近红外光谱法
- 格式:ppt
- 大小:2.54 MB
- 文档页数:76
美、英、欧三部药典近红外光谱分析方法概述
周帼雄
【期刊名称】《中国药品标准》
【年(卷),期】2003(004)002
【摘要】@@ 近红外光谱法(Near Infrared Spectropho-tometry)是近年来受世界各国广为关注的一种药品分析方法.近红外光谱区波长范围为0.75~2.5μm,波数范围为13330~4000cm-1,分子在近红外区的吸收,主要是一些能量较低的电子跃迁,以及分子振动状态间的跃迁所产生的.由于频率较高,因此分子对其吸收主要是分子振动的信频吸收和合频吸收.
【总页数】2页(P6-7)
【作者】周帼雄
【作者单位】江苏省药品检验所,南京,210008
【正文语种】中文
【中图分类】R4
【相关文献】
1.中、美、英、欧药典制药用水微生物检查法对比研究 [J], 杨晓莉;李辉;绳金房
2.中、美、英、欧药典无菌检查用培养基促微生物生长能力对比研究 [J], 杨晓莉;李辉;杨静;绳金房
3.现行版中、美、英、欧、日五部药典中热原检查法比较 [J], 董培智;朴晋华;李波
4.美英欧药典微生物限度标准的浅析 [J], 苏德模;胡昌勤;马越
5.中美英欧四药典硼砂含量测定方法的比较 [J], 李步良;张倩;周平;赵翠;王伯涛
因版权原因,仅展示原文概要,查看原文内容请购买。
近红外光谱法在药物研发中的应用近红外光谱法是一种新型的分析方法,它基于近红外光谱产生的物理和化学效应,能够在无需化学试剂或样品制备的情况下进行非破坏性的药物分析。
在药物研发中应用这种方法可以提高研发效率,降低成本,是目前十分受欢迎的一项技术。
一、什么是近红外光谱法近红外光谱法是分析一种物质的分子结构和化学组成的一种方法。
它利用近红外光谱仪使用极短的光谱范围进行药物分析。
这种光谱由在波长范围接近于可见光的红色光和更长的波长的光组成,但比红光更波长。
它可以透过许多没有颜色的固体和液体,从而能够分析物质的成分。
近红外光谱法的优点在于不需要制备样品,也不需要加入剂量,因此可以在药物分析过程中节省时间和成本。
此外,近红外光谱法能够通过非破坏性的方式进行药物分析,避免了那些需要破坏样品或试剂的传统药物分析方法中可能引起的不确定性和损失。
二、近红外光谱法在药物研发中的应用1.药物的质量控制药物的质量控制非常重要,因为它直接关系到病人的安全和效果。
近红外光谱法可以在药物制造和发布的过程中进行非破坏性的检测,以确保药物质量的一致性和准确性。
这可以使药品制造商能够更具效率并且更加可靠地生产出具有稳定质量的药物。
2.药物结晶特性的研究药物的结晶特性在药物研发中非常关键。
药物结晶特性的研究可以帮助药物制造商更好地控制药物的性能,从而获得最好的生产效益。
近红外光谱法能够通过分析药物结晶特性的信息来得到关于药物颗粒性、形态、大小、晶型等多方面信息。
3.药物稳定性的研究药物的稳定性不但会影响其质量,还会对药物的成分和化学反应造成不利影响。
近红外光谱法可以对药物进行快速的稳定性研究,把握药物稳定性参数。
药品制造商通常将近红外光谱法用于快速稳定性检测,以监视药物在储存期间的质量变化。
4.药物研发的数据管理药物研发涉及到大量的数据和信息,因此需要一个巨大的数据库来保存和管理。
近红外光谱法可以帮助药物制造商收集药物质量、结构和性能相关的信息,并将其存储到数据库中用于后续药物研发的工作之中。
近红外反射光谱法-土壤性质的主成分回归分析摘要一个快速,便捷的土壤分析技术是需要土壤质量评价和精密的土壤管理。
本研究的主要目的是评估近红外反射光谱(NIRS)来预测不同土壤性质的能力。
从Perstrop近红外系统6500扫描单色仪(福斯NIRSystems,马里兰州Silver Spring),和33种化学、物理和生物化学特性得到近红外反射光谱,从四个主要土地资源收集区802土壤样品(MLRAs)进行了研究。
定标是基于在1300到2500nm光谱范围内使用光学密度一阶导数[log(1/ R )]得主成分回归。
全部的碳、氮、湿度、阳离子交换量(CEC)、1.5兆帕水、基础呼吸速率、沙、淤泥和Mehlich III可萃取钙通过近红外光谱(r2>0.80)成功地预测。
有些Mehlich III可萃取金属(铁,钾,镁,锰)、可交换阳离子(钙,镁,钾),可交换基地、交换性酸、粘土、潜在可矿化氮、总呼吸速率、生物量碳和pH值的总和也可通过近红外光谱估计,但精度较低(r 2=0.80~0.50)。
聚合(wt%>2,1,0.5,0.25mm,并宏观聚合)的预测结果是不可靠的(r2=0.46~0.60)。
Mehlich III提取的Cu,P和Zn和交换性钠不能使用NIRS-PCR技术(r2<0.50)进行预测。
结果表明,NIRS可以作为一种快速的分析技术,在很短的时间用可接受的准确度来同时估计多个土壤特性。
测量土壤性质的标准程序是复杂的、耗时的,而且费用昂贵。
在农民和土地管理者将能够充分利用测土作为精准农业与土壤质量的评估和管理的一种辅助手段之前,一种快速、经济的土壤分析技术是需要。
近红外反射光谱技术是一种为研究入射光和材料表面之间相互作用的非破坏性的分析技术。
由于其简单性、快速性,并且需要很少或无需样品制备,近红外反射光谱被广泛用于工业。
三十多年以前,该技术最早用于粮食的快速水汽分析。
现在,近红外光谱是用于粮食和饲料质量评估的主要分析技术。
6食品与药品Food and Drug2021年第23卷第1期近红外光纤光谱法快速检测葡萄酒中酒精度刁娟娟「,李玮2,李莉2**,艾尔肯•依布拉音「,钟德全2(1.新疆医科大学中心实验室,新疆乌鲁木齐830011;2.新疆医科大学药学院,新疆乌鲁木齐830011)摘要:目的构建近红外光纤传感检测系统,结合近红外光谱分析技术和化学计量学,对葡萄酒中酒精度进行快速检测。
方法以葡萄酒为研究对象,构建近红外光纤传感检测系统,分别使用偏最小二乘法和主成分回归对葡萄酒中酒精度进行近红外光谱分析,进行模型参数的比较。
采用国标GB/T15038-2006《葡萄酒、果酒通用分析方法》中气相色谱法对近红外预测结果进行验证。
结果采用偏最小二乘法建模的预测性能优于主成分回归分析。
在偏最小二乘法建模中,其决定系数(R)为0.9534,交叉验证均方根误差(RMSECV为0.0283,预测均方根误差(RMSEP)为0.0179,相对分析误差(RPD)为3.0607。
统计学分析表明近红外分析的预测值与气相色谱法测定值之间的差异无统计学意义。
结论研究表明,近红外光纤光谱法用于葡萄酒中酒精度的检测,操作简便、快速。
近红外技术在酒类品质监测中具有良好的应用前景。
关键词:近红外光谱;光纤传感;葡萄酒;酒精度中图分类号:TS207文献标识码:A文章编号:1672-979X(2021)01-0006-05DOI:10.3969/j.issn.l672-979X.2021.01.002Rapid Detection of Alcohol in Wine by Near Infrared Optical Fiber SpectroscopyDIAO Juan-juan1,LI Wei2,LI Li2,ARKIN Iburarim1,ZHONG De-quan1(1.Central Laboratory,Xinjiang Medical University,Urumqi830011,China;2.College of P harmacy,XinjiangMedical University,Urumqi830011,China)Abstract:Objective To establish a method for rapid determination of alcohol in wine using near-infrared optical fiber sensing detection system based on near infrared spectroscopy and chemometrics.Methods Taking wine as the research object,the near infrared optical fiber sensor detection system was constructed,using partial least squares(PLS)and principal component regression(PCR)to analyze alcohol content in wine by near-inrared spectroscopy,and compare the model parameters.The near infrared prediction results are verified by gas chromatography in GB/T15038-2006“Ggeral肚刃ysis Me比ods for Wine and Fruit Wine”.Results The results showed that the prediction ability of PLS was better than PCR.The coefficient of determination(R)was0.9534,the root mean square error of cross validation (RMSECV was0.0283,血e root me血square error of prediction(RMSEP)was0.0179,and the relative percent deviation(RPD)was3.0607in the PLS analysis model.Statistical analysis showed that there was no significant difference between the predicted value of near infrared analysis and the measured value of gas chromatography. Conclusion The studies have shown that near infrared optical fiber spectroscopy is simple,fast,and can be used for alcohol detection in wine.This technology has good application prospects in wine quality monitoring.Key Words:near infrared spectroscopy;optic fiber sensing;wine;alcohol content收稿日期:2020-07-08基金项目:国家自然科学基金项目(No.81760645)作者简介:刁娟娟,博士研究生,研究方向:食品和药品分析E-mail:*****************通讯作者:李莉,教授,博士生导师,研究方向:药物分析E-mail:**************食品与药品Food and Drug2021年第23卷第1期7新疆是我国葡萄的主产地之一,葡萄酒也是新疆的特色产品。
近红外光谱分析技术的数据处理方法引言近红外是指波长在780nm~2526nm范围内的光线,是人们认识最早的非可见光区域。
习惯上又将近红外光划分为近红外短波(780nm~1100nm)和长波(1100 nm~2526 nm)两个区域.近红外光谱(NearInfrared Reflectance Spectroscopy,简称NIRS)分析技术是一项新的无损检测技术,能够高效、快速、准确地对固体、液体、粉末状等有机物样品的物理、力学和化学性质等进行无损检测。
它综合运用了现代计算机技术、光谱分析技术、数理统计以及化学计量学等多个学科的最新研究果,并使之融为一体,以其独有的特点在很多领域如农业、石油、食品、生物化工、制药及临床医学等得到了广泛应用,在产品质量分析、在线检测、工艺控制等方面也获得了较大成功。
近红外光谱分析技术的数据处理主要涉及两个方面的内容:一是光谱预处理方法的研究,目的是针对特定的样品体系,通过对光谱的适当处理,减弱和消除各种非目标因素对光谱的影响,净化谱图信息,为校正模型的建立和未知样品组成或性质的预测奠定基础;二是近红外光谱定性和定量方法的研究,目的在于建立稳定、可靠的定性或定量分析模型,并最终确定未知样品和对其定量。
1工作原理近红外光谱区主要为含氢基团X-H(X=O,N,S,单健C,双健C,三健C等)的倍频和合频吸收区,物质的近红外光谱是其各基团振动的倍频和合频的综合吸收表现,包含了大多数类型有机化合物的组成和分子结构的信息。
因为不同的有机物含有不同的基团,而不同的基团在不同化学环境中对近红外光的吸收波长不同,因此近红外光谱可以作为获取信息的一种有效载体。
近红外光谱分析技术是利用被测物质在其近红外光谱区内的光学特性快速估测一项或多项化学成分含量。
被测样品的光谱特征是多种组分的反射光谱的综合表现,各组分含量的测定基于各组分最佳波长的选择,按照式(1)回归方程自动测定结果:组分含量=C0+C1(Dp)1+C2(Dp)2+…+Ck(Dp)k(1)式中:C0~k 为多元线性回归系数;(Dp)1~k为各组分最佳波长的反射光密度值(D=-lgp,p为反射比)。
近红外光谱法英文Near-Infrared SpectroscopyNear-infrared spectroscopy (NIRS) is a powerful analytical technique that has gained widespread recognition in various scientific and industrial fields. This non-invasive method utilizes the near-infrared region of the electromagnetic spectrum, typically ranging from 700 to 2500 nanometers (nm), to obtain valuable information about the chemical and physical properties of materials. The versatility of NIRS has led to its application in a diverse array of industries, including agriculture, pharmaceuticals, food processing, and environmental monitoring.One of the primary advantages of NIRS is its ability to provide rapid and accurate analysis without the need for extensive sample preparation. Unlike traditional analytical methods, which often require complex sample extraction and processing, NIRS can analyze samples in their natural state, allowing for real-time monitoring and decision-making. This efficiency and non-destructive nature make NIRS an attractive choice for applications where speed and preservation of sample integrity are crucial.In the field of agriculture, NIRS has become an invaluable tool for the assessment of crop quality and the optimization of farming practices. By analyzing the near-infrared spectra of plant materials, researchers can determine the content of various nutrients, such as protein, carbohydrates, and moisture, as well as the presence of contaminants or adulterants. This information can be used to guide precision farming techniques, optimize fertilizer application, and ensure the quality and safety of agricultural products.The pharmaceutical industry has also embraced the use of NIRS for a wide range of applications. In drug development, NIRS can be used to monitor the manufacturing process, ensuring the consistent quality and purity of active pharmaceutical ingredients (APIs) and finished products. Additionally, NIRS can be employed in the analysis of tablet coatings, the detection of counterfeit drugs, and the evaluation of drug stability during storage.The food processing industry has been another significant beneficiary of NIRS technology. By analyzing the near-infrared spectra of food samples, manufacturers can assess parameters such as fat, protein, and moisture content, as well as the presence of adulterants or contaminants. This information is crucial for ensuring product quality, optimizing production processes, and meeting regulatory standards. NIRS has been particularly useful in the analysis of dairy products, grains, and meat, where rapid and non-destructive testing is highly desirable.In the field of environmental monitoring, NIRS has found applications in the analysis of soil and water samples. By examining the near-infrared spectra of these materials, researchers can obtain information about the presence and concentration of various organic and inorganic compounds, including pollutants, nutrients, and heavy metals. This knowledge can be used to inform decision-making in areas such as soil management, water treatment, and environmental remediation.The success of NIRS in these diverse applications can be attributed to several key factors. Firstly, the near-infrared region of the electromagnetic spectrum is sensitive to a wide range of molecular vibrations, allowing for the detection and quantification of a variety of chemical compounds. Additionally, the ability of NIRS to analyze samples non-destructively and with minimal sample preparation has made it an attractive choice for in-situ and real-time monitoring applications.Furthermore, the development of advanced data analysis techniques, such as multivariate analysis and chemometrics, has significantly enhanced the capabilities of NIRS. These methods enable the extraction of meaningful information from the complex near-infrared spectra, allowing for the accurate prediction of sample propertiesand the identification of subtle chemical and physical changes.As technology continues to evolve, the future of NIRS looks increasingly promising. Advancements in sensor design, data processing algorithms, and portable instrumentation are expected to expand the reach of this analytical technique, making it more accessible and applicable across a wider range of industries and research fields.In conclusion, near-infrared spectroscopy is a versatile and powerful analytical tool that has transformed the way we approach various scientific and industrial challenges. Its ability to provide rapid, non-invasive, and accurate analysis has made it an indispensable technology in fields ranging from agriculture and pharmaceuticals to food processing and environmental monitoring. As the field of NIRS continues to evolve, it is poised to play an increasingly crucial role in driving innovation and advancing our understanding of the world around us.。