∠GCM. ∵∠BMA=∠CMG, ∴△BMA∽△CMG.∴∠BGC=∠BAC=90°. ∴BD⊥CF.…6分(3)过点F 作FN⊥AC 于点N .∵在正方形ADEF 中,AD=DE=, ∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4, ∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN 中,tan∠FCN==.∴在Rt△ABM 中,tan∠ABM==tan∠FC N=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM==........9分28.(本小题满分9分)解:(1)把A (1,-4)代入y =kx -6,得k =2,∴y =2x -6,∴B (3,0). ∵A 为顶点,∴设抛物线的解析为y =a (x -1)2-4,解得a =1, ∴y =(x -1)2-4=x 2-2x -3 …………………………3分(2)存在.∵OB=OC =3,OP=OP ,∴当∠POB =∠POC 时,△POB ≌△POC , 此时PO 平分第三象限,即PO 的解析式为y =-x . 设P (m ,-m ),则-m=m 2-2m -3,解得m =1132-(m =1132+>0,舍), ∴P (1132-,1312-). ………………………6分 (3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ,∴1DQ AD OD DB =,即15635DQ =,∴DQ 1=52, ∴OQ 1=72,即Q 1(0,72-); ②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴2OQ OB OD OB =,即2363OQ =,∴OQ 2=32,即Q 2(0,32); ③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E , 则△BOQ 3∽△Q 3EA ,∴33OQ OB Q E AE =,即33341OQ OQ =-, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即Q 3(0,-1),Q 4(0,-3).综上,Q 点坐标为(0,72-)或(0,32)或(0,-1)或(0,-3).…… 9分。
中考数学一模试卷一、选择题(本大题共15小题,共45.0分)1.在-1、3、0、四个实数中,最大的实数是()A. B. 3 C. 0 D.2.图中几何体的主视图是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A. 吨B. 吨C. 吨D. 吨5.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.B.C.D.6.方程组的解是()A. B. C. D.7.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是(),,,2,28.将抛物线y=5x2向右平移2个单位.再向上平移3个单位.得到的抛物线是()A. B. C.D.9.若3是关于方程x2-5x+c=0的一个根,则这个方程的另一个根是()A. B. 2 C. D. 510.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A. 4B. 8C.D. 1611.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A. 2cmB. 4cmC. 6cmD. 8cm12.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A. B. C. D.13.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A. 1B.C. 2D.14.如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是()A. B.C. D.15.在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()A. ①②B. ①②④C. ③④D. ①②③④二、填空题(本大题共7小题,共21.0分)16.分解因式:3ax2-3ay2=______.17.袋中装有除颜色其都相同的红和球25个,小通过多模拟实验后,发的红球、黄球的概率分别是和,则袋中球有______ 个.18.如图,AB,CD相交于点O,AB=CD,试添加一个条件使得△AOD≌△COB,你添加的条件是______.(答案不惟一,只需写一个)19.如图A、B两点在河两岸.要测量这两点之间的距离.测量者在与A同侧的河岸边选定一点C,测出AC=a米.∠A=90°,∠C=40°,则AB为______ 米.20.如图,已知双曲线<经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为______.21.如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点.且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值为______ .22.如图,AB是⊙O的直径.弦CD⊥AB,交AB于点E,∠CDB=30°,⊙O的半径为2cm,求弦CD的长.三、解答题(本大题共7小题,共54.0分)23.(1)计算:2-1+(π-3.14)0+sin60°-|-|;(2)解不等式组,并把解集在数轴上表示出来.24.如图,Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC.过D作AB的垂线交AC于点E,CD交BE于点F.求证:BE⊥CD.25.某工程准备招标.现接到甲、乙两个工程队投标书:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天.剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为1.5万元,乙队每天的施工费用为1.2万元,问:该工程预算的施工费用是多少万元?26.“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?27.如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME 的大小关系,写出你的结论并说明理由.28.已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在BC上,且∠MPN=90°.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1).过点P作PE⊥AB于点E,请探索PN与PM之间的数量关系,并说明理由;(2)当PC=PA,①点M、N分别在线段AB、BC上,如图2时,请写出线段PN、PM之间的数量关系,并给予证明.②当点M、K分别在线段AB、BC的延长线上,如图3时,请判断①中线段PN、PM之间的数量关系是否还存在.(直接写出答案,不用证明)29.如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:∵-1<0<<3,∴四个实数中,最大的实数是3.故选:B.根据正数大于0,0大于负数,正数大于负数,比较即可.本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.【答案】D【解析】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.【答案】C【解析】解:A、应为a•a2=a3,故A选项错误;B、应为(ab)3=a3b3,故B选项错误;C、(a2)3=a6,故C选项正确;D、应为a10÷a2=a8,故D选项错误.故选:C.根据同底数幂乘法、积的乘方、幂的乘方、同底数幂的除法计算后利用排除法求解.本题主要考查幂的运算性质,熟练掌握性质是解题的关键.4.【答案】C【解析】解:67500=6.75×104.故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5-1=4.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.【答案】B【解析】解:∵AB∥DF,∴∠D+∠DEB=180°,∵∠DEB与∠AEC是对顶角,∴∠DEB=100°,∴∠D=180°-∠DEB=80°.故选B.在题中∠AEC和∠DEB为对顶角相等,∠DEB和∠D为同旁内角互补,据此解答即可.本题比较容易,考查平行线的性质及对顶角相等.6.【答案】A【解析】解:,①+②得:2x=2,x=1,把x=1代入①得:1+y=3,y=2,∴方程组的解为:故选:A.解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y,得到一个关于x的一元一次方程,解出x的值,再把x的值代入方程组中的任意一个式子,都可以求出y的值此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.解:表中数据为从小到大排列.数据2小时出现了三次最多为众数;2处在第5位为中位数.所以本题这组数据的中位数是2,众数是2.故选D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.【答案】C【解析】解:将抛物线y=5x2向右平移2个单位.再向上平移3个单位.得到的抛物线是y=5(x-2)2+3,故选:C.根据图象右移减上移加,可得答案.本题考查了二次函数图象与几何变换,图象的平移规律是:左加右减,上加下减.9.【答案】B【解析】解:由根与系数的关系,设另一个根为x,则3+x=5,即x=2.故选B.由根与系数的关系,即3加另一个根等于5,计算得.本题考查了根与系数的关系,从两根之和为出发计算得.解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,=CF•FD=16.则线段BC扫过的面积S=S平行四边形BCFE故选D.根据题意画出相应的图形,由平移的性质得到△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x-6上,根据C坐标得出CA的长,即为FD的长,将C纵坐标代入直线y=2x-6中求出x的值,确定出OD的长,由OD-OA求出AD,即为CF的长,平行四边形BCFE的面积由底CF,高FD,利用面积公式求出即可.此题考查了一次函数综合题,涉及的知识有:坐标与图形性质,平移的性质,以及平行四边形面积求法,做出相应的图形是解本题的关键.11.【答案】A【解析】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC-EC=8-6=2.故选:A.由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.本题直接通过平行四边形性质的应用,及等腰三角形的判定,属于基础题.12.【答案】D【解析】解:如图,点A′的坐标为(1,3).故选D.根据网格结构找出点A、B旋转后的对应点A′、B′的位置,然后与点O顺次连接即可,再根据平面直角坐标系写出点A′的坐标.本题考查了坐标与图形变化-旋转,熟练掌握网格结构作出旋转后的三角形,利用数形结合的思想求解更简便.13.【答案】D【解析】解:连接AO,并延长交⊙O于点D,连接BD,∵∠C=45°,∴∠D=45°,∵AD为⊙O的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴AD===2,∴⊙O的半径AO==.故选D.连接AO,并延长交⊙O于点D,连接BD,由圆周角定理可得∠D与∠ABD的度数,再由勾股定理即可解答.此题比较简单,考查的是圆周角定理及勾股定理,解答此题的关键是作出辅助线,构造出直角三角形.14.【答案】C解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴,即,,MN=x;∴y=AP×MN=x2(0<x≤1),∵,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,,即,,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-,∴函数图象开口向下;综上,答案C的图象大致符合;故选:C.△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.15.【答案】B【解析】解:①∵点B′与点B关于AE对称,∴△ABF与△AB′F关于AE对称,∴AB=AB′,∵AB=AD,②如图,连接EB′.则BE=B′E=EC,∠FBE=∠FB′E,∠EB′C=∠ECB′.则∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,即△BB′C为直角三角形.∵FE为△BCB′的中位线,∴B′C=2FE,∵△B′EF∽△AB′F,∴=,即==,故FB′=2FE.∴B′C=FB′.∴△FCB′为等腰直角三角形.故②正确.④设∠ABB′=∠AB′B=x度,∠AB′D=∠ADB′=y度,则在四边形ABB′D中,2x+2y+90°=360°,即x+y=135度.又∵∠FB′C=90°,∴∠DB′C=360°-135°-90°=135°.故④正确.③假设∠ADB′=75°成立,则∠AB′D=75°,∠ABB′=∠AB′B=360°-135°-75°-90°=60°,∴△ABB′为等边三角形,故B′B=AB=BC,与B′B<BC矛盾,故③错误.故选:B.①根据轴对称图形的性质,可知△ABF与△AB′F关于AE对称,即得AB′=AD;②连接EB′,根据E为BC的中点和线段垂直平分线的性质,求出∠BB′C为直角三角形;③假设∠ADB′=75°成立,则可计算出∠AB′B=60°,推知△ABB′为等边三角形,B′B=AB=BC,与B′B<BC矛盾;④根据∠ABB′=∠AB′B,∠AB′D=∠ADB′,结合周角定义,求出∠DB′C的度数.此题考查了正方形的性质、等腰直角三角形的判定和性质,等边三角形的性质及反证法等知识,综合性很强,值得关注.16.【答案】3a(x+y)(x-y)【解析】解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a(x+y)(x-y)当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.17.【答案】15【解析】解:∵到黄球的率是,∴袋黄球有袋中球有×2515个.本题答案为:5.在同样条下大反复验时随事发生的频率逐渐稳定在概附近,可以比例关系入手求解.题查概求法的:果一事件有n种可能,而且这些件的可能性相其中事件A出现m种结果,那么事件的概率P=.18.【答案】AO=CO【解析】解:若添加AO=CO∵AB=CD,AO=CO∵∠AOD=∠COB∴△AOD≌△COB(SAS).故填AO=CO.要使△AOD≌△COB,已知AB=CD,∠AOD=∠COB所以可以再添加一组边从而利用SAS来判定其全等,可加AO=CO或BO=DO.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.【答案】a tan40°【解析】解:∵△ABC中,AC=a米,∠A=90°,∠C=40°,∴tan∠C=tan40°=,∴AB=atan40°.故答案为atan40°.直接根据锐角三角函数的定义进行解答即可.本题考查的是解直角三角形的应用及锐角三角函数的定义,熟知锐角三角函数的定义是解答此题的关键.20.【答案】9【解析】解:∵点D为△OAB斜边OA的中点,且点A的坐标(-6,4),∴点D的坐标为(-3,2),把(-3,2)代入双曲线,可得k=-6,即双曲线解析式为y=-,∵AB⊥OB,且点A的坐标(-6,4),∴C点的横坐标为-6,代入解析式y=-,y=1,即点C坐标为(-6,1),∴AC=3,∴S△AOC=×AC×OB=9.故答案为:9.要求△AOC的面积,已知OB为高,只要求AC长,即点C的坐标即可,由点D 为三角形OAB斜边OA的中点,且点A的坐标(-6,4),可得点D的坐标为(-3,2),代入双曲线可得k,又AB⊥OB,所以C点的横坐标为-6,代入解析式可得纵坐标,继而可求得面积.本题考查反比例函数系数k的几何意义及其函数图象上点的坐标特征,体现了数形结合的思想.21.【答案】【解析】解:∵点A(-1,0)在抛物线y=x2+bx-2上,∴×(-1)2+b×(-1)-2=0,∴b=-,∴抛物线的解析式为y=x2-x-2,∴顶点D的坐标为(,-),作出点C关于x轴的对称点C′,则C′(0,2),OC′=2连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴=,即=,∴m=.故答案为:.首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C′,求得直线C′D的解析式,与x轴的交点的横坐标即是m的值,再利用相似三角形的判定和性质求解即可.本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.22.【答案】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为2cm,∴CE=OC•sin60°=2×=cm,∴CD=2CE=2(cm).【解析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.23.【答案】解:(1)2-1+(π-3.14)0+sin60°-|-|=2-1+1+-=2;(2),解6-2x>0,得x<3,解2x>x+1,得x>1,所以,不等式组的解集是1<x<3,在数轴上表示为:【解析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据解不等式的方法,可得不等式的解集,再把不等式解集的公共部分表本题主要考查了实数的运算和解不等式组,解题的关键是牢记求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).24.【答案】证明:∵ED⊥AB,∴∠EDB=90°.在Rt△ECB和Rt△EDB中,,∴Rt△ECB≌Rt△EDB(HL),∴∠EBC=∠EBD,又∵BD=BC,∴BF⊥CD,即BE⊥CD.【解析】首先根据HL证明Rt△ECB≌Rt△EDB,得出∠EBC=∠EBD,然后根据等腰三角形底边上的高与顶角的平分线重合即可证明.本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.25.【答案】解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,由题意得,++=1,解得:x=30,经检验:x=30是原方程的解,且符合题意,2x=60.答:甲队单独完成这项工程需要30天,则乙队单独完成这项工程需要60天;(2)总预算为:(6+16)×1.5+16×1.2=52.2(万元).答:该工程预算的施工费用是52.2万元.【解析】(1)把总工程当做单位“1”,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,根据甲队先做6天.剩下的工程再由甲、乙两队合作16天可以完成,列方程求解;(2)根据(1)求出的甲乙完成所需要的时间,求出总预算.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.26.【答案】解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,解得x=10.即D地车票有10张.补全统计图如图所示.(2)小胡抽到去A地的概率为=.(3)不公平.以列表法说明:或者画树状图法说明(如图)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为=.则小王掷得数字不小于小李掷得数字的概率为=.∴这个规则对双方不公平.【解析】(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;(2)根据概率公式直接求解即可求得答案;(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.本题考查的是用列表法或画树状图法求概率与概率公式得到应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.27.【答案】解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON-OF=,∵CM=6-4=2,EC=∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)【解析】(1)在直角△AOB中利用三角函数求得A的坐标,然后利用待定系数法即可求得k的值;(2)已知E是DC的中点,则E的纵坐标已知,代入反比例函数的解析式即可求得E的坐标,然后利用待定系数法即可求得直线的解析式;(3)首先求得M、N的坐标,延长DA交y轴于点F,则AF⊥ON,利用勾股定理求得AN和EM的长,即可证得.本题是待定系数法求一次函数的解析式,以及勾股定理的综合应用,求得E 的坐标是关键.28.【答案】解:(1)PN=PM,理由:如图1,作PF⊥BC,∵∠ABC=90°,PE⊥AB,∴PE∥BC,PF∥AB,∴四边形PFBE是矩形,∴∠EPF=90°∴P是AC的中点,∴PE=BC,PF=AB,∵∠MPN=90°,∠EPF=90°,∴∠MPE=∠NPF,∴△MPE∽△NPF,∴==,∵∠A=30°,在RT△ABC中,cot30°==,∴=,即PN=PM.(2)解;①PN=PM,如图2 在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F∴四边形BFPE是矩形,∴△PFN∽△PEM∴=,又∵Rt△AEP和Rt△PFC中,∠A=30°,∠C=60°∴PF=PC,PE=PA∴==∵PC=PA∴=,即:PN=PM②如图3,成立.【解析】(1)过点P作PE⊥AB于E,PF⊥BC于点F,则四边形BFPE是矩形,所以△PFN∽△PEM得出==,然后根据余切函数即可求得.(2)同(1)证得△PFN∽△PEM得出=,然后在Rt△AEP和Rt△PFC中通过三角函数求得PF=PC,PE=PA,即可求得.本题考查了矩形的判定和性质,相似三角形的判定和性质以及三角函数的应用.29.【答案】解:(1)∵抛物线y=ax2-2ax+c(a≠0)经过点A(3,0),点C(0,4),∴ ,解得,∴抛物线的解析式为y=-x2+x+4;(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴ ,解得,∴直线AC的解析式为y=-x+4.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,-m+4),∵点P的横坐标为m,点P在抛物线y=-x2+x+4上,∴点P的坐标为(m,-m2+m+4),∴PM=PE-ME=(-m2+m+4)-(-m+4)=-m2+4m,即PM=-m2+4m(0<m<3);(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3-m,EM=-m+4,CF=m,若以P、C、F为顶点的三角形和△AEM相似,P点在F上,PF=-m2+m+4-4=-m2+m.情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即(-m2+m):(3-m)=m:(-m+4),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME,∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°,∴△PCM为直角三角形;②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=(-m2+m):(-m+4),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME,∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM,∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.【解析】(1)将A(3,0),C(0,4)代入y=ax2-2ax+c,运用待定系数法即可求出抛物线的解析式;(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长;(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.。
2021济南市市一模数学总评:因为本套试题遵循高考命题特点,重视对基础知识、基本技能、基本思想方法的考查,高频考点在试卷中占较大比例,如客观题中的集合.概率、常用逻辑用语、丽数的性质、二项式定理、程序框图、三视图、三角函数的图象与性质、 圆锥曲线的定义和几何性质、平面向量、线性规划,主观题中的解三角形、立体几何、解析几何中直线与圆锥曲线的位置关系、利用导数研究函数的性质.内容创新:第9题对二项式的考查通常比较单一,通常单一考查指定项系数问题,或项的系数和问题,或项的系数最大问题等,而本题则将这些问题综合在一起考查,此类多选题命题方式比较适合对二项式定理的考查.形式创新:第15题考查开放性填空题解法创新:第3题解法二是将位向量,,a b c 置入等边三角形中,实质上构造特殊图形,数形结合思想的应用,使特别是得到快速简捷的解决.结论解法:利用等差数列的性质可快速求解第14题.难点突破:第8题在问题的解法有所突破,因为通常情况下比较三个对数的大小利用对数的单调性或图形法可解决,但本题则须两次构造函数,利用导数研究函数的单调性来进行比较;第22题第(2)题解答的难点是不易想到将数列不等式的通过构造函数,通过判断函数的单调性来达到证明的目的.数学文化:第11题“三角垛”为背景考查数学文化、数列的通项公式,向考生展示我国古代数学的辉煌成就.易错题:第5题求解时误认为1,a m b m =+=;第12题判断选项A ,易忽视两条直线中忽略一条斜率为0,另一条斜率不存在的情况的讨论;第19题第(2)问利用空间向量求解直线与平面所成角,不要误认为斜线的方向向量与平面法向量夹角的余弦为直线与平面所成角的余弦.试题情境:第4题以“环保部门为降低某社区在改造过程中产生的扬尘污染”为背景考查古典概型,让学生认识到环境污染的危害性,保护环境的重要性;第16题以“四棱锥分割为小四棱锥”为背景,考查锥的体积,可以体现到数学知识在实际中的应用,增强应用意识的培养;第21题以“研究考生物理成绩与数学成绩之间的关系”为背景中,考查回归直线方程、正态分布、二项分布,考查的学科素养是理性思维、数学应用、数学探索.第15题:解法二:由等差数列的性质知1742a a a +=,2314a a a a +=+,得()177477282a a S a +===,所以44a =,则2371474312a a a a a a a ++=++==.1.D 【考查目标】本题主要考查同角三角函数间的基本关系,考查的学科素养是理性思维.【解析】解法一:因为()0,α∈π,所以23sin 1cos 2αα=-=(题眼)(知识点拨:正弦函数在第一、二象限的函数值大于0),所以sin tan 3cos ααα==-,故选D . 解法二:因为()0,α∈π,1cos 2α=-,所以23απ=(题眼),所以tan 3α=-,故选D .2.B 【考查目标】本题主要考查不等式的解法、充分条件与必要条件,考查的学科素养是理性思维、数学探索. 【解析】由10x x-<,解得01x <<,所以{}|01A x x =<<.由10x +>解得1x >-,所以{}|1B x x =>-(方法点拨:求解以不等式为背景的集合运算问问题,通常首先通过解不等式化简集合,然后根据要求进行集合的运算.),所以A B A =(题眼),所以“x A ∈”是“x B ∈”的充分不必要条件,故选B .3.C 【考查目标】本题主要考查向量的数量积,考查的学科素养是理性思维.【解析】 解法一:由0a b c ++=,得a b c +=-,所以a b c +=-(题眼),两边平方(方法点拨:利用公式22a a =,将模的运算转化为向量的数量积的运算),得222a a b b +⋅+=2222cos ,a a b a b b c +⋅<>+=,即22cos ,1a b +<>=,所以1cos ,2a b <>=-,所以32π=(知识点拨:两个向量的夹角的取值范围为[]0,π),故选C .解法二:根据题意,可将单位向量,,a b c 放入等边三角形中(题眼),设,,a AB b BC c CA ===,则向量,a b 的夹角为233πππ-=,故选C .4.B 【考查目标】本题主要考查古典概型,考查的学科素养是理性思维、数学应用、数学探索.【解析】由图知,要使洒水车能够不重复地走遍全部街道,则要选择从点B 或点E 两点开始驶入(题眼),如若从点B 驶入路线为:B A F E D C B E→→→→→→→或B C D E F A B E →→→→→→→.同理从点E 驶入也有两种路线.若选择除从点B 或点E 外的点驶入,则都会重复,所以选择的驶入点使酒水车能够不重复地走遍全部街道的概率为2163P ==,故选B .5.A 【考查目标】本题主要考查双曲线的性质,考查的学科素养是理性思维.【解析】由题意,知双曲线的渐近线方程为1my x m =±+(题眼)(易错警示:一是求双曲线的渐近线方程时,一定要先判定双曲线的焦点位置;二是对于本题易误认为1,a m b m =+=.).直线30x y ±=,化为13y x =±,所以113m m =+,解得12m =,故选A .6.B 【考查目标】本题主要考查三角函数的图象与性质,考查的学科素养是理性思维、数学探索.【解析】由函数的图象知,函数()f x 为偶函数(题眼),而A 中函数为奇非偶函数,故排除A ;又由图知当x =π时,()1f x =-,而D 中函数()010f π=+>,故排除D ;当[],2x ∈ππ中,C 中函数为()sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,当2x 5π=时,函数取得最小值2,而不是1-,故排除C (方法技巧:对于函数图象识别问题,主要根据函数的性质及特征点,排除错误的图象,得到满足条件的函数的图象.),故选D .7.A 【考查目标】本题主要考查二面角、三棱锥的体积、翻折问题,考查的学科素养是理性思维、数学探索.【解析】(1)如图,连接AC ,交BD 于点O ,连接OA ,因为四边形ABCD 为菱形,所以AC BD ⊥,所以AO BD ⊥,CO BD ⊥,所以AOC ∠为二面角A BD C --的平面角(题眼)(关键点拨:涉及到二面角的问题,作出二面角的平面角是关键,主要是利用垂直关系来作.),所以60AOC ∠=︒.因为在菱形ABCD 中,AB BD =,所以BDC ∆为等边三角形,则3232AO =⨯=,三棱锥P BDC -为正三棱锥.设BDC ∆的重心为G ,连接AG ,则AG ⊥平面BDC (知识点拨:正三棱锥中顶点在底面的射影是底面三角形的中心,底面所对顶点与底面中心连线垂直于底面.),且3sin 602AG AO =︒=,所以13A BDC BDC V S AG -∆=⨯⨯=2133323422⨯⨯⨯=,故选A .8.D 【考查目标】本题主要考查利用导数研究函数的单调性,考查的学科素养是理性思维、数学探索.【解题思路】 设()ln x f x x =()0x >−−→求导研究函数()f x 的单调性−−→a c >−−→设()ln 1xg x x =+()1x >−−→求导研究函数()g x 的单调性−−→b a <−−→()()ln 1x k x x+=()0x >−−→ 求导研究函数()k x 的单调性−−→c b <−−→a b c >>【解析】设()ln xf x x=()0x >(题眼)(方法点拨:当不能通过简单的作差作商或通过化简转化、找中间量,利用初等基本函数的图像和性质进行比较大小时,需要根据问题的同构,构造出新函数,求导研究函数的性质,通过函数值比较大小.),则()21ln xf x x -'=,所以当0x e <<时,()0f x '>,函数单调递增,当x e >时,()0f x '<,函数单调递减,所以()()20222020f f <,即ln 2022ln 202020222020<,所以2020ln 20222022ln 2020<,即a c >.设()ln 1xg x x =+()1x >,则()()21ln 1x x x g x x x +-'=+,又令()1ln h x x x x =+-()1x >,则()ln h x x '=-,所以1x >时,()0h x '<,函数()h x 单调递减,所以()()12h x h ≤=,又()4343ln 3ln 027e h =-=>,()55455ln 5ln 05e h =-=<,所以函数()h x 的零点()03,4x ∈,所以当01x x <<时,()0g x '>,函数()g x 单调递增,当0x x >时,()0g x '<,函数()g x 单调递减,所以ln 2021ln 202020222021<,所以2021ln 20212022ln 2020<,即b a<.设()()ln 1x k x x+=()0x >,则()()()()21ln 11x x x k x x x -++'=+,又令()()()1ln 1m x x x x =-++()0x >,则()()ln 10m x x '=-+<,所以()()00m x m <=,所以()0k x '<,所以函数()k x 在()0,+∞上单调递减,所以ln 2022ln 202120212020<,所以2020ln 20222021ln 2021<,即c b <.综上所述,a b c >>,故选D .9.BC 【考查目标】本题主要考查二项式定理,考查的学科素养是理性思维.【解析】二项式62x x ⎛⎫- ⎪⎝⎭的展开式的能项为()()6626166212rrrr r r r r T C x C x x ---+⎛⎫=-=- ⎪⎝⎭(题眼). 对于A ,由260r -=,得3r =,所以展开式中的常数项为()333612160C -=-,故A 不正确;对于B ,因为该二项式的展开式共有7项,所以展开式中二项式系数最大的项为第4项,故B 正确; 对于C ,因为展开式共有7项,每系数最大项必为正项,即在第一、三、五、七这四项中取得,故系数最大项必在中间偏左或偏右,所以只需比较第21T +与41T +两项系数大小即可,因为第21T +项的系数为()242612240C -=,第41T +项的系数为()42461260C -=,所以该展开式中第3项的系数最大(方法点拨:对于二项式系数的最大值、最小值问题,有时应对n 的奇偶性进行讨论才有定论.); 对于D ,令1x =时,则各项的系数的和为()6211-=(方法点拨:求其展开式的各项系数之和,常用赋值法,只需令1x =即可.),故D 不正确. 综上所述,故选B C .10.ABD 【考查目标】本题主要考查导数的几何意义、导数在函数中的应用,考查的学科素养是理性思维、数学探索.【解析】对于A ,因为()23f x x a '=-,则由题意,得()22329f a '=⨯-=(题眼),解得3a =,故A 正确;对于B ,由A 知()331f x x x =-+,()()()233311f x x x x '=-=+-,所以当()(),11,x ∈-∞-+∞时,()0f x '>,函数单调递增,当()1,1x ∈-时,()0f x '<,函数单调递减,所以当1x =-时,函数取得极大值(易错警示:对于函数的极值点即导函数的零点,但是必须是变号零点,即在零点两侧正负相反),故B 正确;对于C ,由B 知,函数()f x 在(]2,1--上递增,在[]1,1-上递减,所以在(]2,1-上,()()max 13f x f =-=.又()21f -=-,()11f =-(方法点拨:求函数()f x 在某闭区间[],a b 上的最值,首先需求函数()f x 在开区间(),a b 内的极值,然后,将()f x 的各个极值与()f x 在闭区间上的端点的函数值()f a 、()f b 比较,才能得出函数()f x 在[],a b 上的最值),所以当(]2,1x ∈-时,()[]1,3f x ∈-,故C 不正确;对于D ,点()00,x y 关于()0,1的对称点为()00,2x y --,代入()331f x x x =-+,得()3000231y x x -=-++,即300031y x x =-+,所以函数()f x 的图象关于点()0,1对称,故D 正确. 综上所述,故选ABD .11.BC 【考查目标】本题主要考查数学文化、数列的通项公式,考查的学科素养是理性思维、数学应用、数学探索、数学文化.【解析】由题意知,121321211,23,36,...,1,n n n n a a a a a a a n a a n ---==+==+==+-=+(题眼),将以上各式相加得(方法点拨:利用恒等式()()1211n n n a a a a a a -=+-+⋯+-求通项公式的方法称为累加法,累加法是求型如()1n n a a f n ++=的递推数列通项公式的基本方法,其中()f n 为可求前n 项和.),()11232n n n a n +=++++=.对于A ,所以()4441102a ⨯+==,故A 不正确; 对于B ,11n n a a n +=++,故B 正确; 对于C ,()100100100150502a ⨯+==,故C 正确;对于D ,因为()()()()1211112n a n n n n +=+++=++,()()()21234n n n n a a n n ++++=⋅,显然122n n n a a a ++≠⋅,故D 不正确.综上所述,故选B C .12.AD 【考查目标】本题主要考查椭圆的定义及几何性质、圆的方程、直线与椭圆的位置关系,考查的学科素养是理性思维、数学应用、数学探索. 【解题思路】对于A ,①当直线12,l l 中一个斜率为0,另一个斜率不存在时可直接求出两条切线的交点;①当直线12,l l 的斜率均存在时,设切线方程为()()000y k x x y k =-+≠−−→联立椭圆方程 −−−−−→直线与椭圆相切0∆=−−−−→韦达定理两切线的斜率的乘积−−−−−−−−→两切线垂直斜率乘积为-12202202212y b x a a b ⎧-=-⎪-⎨⎪−−−−→=⎩离心率公式−−→求得蒙日圆的方程−−→作出判断;对于B ,由直线方程知直线l 过定点(),b a −−→定点在蒙日圆上−−→存在PA PB ⊥−−→0PA PB ⋅=−−→作出判断;对于C ,由椭圆的定义得212AF a AF =-−−→212d AF d AF a -=+-−−−−−→由平面几何知识()1mind AF +为点()1,0F c -到直线l 的距离−−−−−−→点到直线的距离公式求出()1mind AF+−−→作出判断;对于D ,由条件得四边形MNGH 为蒙日圆的内接矩形−−−−→勾股定理矩形MNGH 的长和宽与蒙日圆的半径为关系式−−−−→基本不等式求得矩形MNGH 面积的最大值−−→作出判断. 【解析】对于A ,如图,设两条切线的交点为E ,切点分别为,C D ,当直线12,l l 中一个斜率为0,另一个斜率不存在时,易知(),E a b ±±(易错警示:容易忽略一个斜率为0,另一个斜率不存在的情况的讨论);当直线12,l l 的斜率均存在时,设()()0000,E x y x a y b ≠±≠±且,切线方程为()()000y k x x y k =-+≠,则由()0022221y k x x y x y ab ⎧=-+⎪⎨+=⎪⎩消去y,得()()()222222222000020a kb x ka kx y x a kx y a b +--+--=,则由0∆=,整理,得()2222200020xa k x y k yb --+-=,所以,EC ED k k 为方程的两根(题眼),所以220220EC ED y b k k x a-⋅=- ①.又EC ED ⊥,所以1EC ED k k ⋅=- ②,联立①②得222200x y a b +=+.又c e a ===,所以222a b =,所以222003x y b +=,即蒙日圆的方程为2223x y b +=,故A 正确;对于B ,直线l 的方程化为()()a y a b x b -=--,所以直线l 过定点(),b a ,则该点也在蒙日圆上,当点P 为定点,,A B 为切点时,PA PB ⊥,0PA PB ⋅=,故B 不正确;对于C ,因为点A 在椭圆上,则由椭圆的定义,知122AF AF a +=,所以212AF a AF =-,所以212d AF d AF a -=+-,则由平面几何知识知,1d AF +的最小值为点()1,0F c -到直线l 的距离(方法点拨:利用几何法求圆锥曲线中的最值问题,即根据曲线的定义和性质,将问题转化为平面几何中的相关问题直接判断最值与范围.).因为22c a b b =-=,所以点1F 到直线l 的距离为22222222224332bc a b b b b ba bb b---++==++,所以()()21minmin 43223bd AF d AF a a -=+-=-,故C 不正确;对于D ,因为矩形MNGH 的四条边均与C 相切,所以四边形MNGH 为蒙日圆的内接矩形.设矩形MNGH 的长为m 、宽为n ,因为蒙日圆的半径为3b ,所以()222232bm n mn =+≥,所以26mn b ≤,所以26MNGH S mn b =≤,当且仅当6m n b ==时等号成立,所以矩形MNGH 面积的最大值为26b ,故D 正确. 综上所述,故选AD .13.5【考查目标】本题主要考查复数的运算及模,考查的学科素养是理性思维.【解析】解法一:因为()22212i i i z i i i++===-+--(题眼),所以()22125z =-+=解法二:22551i i z i i ++====--.14.12【考查目标】本题主要考查等差数列的通项公式及前n 项和公式,考查的学科素养是理性思维.【解析】设等差数列{}n a 的公并为d ,则()71176773282S a d a d ⨯=+⨯=+=,所以134a d +=(题眼),所以()237111126333412a a a a d a d a d a d ++=+++++=+=⨯=.解法二:由等差数列的性质知1742a a a +=,2314a a a a +=+,得()177477282a a S a +===,所以44a =,则2371474312a a a a a a a ++=++==.15.11-,(答案不唯一:第1个数大于0,第2个数小于0即可)【考查目标】本题主要考查命题的真假,考查的学科素养是理性思维、数学探索.【解析】当0a b >>时,30a a +>, 30b b +<(题眼),则3311a ab b>++,所以当a 为正数,b 为负数时,3311a ab b<++是假命题,所以,a b 的值可以为1,1a b ==-(方法点拨:要判断全称命题是假命题,只需给出一个反例即可).16.34【考查目标】本题主要考查棱锥的体积,考查的学科素养是理性思维、数学应用、数学探索. 【解题思路】【解析】如图,设PG k PD =,连接,AF AC ,则P AGF P ADC PA PG PFV V PA PD PC--⋅⋅=⋅⋅⋅=11224P ABCD P ABCD k k V V --⨯=,P AEF P ABC PA PE PF V V PA PB PC --⋅⋅=⋅⋅⋅=311352220P ABCD P ABCD V V --⨯⨯=(题眼),所以3420P AEFG P AGF P AEF P ABCD k V V V V ----⎛⎫=+=+⎪⎝⎭(方法点拨:三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算. 有时还需把复杂几何体分割成若干简单几何体便于体积的计算或体积的找寻, 这些几何体可能有相同的高或相同的底面,或者它们的高或底面的面积的比值为定值)①.连接,EG BD ,则P AGE P ABD PA PG PEV V PA PD PB--⋅⋅=⋅⋅⋅=3135210P ABCD P ABCD k k V V --⨯⨯=,P EFG P ABD PF PG PE V V PC PD PB--⋅⋅=⋅⋅⋅=131325220P ABCD P ABCD k k V V --⨯⨯⨯=,所以331020P AEFG P AGE P EFG P ABCDk k V V V V ----⎛⎫=+=+ ⎪⎝⎭②.由①②,得3334201020P ABCD P ABCD k k k V V --⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即3334201020k k k +=+,解得34k =,即34PG PD =.17.【考查目标】本题主要考查正弦定理、余弦定理、三角形面积公式,考查的学科素养是理性思维.【解题思路】(Ⅰ)首先由条件将已知等式化为sin sin 22A a B +=,然后由正弦定理知sin sin a B b A =,从而得到关于sin A 的方程,求得sin A 的值,进而结合大边对大角原则求得角A的大小;(Ⅱ)首先由余弦定理求得c 的值,然后利用三角形面积公式求解即可.(1)当条件等式中出现边角的一次式时,考虑利用正弦定理进行边角间的转化; (2)在三角形的判断中注意应用“大边对大角”来确定;(3)已知两边的关系及一边所对角,求解相应的边角关系时,通常是首先利用余弦定理.18.【考查目标】本题主要考查分段函数的单调性及最值、函数的零点、二次函数的图象与性质,考查的学科素养是理性思维、数学探索.【解题思路】(Ⅰ)首先求出2a =时函数的解析式,然后在0x ≤段利用导数研究函数()f x 的单调性,求出该段函数的最小值,在0x >利用二次函数的图象与性质求出该函数的最小值,从而比较求得函数()f x 的最小值;(Ⅱ)首先根据函数的单调性将问题转化函数()f x 在()0,+∞上有两个零点,然后利用二次函数的图象与性质建立不等式求解即可.(2)(题眼)(1)(3)(4)求分段函数的最值(或值域),主要利用分类讨论的思想进行分段求出每一段的最值(或值域); (5)二次函数在区间上的最值问题,一般利用二次函数的图像及其单调性来考虑; (6)求分段函数的零点主要是通过分别求出每一段函数的零点来完成的;19.【考查目标】本题主要考查空间直线与平面间的平行与垂直关系、直线与平面所成角、空间法向量的应用,考查的学科素养是理性思维、数学探索.【解题思路】(Ⅰ)连接11A C ,由正方形的性质与线面垂直的性质证11B D 平面11AA C ,推出(题眼) (4)(6)(5)111B D AC ⊥,同理证11B C AC ⊥,从而证得1AC ⊥平面11B CD ,,然后由线面平行的性质定理与面面垂直的判定定理可使问题得证;(Ⅱ)以A 为原点建立空间直角坐标系,然后求出相关点的坐标,由此求出平面α的法向量,再设()101AP t AC t =≤≤,利用向量的线性运算求出直线BP 的法向量,从而利用空间夹角公式与二次函数的性质求出直线BP 与平面α所成角的最大值.(题眼)(8)(7)(9)(7)证线面垂直先证线线垂直,但要注意是证平面外一条直线与平面内的两条相交直线垂直; (8)利用线面平行的性质定理可实现线面平行与线线平行间的转化;(9)利用空间向量求线面角时,求出直线的方向向量与平面的法向量是解答的关键;20.【考查目标】本题主要考查直线与抛物线的位置关系、斜率公式,考查的学科素养是理性思维、数学探索.【解题思路】(Ⅰ)设直线AB 的方程为1x my =+,然后代入抛物线方程,利用韦达定理即可求得结果;(Ⅱ)由(Ⅰ)同理求得M N y y ⋅,然后设直线AN 的方程为2x ny =+,并代入抛物线方程,利用韦达定理求得A N y y ⋅,从而根据斜率公式用坐标表示出12,k k ,进而求得比值.(10)由于存在与x 轴垂直直线也满足条件的情况时,故考虑将直线的方程设为x my t =+来处理; (11)处理直线与圆锥曲线的位置关系通常结合韦达定理; (12)在求解过程,不要忽视点在抛物线上的条件的应用.(题眼)(10)(11)(12)21.【考查目标】本题主要考查回归直线方程、正态分布、二项分布,考查的学科素养是理性思维、数学应用、数学探索. 【信息提取】(Ⅰ)要求回归直线方程需先注出样本中心(),u v ,可根据表格数据直接求出;(Ⅱ)要求物理成绩不低于75分的人数,需先根据正态分布曲线的对称性可求得物理成绩不低于75分的概率;(Ⅲ)物理成绩不低于75分的人数服从二项分布,可根据公式()E np ξ=直接求解.(13)在根据公式求b 时,由于计算量大,易导致计算出错;(14)根据正态分布求概率时,关键是借助于正态分布曲线的性质,把所求问题转化为已知概率的三个区间上求解;(15)求随机变量ξ的期望时,可首先分析ξ是否服从二项分布,若(),B n p ξ,则用公式()E np ξ=求解.22.【考查目标】本题主要考查数列与不等式的综合、导数在证明不等式中的应用、等比数列的通项公式,考查的学科素养是理性思维、数学探索. 【解题思路】(题眼) (13)(14)(15)(Ⅰ)先证()ln 1x x +<恒成立−−→记()()ln 1f x x x =+-−−→求导研究函数()f x 的单调性−−→求出()max f x −−→()11ln 122n n a a +<−−→根据对数运算的运算法则与放缩法问题得证; (Ⅱ)转化证()2ln 12n n n a a a +>+成立−−→记()()2ln 12x g x x x =+-+−−→求导研究函数()f x 的单调性 −−→求出()min g x −−→问题得证;(Ⅲ)由(Ⅱ)得1121n n a a +<+1−−−−→两边同时加111211n n a a ++<+−−−−−−−−→等比数列的定义及通项公式112n n a +<−−−→由(Ⅰ)112n n a a +<−−−−−−−−→等比数列的定义及通项公式112n n a -⎛⎫< ⎪⎝⎭−−→问题得证.(题眼)(16)(17)(16)不等式()()f x g x >恒成立,常构造函数()()()F x f x g x =-,转化为()min 0F x >恒成立; (17)在构造函数时,一定要注意函数的定义域要一致;(18)构造法基本原理是在递推关系的两边加上相同的数或相同性质的量,构造数列的每一项都加上相同的数或相同性质的量,使之成为等差或等比数列.(18)。
中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.5的相反数是()A.5B.﹣5C.5或﹣5D.2.如图所示的几何体,其主视图是()A.B.C.D.3.2021年10月16日,神舟十三号载人飞船顺利将三位宇航员送入太空,飞船平均飞行速度为每小时28440000米,用科学记数法表示28440000为()A.2.844×107B.2.844×108C.28.44×107D.0.2844×1084.如图,直线l1∥l2被直线l3所截,∠1=∠2=36°,∠P=90°,则∠3=()A.36°B.54°C.46°D.44°5.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab26.窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为()A.B.C.D.7.计算的结果正确的是()A.B.C.D.8.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D 三个出口中恰好在C出口出来的概率为()A.B.C.D.9.一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤310.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=6,延长BC至E,使得CE=BC,将△ABC 沿AC翻折,使点B落点D处,连接DE,则DE的长为()A.B.C.D.12.对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点.若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是()A.c<﹣3B.﹣3<c<﹣2C.﹣2<c D.c二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:1﹣2x+x2=.14.随机闭合开关S1,S2,S3中的两个,能够让灯泡发亮的概率为.15.如图,在正六边形ABCDEF中,连接DA、DF,则的值为.16.已知x=m是一元二次方程x2﹣x﹣1=0的一个根,则代数式m2﹣m+2021的值为.17.一个横断面是抛物线的渡槽如图所示,根据图中所给的数据求出水面的宽度是cm.18.如图,已知正方形ABCD,延长AB至点E使BE=AB,连接CE、DE,DE与BC交于点N,取CE的中点F,连接BF,AF,AF交BC于点M,交DE于点O,则下列结论:①DN=EN;②OA=OE;③tan∠CED;④S四边形BEFM=2S△CMF.其中正确的是.(只填序号)三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算:2﹣1+4cos45°(π﹣2022)0.20.解不等式组,求出解集并写出此不等式组的整数解.21.如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.22.某校要加强中小学生作业、睡眠、手机、读物、体质管理.数学社团成员采用随机抽样的方法,抽取了七年级若干名学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计图表和扇形统计图:请根据图表信息回答下列问题:(1)本次被抽取的七年级学生共有名;(2)统计图表中,m=;(3)扇形统计图中,C组所在扇形的圆心角的度数是°;(4)请估计该校800名七年级学生中睡眠不足7小时的人数.23.如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC 交EC的延长线于点D,连接AC.(1)求证:AC平分∠DAE;(2)若cos∠DAE,BE=2,求⊙O的半径.24.为了防控“新冠肺炎”疫情,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种8元/瓶,乙种12元/瓶.(1)如果购买这两种消毒液共用1040元,求甲,乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍少4瓶,且所需费用不多于1200元,求甲种消毒液最多能再购买多少瓶?25.如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y的图象交于点A(2,4)和点B(m,﹣2).(1)求一次函数与反比例函数的表达式;(2)直线AB与x轴交于点D,与y轴交于点C.①过点C作CE∥x轴交反比例函数y的图象于点E,连接AE,试判断△ACE的形状,并说明理由;②设M是x轴上一点,当∠CMO∠DCO时,直接写出点M的坐标.26.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,猜想∠ABD和∠ACE的数量关系是(),并说明理由;(2)如图2,若∠ADE=∠ABC=30°,则(1)中的结论是否仍然成立成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.27.如图,在平面直角坐标系中,抛物线y bx+c与x轴交于A(﹣2,0)、B(4,0)两点(点A在点B的左侧),与y轴交于点C,连接AC、BC,点P为直线BC上方抛物线上一动点,连接OP交BC于点Q.(1)求抛物线的函数表达式;(2)当的值最大时,求点P的坐标和的最大值;(3)把抛物线y bx+c沿射线AC方向平移个单位得新抛物线y',M是新抛物线上一点,N是新抛物线对称轴上一点,当以M、N、B、C为顶点的四边形是平行四边形时,直接写出N点的坐标.答案解析部分【解析】【解答】解:5的相反数是-5.故答案为:B.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数,即可得出答案.【解析】【解答】解:主视图为:故答案为:A.【分析】根据从正面看到的图形叫做主视图,画出几何体的主视图,即可得出答案.【解析】【解答】解:28440000=2.844×107.故答案为:A.【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数的绝对值>10时,n 是正数,当原数的绝对值<1时,n是负数,据此即可得出答案.【解析】【解答】解:如图,∵∠1=∠2=36°,∠P=90°,∴∠4=90°-36°=54°,∵ l1∥l2,∴∠1+∠2+∠3+∠4=180°,∴∠3=180°-36°-54°-36°=54°.故答案为:B.【分析】根据直角三角形的性质求出∠4=54°,再根据平行线的性质得出∠1+∠2+∠3+∠4=180°,即可得出∠3=54°.【解析】【解答】解:因为a2与a3不是同类项,所以选项A不符合题意;a3•a3=a6≠a9,所以选项B不符合题意;(a3)2=a3×2=a6,所以选项C符合题意;(ab)2=a2b2≠ab2,所以选项D不符合题意.故答案为:C.【分析】利用合并同类项、同底数幂的乘方、幂的乘方和积的乘方逐项判断即可。
一、选择题1.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .12.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( )A .24m n =B .22m n =C .()214m n += D .()212m n += 3.如图为二次函数y =ax 2+bx+c 的图象,其对称轴为x =1,在下列结论中:①abc >0;②若方程ax 2+bx+c =0的根是x 1、x 2,则x 1+x 2<0;③4a+2b+c <0;④当x >1时,y 随x 的增大而增大.正确的有( )A .1B .2C .3D .44.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个5.如图,在平面直角坐标系中,反比例函数和二次函数的图象大致如图所示,它们的表达式可能分别为( )A .2,k y y kx x x =-=-+ B .2,k y y kx x x =-=-- C .2,k y y kx x x ==-- D .2,k y y kx x x ==-+ 6.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是( ) A .2- B .2- C .0 D .527.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AEF 是等边三角形,连接AC 交EF 于点G ,有下列结论:①15BAE DAF ∠=∠=︒;②AC EF ⊥;③BE DF EF +=;④3AG GC =.其中正确的个数为( )A .1B .2C .3D .48.在Rt ABC 中,90,3,2C BC AC ∠=︒==,则sin A 的值为( )A .32B .23C 213D 313 9.北碚区政府计划在缙云山半山腰建立一个基站AB ,其设计图如图所示,BF ,ED 与地面平行,CD 的坡度为1:0.75i =,EF 的坡角为45︒,小王想利用所学知识测量基站顶部A 到地面的距离,若BF ED =,15CD =米,32EF =米,小王在山脚C 点处测得基站底部B 的仰角为37︒,在F 点处测得基站顶部A 的仰角为60︒,则基站顶部A 到地面的距离为( )(精确到0.1米,参考数据:3 1.73≈,sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)A .21.5米B .21.9米C .22.0米D .23.9米 10.如图,CD 是Rt ABC 斜边上的高,43AC BC ==,.则tan BCD ∠的值是( )A .34B .35C .45D .4311.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=14,点E 在边CB 上,CE=2EB ,点D 在边AB 上,CD 垂直AE ,垂足为F ,则AD 的长为( )A .2B .4225C .35D .15 12.在ΔABC 中,∠C =90º,AB =5,BC =3,则cos A 的值是( ) A .34 B .43 C .35 D .45 二、填空题13.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________. 14.当x >m 时,二次函数y =﹣x 2+3x 的函数值y 随x 的增大而减小,则实数m 的取值范围是_____.15.如图1,AO ,BC 是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线21410y x x =-+的图象.因实际需要,在OA 与BC 间用一根高为2.5m 的立柱MN 将绳子撑起,若立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,则点D 到地面的距离为______.16.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.17.如图,在菱形ABCD 中, 3AB AC ==点E 、F 分别在边AB 、AD 上,且 AE DF =,则EF 的最小值为________.18.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m .测得斜坡的斜面坡度为i =1:3(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.19.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2km ,从A 测得灯塔P 在北偏东60°的方向,从B 测得灯塔P 在北偏东45°的方向,则灯塔P 到海岸线l 的距离为_____km .20.已知:等边△ABC ,点P 是直线BC 上一点,且PC:BC=1:4,则tan ∠APB=_______,三、解答题21.已知二次函数y =ax 2+bx ﹣2(a ≠0)的图像与x 轴交于点A 、B ,与y 轴交于点C . (1)若点A 的坐标为(4,0)、点B 的坐标为(﹣1,0),求a +b 的值;(2)若图像经过P (1,y 1),Q (m ,n ),M (3,y 2),N (3﹣m ,n ),试比较y 1、y 2的大小关系;(3)若y =ax 2+bx ﹣2的图像的顶点在第四象限,且点B 的坐标为(﹣1,0),当a +b 为整数时,求a 的值.22.如图,在平面直角坐标系中,已知AOB ,90AOB ∠=︒,AO BO =,点A 的坐标为()3,1-.(1)求点B 的坐标.(2)求过点A ,O ,B 的二次函数的表达式.(3)设点B 关于二次函数的对称轴l 的对称点为1B ,求1AB B 的面积.23.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?24.计算:20210+|3﹣2sin60°.25.如图,已知△OAB ,点A 的坐标为(2,2),点B 的坐标为(3,0).(1)求sin ∠AOB 的值;(2)若点P 在y 轴上,且△POA 与△AOB 相似,求点P 的坐标.26.如图在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n .线段5OA =,E 为x 轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式;(2)求AOB 的面积;【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值.【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1,∴抛物线的顶点坐标为(2,1),∵四边形ABCD 为矩形,∴BD =AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1,∴对角线BD 的最小值为1.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.2.C解析:C【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫ ⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+∵A ,B 两点关于对称轴对称∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫ ⎪⎝⎭把3,02m +⎛⎫ ⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n += 故选:C【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.3.C解析:C【分析】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据抛物线对称轴确定x 1+x 2的符号,根据当x=2时,判断4a+2b+c 的符号,根据二次函数的增减性对④进行判断.【详解】解:①∵开口向上,∴a >0,∵对称轴在y 轴的右侧,b <0,抛物线与y 轴交于负半轴,c <0,∴abc >0,∴①正确;②从图象可知,抛物线对称轴为直线x=122x x +=1,则x 1+x 2=2>0,∴②错误; ③抛物线对称轴是x=1,根据抛物线得对称性可知当x=2和x=0时函数值相等, ∴y=4a+2b+c <0,∴③正确;④抛物线开口向上,对称轴是x=1,当x >1时,y 随x 的增大而增大,∴④正确; 故选:C【点睛】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.4.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵a <0,2b a-<0, ∴b <0.∵抛物线交y 轴与正半轴,∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确;③∵该函数图象的开口向下,∴a <0; 又∵对称轴-1<x=2b a-<0, ∴2a-b <0,故③正确; ④∵y=244ac b a->2,a <0,∴4ac-b2<8a,即b2+8a>4ac,故④正确.综上所述,正确的结论有①②③④.故答案为:D.【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.5.D解析:D【分析】根据反比例函数图像的位置判断k的符号,再结合二次函数的图像和性质,逐项判断即可【详解】A、由反比例函数kyx=-的图像可知,0k>,则二次函数2y kx x=-+的图像开口应向下,与图像不符,故选项错误;B、由反比例函数kyx=-的图像可知,0k>,则二次函数2y kx x=--的图像开口应向下,与图像不符,故选项错误;C、由反比例函数kyx=的图像可知,0k<,则二次函数2y kx x=--的图像开口向上,对称轴11222bxa k k-=-=-=->-应位于y轴的右侧,与图像不符,故选项错误;D、由反比例函数kyx=的图像可知,0k<,则二次函数2y kx x=-+的图像开口向上,对称轴11222bxa k k=-=-=<-应位于y轴的左侧,与图像相符,故选项正确;故选:D.【点睛】本题考查了反比例函数,二次函数图像的性质,解题关键是熟练掌握反比例函数和二次函数的图像和性质.6.D解析:D【分析】根据二次函数图象上点的坐标特征得到m+1<3﹣m或m≤﹣1,解得即可.【详解】解:∵二次函数y=a(x﹣m)2(a>0),∴抛物线的开口向上,对称轴为直线x=m,∵图象经过点A(﹣1,p),B(3,q),且p<q,∴m+1<3﹣m或m≤﹣1解得m<1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 7.C解析:C【分析】通过HL 证明ABE ADF ≌,从而得到,BAE DAF BE DF ∠=∠=由正方形的性质可以得出EC FC =,从而得出AC 垂直平分EF 可得结论①②正确,设EC x =,根据勾股定理,表示出等边三角形边长EF =,分别计算出AG ,CG ,再计算BE 、EF 的长,可比较BE DF +的长与EF 的长,即可判断结论③错误,结论④正确.【详解】四边形ABCD 是正方形, ,90AB AD B D ∴=∠=∠=︒ AEF 是等边三角形,60AE AF EAF ∴=∠=︒30BAE DAF ∴∠+∠=︒在Rt ABE △和Rt ADF 中AE AF AB AD =⎧⎨=⎩∴Rt ABE △≌Rt ADFBE DF ∴=BC CD =BC BE CD DF -=-∴,即CE CF =∴AC 是EF 的垂直平分线AC EF ∴⊥∴AC 平分EAF ∠160302EAC FAC ∴∠=∠=⨯︒=︒ 45BAC DAC ∠=∠=︒15BAE DAF ∠∠∴==︒故结论①②正确;sin 60sin 602sin 6022AG AE EF CG =︒⋅=︒⋅=⨯⋅︒=⨯AG ∴=故结论④正确;设EC x =,则FC x =由勾股定理得EF =122CG EF x ==,则2xAC CG AG CG =+=+=(12AB x +∴==()1122x x BE AB CE x +∴=-=-=))1212x BE DF x ∴+=⨯=≠ 故结论③错误综上所述结论①②④正确,结论③错误故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定以性质,勾股定理,等边三角形的性质,解题关键是熟练运用这些性质,利用勾股定理计算边的长度.8.D解析:D【分析】根据勾股定理求出斜边AB ,再根据锐角三角函数的意义求出结果即可;【详解】在Rt ABC 中,由勾股定理可得,AB ==∴sin 13BC A AB ===; 故答案选D .【点睛】本题主要考查了锐角三角函数的定义,准确计算是解题的关键.9.B解析:B【分析】根据直角三角形的边角关系及坡度、坡角的定义求解.【详解】解:如图,分别过D 、B 作DM 、BO 垂直于地面于M 、O 两点,过F 作FN 垂直于直线ED 于点F ,设DM=x ,则有:143,0.7534DM MC x MC ==∴=由勾股定理可得: 22222291516DM CM DC x x +=∴+=,, 解之得:x=12,∴DM=12,MC=9, ∵32EF =,EF 的坡角为45°,∴FN=NE=3,∴BO=FN+DM=3+12=15,OC=BO÷tan37°≈15÷0.75=20,∵BF=ED ,∴BF=(OC-MC-NE )÷2=4,∴AB=BF×tan60°≈4×1.73=6.92,∴AO=AB+BO=6.92+15=21.92≈21.9(米),故选B .【点睛】本题考查解直角三角形,熟练掌握直角三角形的边角关系、锐角三角函数的应用及坡度、坡角的定义是解题关键. 10.A解析:A【分析】易证∠BCD=∠A ,则求tan ∠BCD 的值就可以转化为求tan ∠A ,而tan ∠A 可由△ABC 边长比求得,所以得解.【详解】解:由勾股定理得,2222435AC BC ++=, ∵∠BCD+∠ACD=∠A+∠ACD=90°, ∴∠BCD=∠A ,∴tan ∠BCD=tan ∠A=34BC AC =, 故选:A .【点睛】本题考查锐角三角函数的综合应用,熟练掌握勾股定理的应用、锐角三角函数的定义及余角的性质和直角三角形的性质是解题关键.11.B解析:B【分析】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC=BC=14,∠CAD=45°,求得AH=DH ,得到14CH DH =-,再证明△ACE ∽△DHC ,可得AC CE DH CH=,再列方程,解方程即可得到答案.【详解】解:过D 作DH ⊥AC 于H ,∵在等腰Rt △ABC 中,∠C=90°,AC=14,∴AC=BC=14, ∠CAD=45°,∴AH=DH ,∴14CH DH =-,∵CF ⊥AE ,∴∠DHA=∠DFA=90°,90,DCH HDC DCH CAF ∴∠+∠=︒=∠+∠∴∠HAF=∠HDF ,∴△ACE ∽△DHC ,∴AC CE DH CH =, ∵CE=2EB , ∴283CE =, ∴ 28143,14DH DH=- ∴425DH = 经检验:425DH =符合题意,∴42sin 4555DH AD ===︒, 故选.B 【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.12.D解析:D【分析】利用勾股定理可求出AC 的长,根据余弦函数的定义即可得答案.【详解】∵∠C=90°,AB=5,BC=3,∴=4, ∴cosA=AC AB =45. 故选:D .【点睛】考查勾股定理及锐角三角函数的定义,在直角三角形中,锐角的余弦是角的邻边与斜边的比;熟练掌握各三角函数的定义是解题的关键.二、填空题13.7或15【分析】根据题意可知抛物线顶点纵坐标是±4化成顶点式求解即可【详解】解:∵抛物线y=x2-6x+c-2的顶点到x 轴的距离是4∴抛物线顶点纵坐标是±4抛物线y=x2-6x+c-2化成顶点式为:解析:7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x 2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x 轴的距离是纵坐标的绝对值,注意:分类讨论.14.m≥【分析】根据题目中的函数解析式和二次函数的性质可以得到当x 为何值时y 随x 的增大而减小从而可以得到m 的取值范围【详解】解:∵二次函数y =﹣x2+3x =﹣(x ﹣)2+∴当x≥时y 随x 的增大而减小∵当解析:m ≥32 【分析】根据题目中的函数解析式和二次函数的性质,可以得到当x 为何值时,y 随x 的增大而减小,从而可以得到m 的取值范围.【详解】解:∵二次函数y =﹣x 2+3x =﹣(x ﹣32)2+94, ∴当x≥32时,y 随x 的增大而减小, ∵当x >m 时,二次函数y =﹣x 2+3x 的函数值y 随x 的增大而减小,∴m≥32, 故答案为:m≥32. 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 15.2m 【分析】根据起始抛物线确定点A 的坐标结合已知确定N 的坐标从而确定新抛物线的解析式即可求解【详解】∵抛物线解析式为∴点A 的坐标为(04)∵立柱到的水平距离为左侧抛物线的最低点与的水平距离为∴新抛物 解析:2m .【分析】根据起始抛物线,确定点A 的坐标,结合已知确定N 的坐标,从而确定新抛物线的解析式即可求解.【详解】∵抛物线解析式为21410y x x =-+, ∴点A 的坐标为(0,4),∵立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,∴新抛物线的顶点坐标的横坐标为2,点N 的坐标为(3,52), 设抛物线的解析式为y=a 2(2)x k -+,把(0,4),(3,52)分别代入解析式,得5a 244k a k ⎧+=⎪⎨⎪+=⎩, 解得1a 22k ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y=21(2)22x -+, ∴抛物线的最小值为2即点D 到地面的距离为2,故答案为:2.【点睛】本题考查了二次函数的生活应用,解析式的确定,熟练把生活问题转化为函数问题,灵活确定抛物线的解析式是解题的关键.16.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是 解析:2467y x x =+-.【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式.【详解】解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+- 即2467y x x =+-,故答案为:2467y x x =+-.【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键. 17.【分析】根据菱形的性质可得=3从而得出都是等边三角形利用SAS 即可证出从而得出根据等边三角形的判定可得是等边三角形从而得出即CE 最小时EF 最小根据垂线段最短可得时线段最小利用锐角三角函数即可求出结论【分析】根据菱形的性质可得AB BC CD AD AC =====3,从而得出ABC ,ACD △都是等边三角形,利用SAS 即可证出EAC FDC ≌,从而得出,EC FC ACE DCF =∠=∠,根据等边三角形的判定可得ECF △是等边三角形,从而得出CE EF CF ==,即CE 最小时,EF 最小,根据垂线段最短可得CE AB ⊥时,线段CE 最小,利用锐角三角函数即可求出结论.【详解】解:∵四边形ABCD 是菱形,且AB AC ==3,∴AB BC CD AD AC =====3,∴ABC ,ACD △都是等边三角形,∴60EAC D ∠=∠=︒,在EAC 和FDC △中EA FD EAC D AC DC =⎧⎪∠=∠⎨⎪=⎩∴EAC FDC ≌,∴,EC FC ACE DCF =∠=∠, ∴60ECF ACD ∠=∠=︒,∴ECF △是等边三角形,∴CE EF CF ==,∵CE AB ⊥时,线段CE 最小,最小值为BC·sin ∠3=, ∴EF的最小值为2故答案为:2. 【点睛】此题考查的是菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和解直角三角形,掌握菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和利用锐角三角函数解直角三角形是解题关键. 18.4米【分析】首先根据斜面坡度为i =1:求出株距(相邻两树间的水平距离)为6m 时的铅直高度再利用勾股定理计算出斜坡相邻两树间的坡面距离【详解】由题意水平距离为6米铅垂高度2米∴斜坡上相邻两树间的坡面距 解析:【分析】首先根据斜面坡度为i =16m 时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度23米, ∴斜坡上相邻两树间的坡面距离=()226+23=36+12=48=43(m ),故答案为:43米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则. 19.【分析】作PD ⊥AB 设PD=x 根据∠CBP=∠BPD=45°知BD=PD=xAD=AB+BD=2+x 由sin ∠PAD=列出关于x 的方程解之可得答案【详解】如图所示过点P 作PD ⊥AB 交AB 延长线于点D解析:13+【分析】作PD ⊥AB ,设PD=x ,根据∠CBP=∠BPD=45°知BD=PD=x 、AD=AB+BD=2+x ,由sin ∠PAD=PD AD列出关于x 的方程,解之可得答案. 【详解】如图所示,过点P 作PD ⊥AB ,交AB 延长线于点D ,设PD =x ,∵∠PBD =∠BPD =45°,∴BD =PD =x ,又∵AB =2,∴AD =AB +BD =2+x ,∵∠PAD =30°,且sin ∠PAD =PD AD , ∴323x x =+, 解得:x =3即船P 离海岸线l 的距离为(3km ,故答案为3【点睛】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.20.或【分析】过A 作AD ⊥BC 于D 设等边△ABC 的边长为4a 则DC=2aAD=2aPC=a 分类讨论:当P 在BC 的延长线上时DP=DC+CP=2a+a=3a ;当P点在线段BC上即在P′的位置则DP′=DC解析:23或23.【分析】过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,AD=23a,PC=a,分类讨论:当P在BC的延长线上时,DP=DC+CP=2a+a=3a;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,然后分别利用正切的定义求解即可.【详解】解:如图,过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,3a,PC=a,当P在BC的延长线上时,DP=DC+CP=2a+a=3a,在Rt△ADP中,tan∠APD=2323 AD aDP==;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,在Rt△ADP′中,tan∠AP′D=33 AD aDP a=='故答案为:233或3【点睛】本题考查解直角三角形;等边三角形的性质.三、解答题21.(1)-1;(2)若a>0,则y1<y2;若a<0,则y1>y2;(3)32 a=【分析】(1)把A(4,0),B(-1,0)代入二次函数关系式求出a,b的值即可得到结果;(2)由点Q,点N的纵坐标相同,根据抛物线的对称性可得抛物线的对称轴,确定点P 距对称轴更近,分a>0和a<0两种情况讨论即可;(3)分别求出a+b=1,a-b-2=0,联立方程组求解即可.【详解】解:(1)∵二次函数y =ax 2+bx ﹣2(a≠0)的图像过A (4,0),B (-1,0)∴1642020a b a b +-=⎧⎨--=⎩ 解得,1=23=2a b ⎧⎪⎪⎨⎪-⎪⎩∴13122a b +=-=- (2)∵Q (m ,n ),N (3﹣m ,n ),∴二次函数图象的对称轴为3322m m +-= ∵P (1,y 1),M (3,y 2),∴点P 距离对称轴更近若a >0,则y 1<y 2;若a <0,则y 1>y 2; (3)由题意知,∵图像的顶点在第四象限,∴对称轴2b x a=->0 ∵B (﹣1,0),∴A 点横坐标大于1 当x=1时,y=a+b-2<0∴0<a+b <2∵a +b 为整数∴a +b =1又∵B (﹣1,0),∴a-b-2=0联立120a b a b +=⎧⎨--=⎩解得,32a = 【点睛】本题为二次函数综合题,主要考查了待定系数法求函数的解析式,以及二次函数的性质. 22.(1)点B 的坐标是()1,3;(2)251366y x x =+;(3)1 235=AB B S △. 【分析】(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .证明()OEB AAS ADO ≌△△,利用三角形全等的性质可得1OE AD ==,3==BE OD ,从而可得答案;(2) 设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,把()()()3,1,0,0,1,3,A O B -代入解析式,利用待定系数法列方程组解方程组可得答案;(3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥ 先求解抛物线的对称轴1313651026x =-=-⨯,1,B B 关于l 对称,再求解1,,BB AM 利用三角形的面积公式可得答案. 【详解】解(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .∴ 90,ADO BEO ∠=∠=︒90AOD DAO ∠+∠=︒,()3,1,A -3,1,OD AD ∴==∵90AOB ∠=︒, ∴90AOD BOE ∠+∠=︒. ∴DAO BOE ∠=∠. 在Rt AOD 和Rt OBE 中,90ADO BEO DAO BOEAO BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()OEB AAS ADO ≌△△. ∴1OE AD ==,3==BE OD∴ 点B 的坐标是()1,3.(2)()()()3,1,0,0,1,3,A O B -设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,∴ 39310a b c a b c c ++=⎧⎪-+=⎨⎪=⎩. ∴56136a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.过点A ,O ,B 的抛物线的函数表达式为251366y x x =+. (3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥251366y x x =+的对称轴1313651026x =-=-⨯. 1,B B 关于l 对称,()()1,3,3,1,B A - 1132321,105BB ⎛⎫∴=⨯+= ⎪⎝⎭ ()33M -,,312,AM ∴=-= ∴ 1123232255AB BS=⨯⨯=. 【点睛】本题考查的是图形与坐标,三角形全等的判定与性质,利用待定系数法求解二次函数的解析式,二次函数的性质,掌握以上知识是解题的关键.23.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x >(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可. 【详解】解:(1)∵抛物线的顶点坐标是()1,4-, 设抛物线的解析式为()214y a x =++, 抛物线()214y a x =++过点(0,3),4=3a +,1a =-,抛物线的解析式为()214y x =-++; (2)列表: x … -3 -2 -1 0 1 … y …343…0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧, 当x<-3或x>1时,函数值小于0. 【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键. 24.1直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【详解】解:原式=1+3﹣2×3 2=1+3﹣3=1.【点睛】本题主要考查了实数的混合运算,结合特殊角三角函数中、零指数幂计算是解题的关键.25.(1)22;(2)点P的坐标为(0,3)或(0,83).【分析】(1)证明∠AOB=45°,可得结论.(2)分两种情形,利用相似三角形的性质分别求解即可.【详解】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB2.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP′∽△AOB时,OAOA=OPOB,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,OAOB=OPOA,∴223=22, ∴OP =83, ∴P (0,83), 综上所述,满足条件的点P 的坐标为(0,3)或(0,83). 【点睛】本题考查相似三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 26.(1)12y x =-,223y x =-+;(2)9 【分析】(1)过点A 作AH ⊥x 轴于H 点,由4sin 5AHACE AO∠==,OA=5,根据正弦的定义可求出AH ,再根据勾股定理得到OH ,即得到A 点坐标(-3,4),把A (-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B (6,n )代入,确定点B 点坐标,然后把A 点和B 点坐标代入y=kx+b (k≠0),求出k 和b .(2)先令y=0,求出C 点坐标,得到OC 的长,然后根据AOBBOCAOC S SS=+计算△AOB 的面积即可. 【详解】解:(1)过A 作AH x ⊥轴交x 轴于H ,∴4sin 5AH ACE AO∠==,5OA =, ∴4AH =, ∴223OHOA AH ,∴()3,4A -, 将()3,4A -代入my x=,得12=-m ,∴反比例函数的解析式为12y x=-, 将()6,B n 代入12y x=-,得2n =-, ∴()6,2B -,将()3,4A -和()6,2B -分别代入()0y kx b k =+≠,得3462k b k b -+=⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩,∴直线解析式:223y x =-+; (2)在直线223y x =-+中,令0y =,则有2203x -+=,解得3x =,∴()3,0C ,即3OC =,∴13462AOC S =⨯⨯=△;同理3BOC S =△,则9AOB BOC AOC S S S =+=△△△. 【点睛】本题考查了反比例函数的综合运用.关键是作x 轴的垂线,解直角三角形求A 点坐标,用待定系数法求直线,双曲线的解析式.。
济南市2021年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)电冰箱的冷藏室温度是5℃,冷冻室温度是﹣2℃,则电冰箱冷藏室比冷冻室温度高()A . 3℃B . 7℃C . ﹣7℃D . ﹣3℃2. (2分) (2018九上·嵩县期末) sin245°﹣3tan230°+4cos260°的值是()A . 0B .C . 2D . 33. (2分)下列说法正确的是:① 对角线互相垂直且相等的平行四边形是正方形② 平行四边形、矩形、等边三角形、正方形既是中心对称图形,也是轴对称图形。
③ 旋转和平移都不改变图形的形状和大小④ 底角是45°的等腰梯形,高是h,则腰长是。
A . ①②③④B . ①②④C . ①②③D . ①③④4. (2分) (2017七下·东明期中) 原子很小,1010个氧原子首位连接排成一行的长度为1m,则每一个氧原子的直径为()A . 10﹣7mB . 10﹣8mC . 10﹣9mD . 10﹣10m5. (2分)如图是一个六角螺栓,它的主视图和俯视图都正确的是()A .B .C .D .6. (2分)已知,则有()A .B .C .D .7. (2分)化简的结果为()A . ﹣x﹣yB . y﹣xC . x﹣yD . x+y8. (2分) (2020八上·南召期末) 如图,在△ABC中,AB=6,AC=4,∠ABC和∠A CB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A . 10B . 6C . 4D . 不确定9. (2分) (2019八上·顺德月考) 下面是二元一次方程2x﹣y=1的解的是()A .B .C .D .10. (2分) (2017八下·丰台期中) 如图,矩形ABCD中,对角线AC、BD相交于点O,E、F分别是边BC、AD 的中点,AB=2,BC=4,一动点P从点B出发,沿着B—A—D—C的方向在矩形的边上运动,运动到点C停止.点M为图1中的某个定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.那么,点M的位置可能是图1中的()A . 点 CB . 点EC . 点FD . 点O11. (2分)若反比例函数y=的图象上有两点P1(1,y1)和P2(2,y2),那么()A . y1>y2>0B . y2>y2>0C . y1<y2<0D . y2<y1<012. (2分) (2020九上·邓州期末) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中结论正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题: (共6题;共16分)13. (1分)计算(﹣4×103)2×(﹣2×103)3=________(用科学记数法表示)14. (1分) (2016八下·微山期末) 已知直线y=x+2经过点(a﹣2,3b),那么的值等于________.15. (1分)一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________ 尾.16. (2分) (2017八上·西湖期中) 命题“等腰三角形底边上的高线和中线互相重合”的逆命题是________,它是________命题(填“真”或“假”).17. (1分)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC上一点,且BM=9cm,点E从点A 出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t,则当以A、M、E、F为顶点的四边形是平行四边形时,t=________.18. (10分)(2016·嘉善模拟) 如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2 .(2)求点C1在旋转过程中所经过的路径长.三、解答题: (共7题;共62分)19. (5分)解不等式组,并将解集在数轴上表示出来.20. (10分)(2017·湖州模拟) 3月5日是学雷锋日,某校组织了以“向雷锋同志学习”为主题的小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以下信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?21. (10分) (2018·扬州模拟) 如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC= ,AC=6,求⊙O的直径.22. (5分)(2017·海口模拟) 如图,某教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面夹角是45°时,教学楼顶部A在地面上的影子F与墙角C的距离为18m(B、F、C在同一直线上).求教学楼AB的高;(结果保留整数)(参考数据:sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)23. (10分)为提高学校的机房条件,学校决定新购进一批电脑,经了解某电脑公司有甲、乙两种型号的电脑销售.已知甲电脑的售价比乙电脑高1000元,如果购买相同数量的甲、乙两种型号的电脑,甲所需费用为10万元,乙所需费用为8万元.(1)问甲、乙两种型号的电脑每台售价各多少元?(2)学校决定购买甲、乙两种型号的电脑共100台,且购买乙型号电脑的台数超过甲型号电脑的台数,但不多于甲型号电脑台数的4倍,则当购买甲、乙两种型号的电脑各多少台时,学校需要的总费用最少?并求出最少的费用.24. (10分)(2018·仙桃) 如图,在平面直角坐标系中,直线y=﹣ x与反比例函数y= (k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣ x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.25. (12分)(2012·苏州) 如图,已知抛物线y= x2﹣(b+1)x+ (b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为________,点C的坐标为________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共16分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题: (共7题;共62分) 19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、。
一、选择题1.以原点为中心,将点P(3,4)旋转90°,得到的点Q所在的象限为()A.第二象限B.第三象限C.第四象限D.第二或第四象限2.“保护生态,人人有责”.下列生态环保标志中,是中心对称图形的是()A.B.C.D.3.如图,正方形ABCD的边长为1,将其绕顶点C旋转,得到正方形CEFG,在旋转过程中,则线段AE的最小值为()A.32-B.2-1 C.0.5 D.51 2 -4.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF于点H,则∠DHE的大小为 ()A.90°B.95°C.100°D.105°5.如图,将△ABC 绕顶点C 旋转得到△A B C '', 且点B 刚好落在A B ''上,若∠A =35°,∠BCA '=40°,则∠A BA '等于( )A .45°B .40°C .35°D .30° 6.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A .正方形B .矩形C .菱形D .矩形或菱形7.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小8.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 9.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<10.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>11.下列方程属于一元二次方程的是( ) A .222-=x x xB .215x x+=C .220++=ax bx cD .223x x +=12.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( ) A .(1)81x x x ++= B .2181x x ++= C .1(1)81x x x +++=D .(1)81x x += 13.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6 C .8 D .9 14.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0二、填空题15.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.16.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.17.方程2350x x -=的一次项系数是______.18.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 19.已知函数2y mx m m =++为正比例函数,则常数m 的值为______. 20.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)三、解答题21.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △; (3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标. 22.如图,在平面直角坐标系中,已知点()4,2A,()4,0B .(1)画出将OAB 绕原点逆时针旋转90°得到的11OA B ; (2)直接写出A 的对应点1A ( , ),B 的对应点1B ( , ); (3)若点A ,1A 关于某点中心对称,则对称中心的坐标为______. 23.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表:x… -4 -3 -2 -1 0 1 … y…-5343…(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.24.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 25.已知关于x 的一元二次方程22210x k x k +++=()有两个不相等的实数根. (1)求k 的取值范围;(2)设方程的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.26.解方程:22350x x --= (请用两种方法解方程)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据旋转的性质,以原点为中心,将点P (3,4)旋转90°,分两种情况讨论即可得到点Q 所在的象限. 【详解】如图,点P (3,4)按逆时针方向旋转90°,得到点1Q , 按顺时针方向旋转90°,得到点2Q ,得点Q所在的象限为第二、四象限.故选:D.【点睛】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.注意分类讨论.2.D解析:D【分析】根据中心对称图形的定义对各选项分析判断即可得解.【详解】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.B解析:B【分析】分析题易可知点E的运动轨迹是以DC为半径以C为圆心的圆,当A,E,C三点共线且E 在正方形ABCD内部的时候AE值最小.【详解】解:如图所示,连接AC∵正方形边长为1 ∴2当A ,E ,C 三点共线且E 在正方形ABCD 内部的时候AE 值最小 ∴2-1 故选:B4.C解析:C 【分析】直接根据四边形AEHB 的四个内角和为360°即可求解. 【详解】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG , ∴∠BAE =35°,∠E =90°,∠ABD =45°, ∴∠ABH =135°,∴∠DHE =360°-∠E -∠BAE -∠ABH =360°-90°-35°-135°=100°. 故选C . 【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.5.D解析:D 【分析】由旋转的性质可得出35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,由已知条件结合三角形外角的性质求出B BC '∠的度数,即可得出ABC ∠的度数,即可得出A BA '∠的度数. 【详解】由旋转的性质可得:35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,∴B BC B ''∠=∠,40BCA '∠=︒,∴75B A C BCA B '''∠=∠+∠=︒, ∴75B '∠=︒,∴75ABC B '∠=∠=︒,∴180757530A BA '∠=︒-︒-︒=︒.故选:D . 【点睛】本题主要考查三角形外角的性质以及旋转的性质,根据三角形外角的性质以及旋转的性质求出对应角的度数是解题关键.6.D解析:D 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴; 矩形是轴对称图形,也是中心对称图形,有2条对称轴; 菱形是轴对称图形,也是中心对称图形,有2条对称轴. 故选D . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.8.C解析:C 【分析】依据二次函数的增减性分1≤h≤3、h <1、h >3三种情况,由函数的最小值列出关于h 的方程,解之可得. 【详解】∵()2=+3y x h -中a=1>0,∴当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大; ①若1≤h≤3,则当x=h 时,函数取得最小值2h ,即3=2h , 解得:h=32; ②若h <1,则在1≤x≤3范围内,x=1时,函数取得最小值2h , 即()2132h h -+=, 解得:h=2>1(舍去);③若h >3,则在1≤x≤3范围内,x=3时,函数取得最小值2h , 即()2332h h -+=, 解得:h=2(舍)或h=6, 综上,h 的值为32或6, 故选C . 【点睛】本题主要考查二次函数的最值,熟练掌握分类讨论思想和二次函数的增减性是解题的关键.9.B解析:B 【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B . 【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.10.C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5, ∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.11.D解析:D 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可. 【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误; C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误; D 223x x +=符合一元二次方程的定义,故D 正确; 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.12.C解析:C 【分析】平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解. 【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得, x+1+(x+1)x=81故选:C .【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解. 13.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.14.A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.二、填空题15.【分析】由题意得当y=0时则有的两个根为进而根据同解方程可进行求解【详解】解:∵抛物线y =ax2+bx+c 经过点A (﹣30)B (40)两点∴当y=0时则有的两个根为∴的解为:或解得:;故答案为【点睛解析:121,6x x =-=【分析】由题意得当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,进而根据同解方程可进行求解.【详解】解:∵抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,∴当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,∴()2220a x bx b c -+-+=的解为:23x -=-或24x -=, 解得:121,6x x =-=;故答案为121,6x x =-=.【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数与一元二次方程的关系是解题的关键.16.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则 解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.17.-5【分析】根据一元二次方程的一般形式解答【详解】解:方程的一次项是其系数是故答案是:【点睛】本题考查一元二次方程的一般式解题的关键是掌握一次项系数的定义解析:-5【分析】根据一元二次方程的一般形式解答.【详解】解:方程2350x x -=的一次项是5x -,其系数是5-.故答案是:5-.【点睛】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.18.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.20.【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】 解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.三、解答题21.(1)图见解析,()12,2A ,()10,1B-;(2)图见解析;(3)(0,2)-. 【分析】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示:设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C ,202222a b -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩, 1(2,2)A ∴,同理可得:1(0,1)B -;(2)()()2,62,2,2A A ---,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示:(3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B --,0013(,)22P +--∴,即(0,2)P -, 故旋转中心的坐标为(0,2)-.【点睛】本题考查了画旋转图形和平移图形、求旋转中心的坐标,熟练掌握旋转图形和平移图形的画法是解题关键.22.(1)图见解析;(2)()12,4A -,()10,4B ;(3)()1,3. 【分析】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A O B 即可得;(2)根据绕原点逆时针旋转90︒的点坐标变换规律即可得;(3)根据中心对称的定义可得点A ,1A 的中心对称点为线段1AA 的中点,由此即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A O B 即可得11OA B ,如图所示:(2)绕原点逆时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将横坐标变为相反数,()()4,2,4,0A B ,()()112,4,4,0B A -∴,故答案为:()()112,4,0,4A B -;(3)由中心对称的定义得:点A ,1A 的中心对称点为线段1AA 的中点, 则对称中心的坐标为4224,22-+⎛⎫⎪⎝⎭,即()1,3, 故答案为:()1,3.【点睛】本题考查了画旋转图形、找中心对称点等知识点,熟练掌握旋转的性质是解题关键. 23.(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4, 把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.24.(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-成本价”即可得;(2)结合(1)的结论,根据“这款洗手液的日销售利润y 达到300元”可建立关于x 的一元二次方程,再解方程即可得;(3)根据“每天的利润=(每瓶的售价-每瓶的成本价)⨯每天的销售量”可得y 与x 的函数关系式,再利用二次函数的性质求最值即可得.【详解】(1)由题意得:当销售单价上涨x 元时,每天销售量会减少5x 瓶,则每天的销售量为()605x -瓶,每瓶洗手液的利润是20164x x +-=+(元),故答案为:()605x -,()4x +;(2)由题意得:()()6054300x x -+=,解得16x =,22x =,答:销售单价应上涨2元或6元;(3)由题意得:(605)(4)y x x =-+,化成顶点式为25(4)320x y =--+,由二次函数的性质可知,当4x =时,y 取得最大值,最大值为320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【点睛】本题考查了一元二次方程的应用、二次函数的应用,依据题意,正确建立方程和函数关系式是解题关键.25.(1)14k >-;(2)7 【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)根据一元二次方程根与系数的关系可求解.【详解】(1)∵一元二次方程有两个不相等的实数根,∴()2221410k k +-⨯⨯>,解得14k >-; (2)当1k =时,原方程为2310x x ++=,∵1x ,2x 是方程的根,∴123x x +=-,121=x x ,∴()22212121227x x x x x x +=+-=. 【点睛】本题主要考查一元二次方程根的判别式及韦达定理,熟练掌握一元二次方程根的判别式及韦达定理是解题的关键.26.152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴34x ±=, ∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.。
山东省济南市2021版数学中考一模试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各组数中,互为相反数的是()A . 2与B . (-1)2与1C . -1与(-1)3D . -(-2)与2. (2分)首都北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为A .B .C .D .3. (2分)下列各数中,互为相反数的是()A . ﹣(﹣2)与﹣(+2)B . +(﹣5)与﹣|﹣5|C . |﹣3|与|+3|D . |a|与|﹣a|4. (2分)将一副三角板按如图所示摆放,图中∠α的度数是()A . 75°B . 90°C . 105°D . 120°5. (2分)如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为()A . y=﹣ xB . y=﹣C . y=﹣D . y=﹣x6. (2分)甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:甲乙丙丁8998S2 1.21 1.21若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A . 甲B . 乙C . 丙D . 丁7. (2分)由若干个小立方体叠成的几何体的三视图如图,这个几何体共有小立方体()A . 4个B . 5个C . 6个D . 3个8. (2分) (2016七上·莘县期末) 下列说法正确的个数是()⑴射线AB和射线BA是一条射线⑵两点之间的连线中直线最短⑶若AP=BP,则P是线段AB的中点⑷经过任意三点可画出1条或3条直线.A . 1个B . 2个C . 3个D . 4个9. (2分)下列函数关系中,属于正比例函数关系的是()A . 圆的面积与它的半径B . 面积为常数S时矩形的长y与宽xC . 路程是常数时,行驶的速度v与时间tD . 三角形的底边是常数a时它的面积S与这条边上的高h10. (2分) (2016七上·遵义期末) 观察下列算式:71=7,72=49,73=343,74=2401,….根据上述算式中的规律,你认为72006的个位数字是()A . 7B . 9C . 3D . 1二、填空题 (共8题;共8分)11. (1分)(2017·南岗模拟) 函数y= 中自变量x的取值范围是________.12. (1分)(2017·德惠模拟) 分解因式:x3﹣4x=________.13. (1分)一元二次方程x2﹣6x+1=0的根为________14. (1分) (2019九上·无锡期中) 如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为________15. (1分) (2017九上·上杭期末) 在半径为6的⊙O中,120°的圆心角所对的弧长是________.16. (1分)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是________ .17. (1分)已知:正方形ABCD,AB=,点P满足PD=1,且∠BPD=90°,过点A作AM⊥BP,垂足为点M,则AM的长为________ .18. (1分)(2014·南宁) 如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于________海里.三、解答题 (共8题;共68分)19. (10分) (2019九上·鄂州期末) 反比例函数y= (k为常数,且k≠0)的图象经过点A(1,3)、B (3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.20. (8分)(2017·海口模拟) 某机构对2016年微信用户的职业颁布进行了随机抽样调查(职业说明:A:党政机关、军队,B:事业单位,C:企业,D:自由职业及人体户,E:学生,F:其他),图1和图2是根据调查数据绘制而成的不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该机构共抽查微信用户________人;(2)在图1中,补全条形统计图;(3)在图2中,“D”用户所对应扇形的圆心角度数为________度;(4) 2016年微信用户约有7.5亿人,估计“E”用户大约有________亿人.21. (5分) (2017九上·宁江期末) 某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少?22. (5分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.23. (5分)在Rt△ABC中,∠C=90°,sin A的值是方程2x2-5x+2=0的一个根,求sin A的值.24. (5分) (2016九上·滁州期中) 如果二次函数y=x2﹣x+c的图象过点(1,2),求这个二次函数的解析式,并求出该函数图象的顶点坐标.25. (15分) (2019九上·海淀期中) 如图,在等腰△ABC中,AB=AC,,将点C关于直线AB对称得到点D,作射线BD与CA的延长线交于点E,在CB的延长线上取点F,使得BF=DE,连接AF.备用图(1)依题意补全图形;(2)求证:AF=AE;(3)作BA的延长线与FD的延长线交于点P,写出一个∠ACB的值,使得AP=AF成立,并证明.26. (15分)在直线m上找出满足下列条件的点P.请保留作图痕迹,其中第(2)小题用尺规作图.(1)点P到A、B距离之和最小时的位置;(2)点P到A、B距离相等时的位置;(3)点P到A、B的距离之差最大时P的位置.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共68分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、22-1、23-1、24-1、25-1、25-2、25-3、26-1、26-2、26-3、第11 页共11 页。
一、选择题1.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 2.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .83.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③ 4.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③ 5.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD =C .CPO DPO ∠=∠D .PC PE =6.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°7.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 8.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OBB .AC =BC C .∠A =∠BD .∠1=∠2 9.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 10.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 11.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .10 12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.15.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).16.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.17.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.18.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .19.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.20.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .三、解答题21.如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠CBE =150°,∠ACE =60°.(1)求∠ADC 的度数.(2)判断△ACE 的形状并加以证明.(3)连接DE ,若DE ⊥CD ,AD =1,求DE 的长.22.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .23.如图,在ABC ∆中,90,C ∠=︒点D 在BC 上,过点D 作DE AB ⊥于点,E 点F 是AC 边上一点,连接DF .若,BD DF CF EB ==,求证:AD 平分BAC ∠.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.25.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.26.如图1,已知ACD ∠是ABC 的一个外角,我们容易证明ACD A B ∠=∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠_______180A ∠+︒(横线上填“>”、“<”或“=”).初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠=_______.(3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请尝试证明.(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论直接写出P ∠与A ∠、D ∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A 、全等三角形的对应边相等,是真命题;B 、面积相等的两个三角形不一定全等,原命题是假命题;C 、两个全等三角形不一定成轴对称,原命题是假命题;D 、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A .【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.2.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.3.C解析:C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.A解析:A【分析】由90BAE FAC ∠+∠=︒,90ACD FAC ,得出BAE ACD ∠=∠,①正确;由ASA 证明ADC BEA ∆≅∆,②正确;由AC AB AF ,得出③不正确;由全等三角形的性质得出AD BE =,由AD BD =,得出BE BD =,45BDE EDC ,④不正确;由等腰直角三角形的三线合一性质得出⑤正确;即可得出结论.【详解】90BAC ∠=︒,45ACB ∠=︒,ABC ∴是等腰直角三角形,90BAE FAC ∠+∠=︒,AB AC ∴=,45CBA ACB ,AF CD ⊥,90AHC ∴∠=︒,90ACD FAC ,BAE ACD ∴∠=∠,①正确;//BE AC ,180ABE BAC ,90ABE ∴∠=︒,在ADC ∆和BEA ∆中,90CADABE ACAB ACD BAE()ADCBEA ASA ,②正确; AC AB AF ,∴③不正确; ADC BEA , AD BE ∴=,点D 是AB 中点,AD BD ∴=,BE BD ∴=,45BDE EDC ,④不正确; 90ABE ∠=︒,BE BD =,45CBA ∠=︒, 45EBP ,即BP 平分ABE ∠,△BDE 为等腰直角三角形,∴根据“三线合一”可得BC ⊥DE ,⑤正确.故选:A .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟悉相关性质是解题的关键.5.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.6.B解析:B【分析】根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF , ∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 7.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;题意已知:∠A=∠D,∠B=∠E,∴①根据“ASA”可添加AB=DE,故①正确;②根据“AAS” 可添加AC=DF,故②正确;③根据“AAS” 可添加BC=EF,故③错误;④根据“ASA”可添加AB=DE,故④错误;所以补充①②可判定两三角形全等;故选:A.【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;8.B解析:B【分析】根据题意可以得到∠AOC=∠BOC,OC=OC,然后即可判断各个选项中条件是否能判定△AOC≌△BOC,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC,OC=OC,∴若添加条件OA=OB,则△AOC≌△BOC(SAS),故选项A不符合题意;若添加条件AC=BC,则无法判断△AOC≌△BOC,故选项B符合题意;若添加条件∠A=∠B,则△AOC≌△BOC(AAS),故选项C不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO,则△AOC≌△BOC(ASA),故选项D不符合题意;故选:B.【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.9.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.10.A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A 、15+8=23>20,能组成三角形,符合题意;B 、7+8=15,不能组成三角形,不合题意;C 、5+8=13<15,不能组成三角形,不合题意;D 、2+8=10<15,不能组成三角形,不合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.11.C解析:C【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可.【详解】解:三角形的两条边长为3和7,设第三边为x ,则第三边的取值范围是:7-3<x <7+3,解得,4<x <10,故选:C .【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键. 12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)-关于y 轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P 1(0,2),完成2次图形变换,点P 1 (0,2)关于y 轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P 2(-2,1),完成3次图形变换,点P 2(-2,1)关于y 轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P 3(0,0),完成4次图形变换,点P 3(0,0)关于y 轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P 4(-2,-1),……,完成2020次图形变换,点P 2019(0,3-2019)关于y 轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P 2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化 解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 15.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.2【分析】先证明△AED ≌△ACD 得到AE=AC=3最后根据线段的和差即可解答【详解】解:∵∠C=90°DE ⊥AB ∴△AED 和△ACD 都是直角三角形在Rt △AED 和Rt △ACD 中DE=DCAD=AD解析:2【分析】先证明△AED ≌△ACD 得到AE=AC=3,最后根据线段的和差即可解答.【详解】解:∵∠C =90°,DE ⊥AB ,∴△AED 和△ACD 都是直角三角形,在Rt △AED 和Rt △ACD 中,DE=DC,AD=AD ,∴△AED ≌△ACD (HL ),∴AE=AC=3,∴BE=AB-AC=5-3=2.故填:2.【点睛】本题主要考查了全等三角形的判定与性质,掌握运用HL 证明三角形全等是解答本题的关键.17.15【分析】过点E 作EM ⊥AC 于MEN ⊥AD 于NEF ⊥BC 于H 如图先计算出∠EAM=75°则AE 平分∠EAD 根据角平分线的性质得EM=EN 再由CE 平分∠ACB 得到EM=EH 则EN=EH 于是根据角平分解析:15【分析】过点E 作EM ⊥AC 于M ,EN ⊥AD 于N ,EF ⊥BC 于H ,如图,先计算出∠EAM=75°,则AE 平分∠EAD ,根据角平分线的性质得EM=EN ,再由CE 平分∠ACB 得到EM=EH ,则EN=EH ,于是根据角平分线定理的逆定理可判断DE 平分∠ADB ,则∠1=12∠ADB ,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+12∠ACB ,∠ADB=∠DAC+∠ACB ,所以∠DEC==12∠DAC=15°. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图.∵ 30DAC ∠=,75DAB ∠=,∴ 75EAM ∠=,∴ AE 平分MAD ∠,∴ EM EN =.∵ CE 平分ACB ∠,∴ EM EH =,∴ EN EH =,∴ DE 平分ADB ∠,∴112ADB ∠=∠. ∵ 12DEC ∠=∠+∠,而122ACB ∠=∠,∴ 112DEC ACB ∠=∠+∠,而ADB DAC ACB ∠=∠+∠,∴ 11301522DEC DAC ∠=∠=⨯= .故答案为:15.【点睛】 本题考查了平分线的性质和三角形外角的性质,掌握性质是解题的关键.18.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线解析:12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵ F 是CE 的中点,23AEF S cm ∆=∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆= , ∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.19.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC 解析:32【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC ,∴S △ABD =S △ADC =12×6=3(cm 2), ∵AE=DE ,∴S △AEB =S △AEC =12×3=32(cm 2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.10【分析】依据AE是△ABC的边BC上的中线可得CE=BE再根据AE=AE△ACE的周长比△AEB的周长多2cm即可得到AC的长【详解】解:∵AE 是△ABC的边BC上的中线∴CE=BE又∵AE=A解析:10【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.三、解答题21.(1)150°;(2)等边三角形,见解析;(3)2【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,DB=DC,再证明△ADB≌△ADC,推出∠ADB=∠ADC即可解决问题;(2)利用ASA证明△ACD≌△ECB得到AC=CE,结合∠ACE=60°可得△ACE是等边三角形;(3)首先证明△DEB是含有30度角的直角三角形,求出EB与DE的关系,利用全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形.∴DB=DC,∠BDC=∠DBC=∠DCB=60°.在△ADB和△ADC中,∵AC=AB AD=AD DC=DB ⎧⎪⎨⎪⎩,∴△ADC≌△ADB(SSS).∴∠ADC=∠ADB.∴∠ADC=12(360°﹣60°)=150°.(2)解:△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC═150°,∴∠ADC=∠EBC.在△ACD和△ECB中,∵ACD=ECB CD=CBADC=EBC ∠∠⎧⎪⎨⎪∠∠⎩,∴△ACD≌△ECB(ASA).∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)解:连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=60°,∴∠EDB=30°.∵∠CBE=150°,∠DBC=60°,∴∠DBE=90°.∴EB=12DE.∵△ACD≌△ECB,AD=1,∴EB =AD =1,∴DE =2EB =2.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型. 22.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ). ∴P 1的坐标是(﹣a ﹣4,b ).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,23.证明见解析【分析】由已知可得RT △DCF ≌RT △DEB ,从而得到DC=DE ,又由已知可得DC ⊥AC ,DE ⊥AB ,所以由角平分线的判定定理即可得解.【详解】证明:由题意可得,在Rt DCF ∆和Rt DEB ∆中,CF EB BD DF =⎧⎨=⎩Rt DCF Rt DEB ∴∆≅∆,DC DE ∴=90,C ∠=︒,DC AC ∴⊥,DE AB ⊥AD ∴平分BAC ∠.【点睛】本题考查角平分线与直角三角形的综合运用,熟练掌握角平分线的判定与直角三角形的判定和性质是解题关键.24.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.23°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠CAD 的度数,在△ACD 中,利用三角形外角定理可求出∠CDP 的度数,结合PE BC ⊥即90PED ∠=︒及三角形外角定理,从而得出P CDP PED ∠=∠-∠即可求得∠P 的度数.【详解】解:在ABC 中,70C ∠=︒,24B ∠=︒,∴180702486BAC ∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴43CAD ∠=︒,∴4370113CDP CAD C ∠=∠+∠=︒+︒=︒,∵PE BC ⊥,即90PED ∠=︒,∴1139023P CDP PED ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形外角定理、角平分线的定义,利用三角形外角定理及角平分线的定义,求出∠CDP 的度数是解题的关键.26.(1)= (2) 45° (3)1902P A ∠=︒-∠;证明见解析 (4)1118022P A D ∠=︒-∠-∠ 【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1−∠C =180°,将∠1=135°代入可得结论; (3)根据角平分线的定义得:∠CBP =12∠DBC ,∠BCP =12∠ECB ,根据三角形内角和可得:∠P 的式子,代入(1)中得的结论:∠DBC +∠ECB =180°+∠A ,可得:∠P =90°−12∠A ; (4)根据平角的定义得:∠EBC =180°−∠1,∠FCB =180°−∠2,由角平分线得:∠3=12∠EBC =90°−12∠1,∠4=12∠FCB =90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【详解】(1)∠DBC +∠ECB−∠A =180°,理由是:∵∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,∴∠DBC +∠ECB =2∠A +∠ACB +∠ABC =180°+∠A ,∴∠DBC +∠ECB =∠A +180°,故答案为:=;(2)∠2−∠C =45°.理由是:∵∠2+∠1−∠C =180°,∠1=135°,∴∠2−∠C +135°=180°,∴∠2−∠C =45°.故答案为:45°;(3)∠P =90°−12∠A , 理由是:∵BP 平分∠DBC ,CP 平分∠ECB ,∴∠CBP =12∠DBC ,∠BCP =12∠ECB , ∵△BPC 中,∠P =180°−∠CBP−∠BCP =180°−12(∠DBC +∠ECB ), ∵∠DBC +∠ECB =180°+∠A ,∴∠P=180°−12(180°+∠A)=90°−12∠A;(4)∠P=180°−12(∠A+∠D).理由是:如图:∵∠EBC=180°−∠1,∠FCB=180°−∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,∴∠3+∠4=180°−12(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°−(∠A+∠D),又∵△PBC中,∠P=180°−(∠3+∠4)=12(∠1+∠2),∴∠P=12×[360°−(∠A+∠D)]=180°−12(∠A+∠D).【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
济南市2021年中考数学一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分) 2013年4月20日8时2分四川省雅安市芦山县发生7.0级地震, 据初步估计,此次地震造成的直接经济损失大约为422.6亿,这也是国内近年来损失最大的一次自然灾害.若把其中数422.6亿用科学记数法表示是().A .B .C .D .2. (2分) (2020八下·扬州期中) 实数在数轴上的位置如图所示,则化简结果为()A . 7B . -7C .D . 无法确定3. (2分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为()A .B .C .D .4. (2分)已知一组数据10,8,9,x,4的众数是8,那么这组数据的中位数是()A . 4B . 8C . 9D . 105. (2分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A . 30°B . 25°C . 20°D . 15°6. (2分) (2020七上·莲湖期末) 在下列几何体中,从正面看到的平面图形为三角形的是()A .B .C .D .7. (2分)(2016·南岗模拟) 下列图案既不是轴对称图形又不是中心对称图形的是()A .B .C .D .8. (2分)(2019·通辽) 现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2020八上·历下期末) 某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A . 九折B . 八折C . 七折D . 六折10. (2分)如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A . 0B .C . 1D .二、填空题 (共6题;共7分)11. (1分)(2020·丹东) 因式分解: ________.12. (2分)(2015·杭州) 函数y=x2+2x+1,当y=0时,x=________;当1<x<2时,y随x的增大而________(填写“增大”或“减小”).13. (1分)(2013·绵阳) 已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3 x+8=0,则△ABC 的周长是________.14. (1分) (2017八上·乌拉特前旗期末) 若一个多边形的各边均相等,周长为70,且内角和为1440°,则它的边长是________.15. (1分) (2020七下·思明月考) 为了估计一个鱼塘里鱼的数量,第一次打捞上来20条,做上记号放入水中,第二次打捞上来25条,其中4条有记号,鱼塘大约有鱼________条.16. (1分)(2017·渝中模拟) 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=4,则阴影部分的面积为________.三、解答题 (共13题;共145分)17. (5分) (2017七下·阜阳期末) 计算:18. (10分)(2019·柯桥模拟)(1)计算:;(2)解不等式:3(x-1)>2x+2.19. (5分) (2016九上·淮安期末) 先化简,再求值:(1+ )÷ ,其中a=4.20. (5分)如图:△ABC中,DE是BC边的垂直平分线,垂足为E,AD平分∠BAC且MD⊥AB,DN⊥AC延长线于N.求证:BM=CN.21. (15分)(2020·四川模拟) 如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B 重合),过点F的反比例函数y=(x>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该反比例函数的解析式和点E的坐标.(2)设过(1)中的直线EF的解析式为y=ax+b,直接写出不等式ax+b<的解集.(3)当k为何值时,△AEF的面积最大,最大面积是多少?22. (5分)学校集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.则大、小车每辆的租车费各是多少元?23. (10分)如图,在矩形ABCD中,DE⊥AC于E,,AB=3,(1)求AD的值;(2)直接写出的值24. (15分) (2013·泰州) 保障房建设是民心工程,某市从2008年开始加快保障房建设进程,现统计了该市2008年到2012年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽说法正确吗?请说明理由;(2)求补全条形统计图;(3)求这5年平均每年新建保障房的套数.25. (15分)(2020·襄阳模拟) 由特殊到一般、类比、转化是数学学习和研究中经常用到的思想方法.下面是对一道几何题进行变式探究的思路,请你运用上述思想方法完成探究任务.问题情境:在四边形ABCD中,AC是对角线,E为边BC上一点,连接AE.以E为旋转中心,将线段AE顺时针旋转,旋转角与∠B相等,得到线段EF,连接CF.(1)特例分析:如图1,若四边形ABCD是正方形,求证:AC⊥CF;(2)拓展分析一:如图2,若四边形ABCD是菱形,探究下列问题:①当∠B=50°时,求∠ACF的度数;②针对图2的条件,写出一般的结论(不必证明);(3)拓展探究二:如图3,若四边形ABCD是矩形,且BC=k•AB(k>1).若前提条件不变,特例分析中得到的结论还成立吗?若成立,请证明;若不成立,修改题中的条件使结论成立(不必证明).26. (15分) (2019九下·河南月考) 在中,,,过点作直线,将绕点顺时针旋转得到(点的对应点分别为),射线分別交直线于点 .(1)如图,当与重合时,求的度数;(2)如图,设与的交点为,当为的中点时,求线段的长;(3)在旋转过程中,当点分别在的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.27. (15分)(2017·徐州模拟) 二次函数y=ax2+bx+4的图像与x轴交于两点A、B,与y轴交于点C,且A (﹣1,0)、B(4,0)(1)求此二次函数的表达式(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.28. (15分) (2016八上·蕲春期中) 已知,如图坐标平面内,A(﹣2,0),B(0,﹣4),AB⊥AC,AB=AC,△ABC经过平移后,得△A′B′C′,B点的对应点B′(6,0),A,C对应点分别为A′,C′.(1)求C点坐标;(2)直接写出A′,C′坐标,并在图(2)中画出△A′B′C′;(3) P为y轴负半轴一动点,以A′P为直角边以A’为直角顶点,在A′P右侧作等腰直角三角形A′PD.①试证明点D一定在x轴上;②若OP=3,求D点坐标.29. (15分)(2020·长宁模拟) 已知是的一条弦,点在上,联结并延长,交弦于点,且.(1)如图1,如果平分,求证:;(2)如图2,如果,求的值;(3)延长线段交弦于点,如果是等腰三角形,且的半径长等于,求弦的长.参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共145分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、29-1、29-2、29-3、第21 页共21 页。
九 年 级 第 一 次 模 拟 考 试 数 学 试 题 答 案 2021.4一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CABBACBDCCAD二、填空题13. x(x-3) . 14.. 15. 12 . 16.π16-332 . 17. ),(514459. 18.1或2. 19.(6分)解:︒+45sin 4-2021-80)( =224-122⨯+..................3分 =22-122+= 1 ................................6分20. (6分)解:解不等式①,得x >1; ..................2分 解不等式②,得 x <5; ..................4分 ∴原不等式组的解集为1<x <5. ..................5分 故它的所有整数解是x = 2,3,4....................6分21. (6分)证明:(1)∵四边形ABCD 是矩形,AF ⊥DE , ∴AD ∥BC ,AD =BC ,∠C =∠AFD =90°, ∴∠ADE =∠DEC ,.....................1分 ∵DE =BC ,AD =BC∴AD =DE , .....................2分在△ADF 和△DEC 中,,∴△ADF ≌△DEC (AAS ), ...............3分 ∴AF =CD , .....................4分 又∵矩形ABCD 中,AB =CD ................5分 ∴AF =AB ;...............................6分22.(8分)解:(1)本次问卷调查一共调查的学生数是:100÷50%=200(名).FBCDE故答案为:200;.....................2分(2)劳动的时间在3小时以上的人数有:200﹣60﹣100﹣30=10(名),补全统计图如下:.....................4分(3)D部分所对应的圆心角度数是360°×=18°;....................6分(4)根据题意得:1800×=360(名),答:估计全校有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)....8分23.(8分)解:(1)连接OC ,∵D是的中点,∴∠COD=∠AOD,∵OC = OA∴OF⊥AC,∴∠FAO +∠AOF=90°∵AE是⊙O的切线∴∠EAO=90°,∴∠F AO+∠CAE=90°,∴∠AOF = ∠CAE∵∠AOF=2∠C,∴∠CAE=2∠C;.....................4分(2)连接AD,∵D是的中点∴∠DAC=∠C,∵AB是⊙O的直径∴∠ADB=90°在Rt△ADH中,∴tan ∠DAC =tan C =, ∵DH =9, ∴AD =12,在Rt △BDA 中,∵tan B =tan C =, ∴sin B =, ∵AD =12∴AB =20. ...........................................................8分24.(1)解:设购买酒精x 瓶,消毒液y 瓶, .....................1分根据题意列方程组,得:⎩⎨⎧=-+-=+260%)201(5%)301(10350510y x y x .....................3分解得:. .....................4分答:每次购买的酒精和消毒液分别是20瓶,30瓶; .....................5分 (2)解:设能购买消毒液m 瓶,则能购买酒精2m 瓶, .....................6分 根据题意,得 10×(1﹣30%)•2m +5(1﹣20%)•m ≤200, .....................7分 解得:m ≤=11. .....................8分∵m 为正整数,∴符合题意的m 最大值是11. ............................9分 所以,最多能购买消毒液11瓶. ........................................10分25.解:(1)如图:∵矩形OABC 中,B (4,2),点D 在BC 上,BD = 23∴点, 将点的坐标代入中,解得:.∴所求反比例函数表达式为; ...................2分∵点F 在AB 上,设F(4,b) 又∵点F 在双曲线上,将x=4代入,得:45b,∴点.........................................4分(2)DF∥AC.........................................5分如图:由(1)得∵B(4,2),A(4,0),C(0,2),,∴AB=2,,BC=4,.∴,.∴.∵∠B=∠B,∴△BDF ∽△BCA,∴∠BDF=∠BCA.∴DF∥AC;....................................7分(3)存在,........................................8分①如图③-1,DM=DN,∠MDN=90°时∵,∴OC=2,CD=,如图,∵M点在反比例函数图象上,∴设M(m,),过M作MQ∥x轴,过N作NP∥x轴,过点D作y轴平行线,分别和MQ、NP交于点Q、P两点∴QD=﹣2,∵∠N DM=90°,∴∠N DP+∠M DQ=90°,∵∠N DP+∠DNP=90°,∴∠MDQ=∠DNP,∵∠MQD=∠DPN∵MD=ND∴△DMQ ≌△NDP , ∴Q D =NP , ∴- 2=解得:910=m . ∴M 1)29,910( ............................9分②如图③-2,MD=MN ,∠DMN=90°时 同理可得:M 2 )61,61(++-综上所述,符合条件的点M 有两个,分别是M 1)29,910( ,M 2 )61,61(++- ...........10分26.解:(1)如图①中,延长BD 交AE 的延长线于T ,BT 交AC 于O . ∵AB =AC ,∠BAC =60°, ∴△ACB 是等边三角形, ∴CA =CB ,∠ACB =60°,∵CD =BC ,CE =AC ,∠ECD =∠ACB =60°, ∴CD =CE ,∠BCD =∠ACE , ∴△BCD ≌△ACE (SAS ), ∴BD =AE ,∠CBD =∠CAE , ∴=1,∵∠BOC =∠AOT , ∴∠ATB =∠ACB =60°, ∴直线BD 、AE 所夹锐角为60°,故答案为1,60°. ................. .................4分(2)如图②中,设AC 交BD 于O ,AE 交BD 于T . ∵AB =AC ,∠BAC =90°, ∴△ACB 是等腰直角三角形, ∴CB =AC ,∠ACB =45°,∵CD =BC ,CE =AC ,∠ECD =∠ACB =45°,∴CD =CE ,∠BCD =∠ACE , ∴==,∴△BCD ∽△ACE , ∴22==BC AC BD AE ,∠CBD =∠CAE , ∵∠BOC =∠AOT , ∴∠ATB =∠ACB =45°,∴直线BD 、AE 所夹锐角为45°. ................. .................8分(3)①如图③﹣1中,当点D 落在线段AC 上时,作EH ⊥AC 于H . 由题意,DE =EC =,CD =DE =2,∵EH ⊥CD ,∠CED =90°,∴EH =DH =HC =CD =1,AC =2EC =2,∴AH =AC ﹣CH =2﹣1,在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣1)2+12=10﹣4②如图③﹣2中,当点D 在AC 的延长线上时, 同法可得AE 2=(2+1)2+12=10+4,综上所述,满足条件的AE 2的值为10±4 . ............12分27. 解:(1)将点B ,点C 的坐标分别代入二次函数y=ax 2+bx+2可得⎩⎨⎧=++=+-0241602b a b a ,解得⎪⎩⎪⎨⎧=-=2321b a ∴ 二次函数表达式为223212++-=x x y............................4分(2)设点N 的坐标为(n ,0)(﹣1<n <4),则BN =n +1,CN =4﹣n . ∵B (﹣1,0),C (4,0), ∴ BC = 5 在223212++-=x x y 中,令x =0,得y =2,∴点A (0,2),OA =2,∴S △ABN =BN •OA =(n +1)×2=n +1, ∵MN ∥AC , ∴54nBC NC AB AM -==, ∴==5-4n, ∴()()4523511451542+⎪⎭⎫ ⎝⎛--=+-=-=∆∆n n n S n S ABN AMN,∵﹣<0, ∴当n =23时,即N (23,0)时,△AMN 的面积最大; .......................8分(3)存在 .......................9分 如图,取点F(23,45),过点C 、N 、F 作圆,则点E(411,85)为圆心, ∵tan ∠NFC = 2∴弧NFC (N,C 除外)上的点都是满足条件的Q 点,连接BE 交圆E 于点Q ,Q 两点, 则线段BQ 长度即为满足条件的最小值,线段BQ 1长度为满足条件的最大值.此时BE=83758541522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛ , 圆E 的半径为855∴BQ 最小值 =855-8375. ......................11分 BQ 1最大值 =8558375+. ........ .............. ..................12分。
山东省济南市市中区中考数学一模试卷
一、选择题(本大题共15小题,每小题3分,共45分)
1.(3分)﹣2的绝对值等于()
A.﹣ B.C.﹣2 D.2
2.(3分)数字3300用科学记数法表示为()
A.0.33×104B.3.3×103C.3.3×104D.33×103
3.(3分)如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()
A.24°B.34°C.56°D.124°
4.(3分)若2(a+3)的值与4互为相反数,则a的值为()
A.B.﹣5 C.﹣ D.﹣1
5.(3分)如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()
A.B.C.D.
6.(3分)下列运算正确的是()
A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.(x3)4=x7D.2x2⋅x3=2x5
7.(3分)下面四个手机应用图标中是中心对称图形的是()
A.B.C.D.
8.(3分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的
次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()
A.4,5 B.5,4 C.4,4 D.5,5
9.(3分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF的位置,下面正确的平移步骤是()
A.先向左平移5个单位,再向下平移2个单位
B.先向右平移5个单位,再向下平移2个单位
C.先向左平移5个单位,再向上平移2个单位
D.先向右平移5个单位,再向下平移2个单位
10.(3分)化简÷是()
A.m B.﹣m C.D.﹣
11.(3分)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()
A.B. C.
D.
12.(3分)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C 作⊙O的切线交AB的延长线于点E,则sin∠E的值是()
A.B.C.D.
13.(3分)已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()
A.m>1 B.m<2 C.m>3 D.m>5
14.(3分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:
82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()
A.1 B.2 C.3 D.4
15.(3分)如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()
A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1
二、填空题(本大题共6小题,每小题3分,共18分)
16.(3分)因式分解:xy2﹣4x=.
17.(3分)计算﹣(﹣1)2=.
18.(3分)小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.
19.(3分)方程=的解是.
20.(3分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.
21.(3分)如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.
三、解答题(本大题共8小题,共57分)
22.(7分)(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=
(2)解不等式组,并把解集表示在数轴上.
23.(3分)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.
24.(4分)如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.
25.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
26.(8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
27.(9分)如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A 在第一象限,试回答下列问题:
(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;
(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.
①四边形APBQ一定是;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
28.(9分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.
29.(9分)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)请直接写出点D的坐标:;
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
2017年山东省济南市市中区中考数学一模试卷。