分式的基本性质(2)教案2
- 格式:doc
- 大小:289.50 KB
- 文档页数:5
第2课时 分式的基本性质1.理解并掌握分式的基本性质和符号法则;(难点)2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x的分子、分母都乘以10得2x +1020+5x.故选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b . 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b2a ;(2)原式=-5y7x 2;(3)原式=-a +2b2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:约分及最简分式【类型一】 判定分式是否为最简分式下列分式是最简分式的是( )A.2a 2+a abB.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xy x 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC的中点,请判断线段BE,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH=12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG.(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12=6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。
分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。
内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。
二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。
2. 学会简化分式,并能运用简化后的分式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。
三、教学难点与重点教学难点:分式的基本性质的理解与应用。
教学重点:分式的定义、简化分式的方法以及分式的实际应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。
2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。
(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
(3)简化分式:讲解如何将分式简化,并举例说明。
3. 例题讲解结合教材例题,详细讲解分式的简化过程。
4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。
(2)小组讨论,解决实际问题,培养学生的合作意识。
5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。
2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。
重点和难点解析1. 分式的基本性质的理解与应用。
2. 简化分式的方法。
3. 实际问题的解决。
4. 板书设计。
5. 作业设计与答案。
一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
2024年分式的基本性质课时教案一、教学内容本节课选自人教版数学八年级下册第十四章《分式》第一节《分式的基本性质》。
具体内容包括分式的概念、分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变、分式的分子与分母同乘(除)一个不等于0的整式,分式的约分等。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质进行分式的化简和运算。
2. 培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。
3. 培养学生运用分式基本性质解决实际问题的能力,增强学生的应用意识。
三、教学难点与重点教学难点:分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变;分式的约分。
教学重点:分式的基本性质及其运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、文具。
五、教学过程1. 实践情景引入通过一个关于实际问题的情景,如“计算两个长方形的面积比”,引出分式的概念。
2. 例题讲解(1)讲解分式的定义,通过具体的例子让学生理解分式的组成。
(2)讲解分式的基本性质,结合例题让学生掌握分子与分母同乘(除)一个不等于0的整式,分式的值不变。
(3)讲解分式的约分,通过例题使学生掌握约分的方法。
3. 随堂练习让学生独立完成教材第14页练习题1、2、3。
5. 课堂小结六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分4. 例题及解答过程七、作业设计1. 作业题目:(1)教材第14页习题1、2、3。
(2)已知分式 $\frac{a}{b}$ 的值,求 $\frac{2a}{3b}$、$\frac{3b}{2a}$ 的值。
2. 答案:(1)见教材。
(2)$\frac{2a}{3b}$ 的值为 $\frac{2}{3} \times\frac{a}{b}$,$\frac{3b}{2a}$ 的值为 $\frac{3}{2} \times\frac{b}{a}$。
八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,及时发现问题,调整教学方法,提高教学效果。
《分式的基本性质》教学设计第2课时分式的基本性质是分式运算的基础,它们是后续学习分式运算的强有力武器.分数与分式关系密切,它们是具体与抽象、特殊与一般的关系,所以在教学分式的基本性质时,要利用学生已有的分数基础,通过分数类比,并注意从具体到抽象、从特殊到一般的认识过程,引导学生理解分式的基本性质,要充分突显类比方法在教学中的统帅作用.分式的约分和通分,是进行分式四则运算中不可或缺的变形.分式的约分找出公因式是关键,约分时,一定要约去分子、分母的所有公因式;分式的通分找出最简公分母是是关键,确定最简公分母先要将各分母分解因式,然后确定公倍式.所教学分式基本性质的运用时,要引导学生观察、分析题目的特点,选择恰当的方法给分式进行变形.如不改变分式的值,使分子、分母里的系数变为整数的题,分子分母系数既有小数的,又有分数的,引导学生思考分子分母既要化整,又要最简.在约分或通分的过程中,要依据分式的性质,千万不能改变分式值的大小.1. 理解分式的基本性质;并能灵活运用这些性质进行分式的恒等变形.2. 通过分式的恒等变形的过程提高学生的运算能力.3. 通过类比、探索分数的基本性质,初步掌握类比的思想方法,积累数学活动经验. 【教学重点】理解分式的基本性质,对分式基本性质的初步运用.【教学难点】灵活运用分式的基本性质对分式进行化简、变形.多媒体课件、教具等.一、提出问题,思考引入问题1 喜羊羊和美羊羊共同去一块面积为a 的草地吃草,吃草前,二位决定平分地盘,喜羊羊说:“我要把它平分2份,我要1份.”美羊羊说:“我要把它平分4n 份,我要2n 份.”聪明的同学,你知道他们的分地方案分到的面积都是一样多的吗?追问1:按照喜羊羊的分地方案,喜羊羊分地多少?喜羊羊分地是2a . 追问2:按照美羊羊的分地方案,美羊羊分地多少?美羊羊分地是n na 42. 追问3:2a 与nna 42相等吗? 通过有趣的问题情景引出问题,激发学生的学习兴趣,为学习分式的基本性质做好铺垫.二、合作交流,探究新知问题2 请同学们思考:32与64相等吗?276与92相等吗?为什么? 32与64相等,因为32262464=÷÷=. 276与92相等,因为9232736276=÷÷=. 追问1:通过32与64,276与92之间的变形过程,你能说出这样变形的依据是什么吗? 根据分式的性质,分式的分子、分母同时除了同一个不等于零的数,分式的值不变. 追问2:分数的基本性质是什么?你能类比猜想出分式的基本性质吗?分数的基本性质:分数的分子、分母乘(或除以)同一个不等于0的数,分数的值不变. 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.追问3:你能说出分数的基本性质与分式的基本性质的区别吗?在分数的基本性质中,“数”是一个具体的、唯一确定值.在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.追问4:你能尝试用符号语言表示分式的基本性质吗?分式的基本性质:MB M A B A M B M A B A ÷÷=⨯⨯=;(M 是不等于零的整式) 追问5:上面的等式中,M B A ,,三个字母分别表示什么?M 的取值范围为什么不等于零?归纳:M B A ,,三个字母分别表示整式,M 是不等于零的整式.三、运用新知例1 下列等式的右边是怎样从左边得到的?(1)()022≠=c bcac b a ;(2)y x xy x 23=;(3)()01≠++=+z z xy z xz xy x . (1)解:∵c ≠0,∴bcac c b c a b a 222=⋅⋅=; 追问:为什么“c ≠0”?(2)解:∵x ≠0,∴yx x xy x x xy x 233=÷÷=; 追问:为什么题目没有给出x ≠0的条件?(3)解:∵z ≠0,∴()zxy z xz z xy z x xy x ++=⋅⋅+=+11. 例2 填空(在括号内填入适当的整式,使分式的值不变):(1)()ba ab b a 2=+;(2)()b a ab a b a +=--222. 分析:(1)从左边分式到右式,要保证分式的值不变,需根据分式的基本性质对分式的分子、分母同时乘以a . (2)先将分式的分子、分母分解因式,其中隐含0≠-b a ,要使分子变为b a +,就要分子分母同除以b a -.解:(1)∵()ba ab a a ab a b a ab b a 22+=⋅⋅+=+,∴括号内填ab a +2. (2)∵()()()a b a b a a b a b a aba b a +=--+=--222,∴括号内填a . 归纳约分定义:在例2(2)中,我们利用分式的基本性质,约去aba b a --222的分子、分母的公因式b a -,这就是约分.即:把分式分子、分母的公因式约去,这种变形叫分式的约分.追问:分式约分的依据是什么?分式约分的依据:分式的分子与分母都除以同一个不等于零的整式,分式的值不变. 归纳通分定义:在例2(1)中,我们利用分式的基本性质,将分式abb a +的分子、分母同时乘以a ,把ab b a +和b a ab a 22+化成同分母的分式,这就是通分.即: 把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分. 追问:分式通分的依据是什么?分式通分的依据:分式的分子与分母都乘以同一个不等于零的整式,分式的值不变.例3 约分:(1)c ab bc a 2321525- (2)96922++-x x x (3)y x y xy x 33612622-+- 分析:约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.解:(1)b ac b abc ac abc cab bc a 353555152522232-=⋅⋅-=-; (2)()()()33333969222+-=+-+=++-x x x x x x x x ; (3)()()()y x y x y x y x y xy x -=--=-+-236336126222. 追问:现在会解决课前提出的问题吗?(2a 与n na 42是否相等) 相等.理由如下:2242242a n n n na n na =÷÷=. 例4 通分:(1)b a 223与cab b a 2-;(2)52-x x 与53+x x . 分析:通分之前,首先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.解:(1)cb a bc bc b a bc b a 2222232323=⋅⋅=,()c b a ab a a c ab a b a c ab b a 2222222222-=⋅⋅-=-; (2)()()()2510255525222-+=+-+=-x x x x x x x x x ,()()()25153********--=-+-=+x x x x x x x x x . 四、巩固新知1. 约分:(1)c ab b a 2263;(2)2228mn n m ;(3)532164xyz yz x -;(4)x y y x --3)(2.答案:(1)bc a 2;(2)n m 4;(3)24zx -;(4)-2(x -y )2.2. 通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bca - (4)11-y 和11+y 答案:(1)321ab = c b a ac 32105,c b a 2252= c b a b 32104;(2)xy a 2= y x ax 263,23x b = y x by 262;(3)223ab c = 223812c ab c , 28bc a -= 228c ab ab ;(4)11-y =)1)(1(1+-+y y y ,11+y =)1)(1(1+--y y y .3. 不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x --;(2) 2317b a ---;(3) 2135x a --; (4) m b a 2)(--.答案:(1) 233ab y x ;(2) 2317b a -;(3) 2135x a ; (4) m b a 2)(--. 五、归纳小结1. 分式的基本性质.(1)分式的基本性质MB M A B A M B M A B A ÷÷=⨯⨯=;(M B A ,,均为整式,且0≠M ) (2)分式的基本性质的作用:分式进行变形的依据.2. 运用基本性质需要注意的问题;3. 分式基本性质的研究方法.从分数→分式,从特殊→一般.4. 利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.略.。
《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。
3、教学目标(1)了解分式的基本性质。
灵活运用“性质”进行分式的变形。
(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
(3)通过探索分式的基本性质,积累数学活动经验。
(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
4、教学重难点分析重点:理解并掌握分式的基本性质。
难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。
学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。
学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
同时强化了学生以旧知识类比得出新知识的能力。
三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
2024年初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节《分式的基本性质》。
内容包括分式的概念、分式的分子与分母的关系、分式的基本性质及其应用。
二、教学目标1. 理解分式的概念,掌握分式的分子与分母的关系。
2. 掌握分式的基本性质,并能够运用这些性质进行分式的化简和运算。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:分式的基本性质的理解和应用。
教学重点:分式的概念及其分子与分母的关系。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入通过一个实际情景,让学生了解分式的概念。
例题:小明和小红相约去公园玩,他们共带了80元的零花钱。
如果小明花去一半,小红花去三分之一,那么他们各自还剩下多少钱?引导学生列出分式,并解释分式的分子与分母的含义。
2. 例题讲解讲解分式的基本性质,如分子分母同乘(除)一个数,分式的值不变等。
3. 随堂练习(1)化简分式:2/4、5/10、12/18(2)计算:3/4 + 2/3、5/6 1/2、4/5 × 2/3、6/7 ÷ 3/45. 课堂小结六、板书设计1. 分式的概念2. 分子的含义与分母的含义3. 分式的基本性质① 分子分母同乘(除)一个数,分式的值不变② 分式的分子与分母同时乘以(或除以)同一个数,分式的值不变③ 分式的乘法、除法、加法、减法法则七、作业设计1. 作业题目(1)化简分式:4/6、9/12、15/20(2)计算:2/3 + 1/4、5/8 3/4、7/8 × 6/7、4/5 ÷ 2/32. 答案(1)2/3、3/4、3/4(2)11/12、1/8、3/4、6/5八、课后反思及拓展延伸1. 反思本节课通过实践情景引入,让学生了解分式的概念,讲解分式的基本性质,并通过随堂练习巩固所学知识。
分式的基本性质教案分式的基本性质教案分式的基本性质教案1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3、教材的处理学习是学生主动构建知识的过程。
学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。
学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。
本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。
让学生自我构建新知识。
通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。
为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的`基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析1、教学方法数学是一门培养人的思维,发展人的思维的重要学科。
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
初中数学精品教案《分式的基本性质》教案:《分式的基本性质》一、教学内容1. 分式的概念:分式是形如a/b的表达式,其中a和b是整式,且b不为0。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
3. 分式的约分和通分:根据分式的基本性质,可以将分式约分或通分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会运用分式的基本性质对分式进行约分和通分。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:分式的基本性质的理解和运用。
2. 教学重点:分式的基本性质的运用,包括约分和通分。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:情景:小红购买了一本书,原价是24元,现在打8折,问小红实际支付了多少钱?解答:原价24元,打8折后的价格是240.8=19.2元,小红实际支付了19.2元。
2. 例题讲解:例题1:计算分式2/3+4/5。
解答:找到分母3和5的最小公倍数是15,然后将两个分式的分母都变为15,得到25/35+43/53=10/15+12/15=22/15。
例题2:计算分式6/83/4。
解答:找到分母8和4的最小公倍数是8,然后将两个分式的分母都变为8,得到6/832/42=6//8=0。
3. 随堂练习:练习1:计算分式3/5+2/7。
练习2:计算分式4/91/3。
4. 分式的基本性质:引导学生发现,在例题1和例题2中,我们可以将分式的分子和分母同时乘以(或除以)同一个不为0的整式,使得分式的值不变。
这就是分式的基本性质。
5. 分式的约分和通分:根据分式的基本性质,我们可以将分式约分或通分。
六、板书设计1. 分式的概念:a/b,其中a和b是整式,且b不为0。
2. 分式的基本性质:分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。
本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。
学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。
同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。
二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。
过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。
情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。
(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。
但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。
四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。
五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________ 用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。
分式分式 分式 分式的基本性质1教学目标:1、 理解分式的基本性质;会运用分式的基本性质解题;2、 培养学生类比的推理能力教学重点:分式的基本性质的理解和掌握 教学难点:分式基本性质的简单运用 教学过程: 一、预习展示1、分数的性质;如果分数的分子和分母都乘(或除以)一个 的数,那么分数的值 。
2、有一列匀速行使的火车,如果t h 行使s km ,那么2t h 行使2s km 、3t h 行使3s km 、…33s tn th 行使ns km ,火车的速度可以分别表示为s tkm/h 、22s tkm/h 、33s tkm/h 、…n s n tkm/h这些分式的值相等吗? 3、分式也有类似1的性质吗?(二) 合作探索:通过探索,归纳出分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于......0.的整式...,分式的值不变。
用式子表示就是 A B =A ×M B ×M ,A B =A ÷M B ÷M (其中M ≠0)。
1、填空:(1)a b =ab ( ) ; (2)12 a 2+b2(a+b) =( )2a+2b ;(3)3a a+6 =6ab ( )≠0);(4)3x -2=( )3x+2 (x ≠-23;(5)( )x 2-4y 2 =x x+2y ; (6)6a 2-2ab ( ) =3a-b. 2、23---中有3个“—”分别表示什么意义?分式A B--中有2个“—”分别表示什么意义?(不改变分式的值,使下列分式的分子和分母的最高次项的系数是正数)(1)21x x-(2)22y y y y-+(3)2-x 2-1-x (4)-x 2-x+11-x 3三、当堂盘点 1.判断正误并改正: ①ba b a ++-=)(b a b a +-+=1 ( ) ②11--xz xy =11--z y ( )③ba a --3=ba a --3 ( ) ④22nm =nn m m ÷÷22=nm ( )2.填空:写出等式中未知的分子或分母: ①xy 3=()y x 23 ②)()).(().(2x xy y x x yx x +=+=+③yx xy 257=()7④)()).(()(1b a b a ba +=-=-;3.不改变分式的值,使分式的分子与分母都不含负号:= = ①=--y x 25 ②=---b a 3 ; 4、不改变下列分式的值,使分式的分子和分母的最高次项的系数为正数 (1)222107xx x -+- (2)235231x x x++-(3)22314aa a --- (4)mm mm +---2235、不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数(1)42.05.0-+x y x (2)xx x x 24.03.12.001.022+- ⑶yx yx 6125131+-6、将3a a b- 中的a 、b 都变为原来的3倍,则分式的值 _______________ 7、把分式yx 中的字母x 的值变为原来的2倍,而y 缩小到原来的一半,则分式的值___________5(1) 6ba--(2) 3xy -。
15.1.2 分式的基本性质(2课时)第1课时 分式的基本性质教学目标1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形.2.会用分式的基本性质求分式变形中的符号法则.重点理解并掌握分式的基本性质.难点灵活运用分式的基本性质进行分式变形.教学设计一、类比引新1.计算:(1)56×215;(2)45÷815. 思考:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基本性质.2.你能说出分数的基本性质吗?分数的分子与分母都乘(或除以)同一个不为零的数,分数的值不变.3.尝试用字母表示分数的基本性质:小组讨论交流如何用字母表示分数的基本性质,然后写出分数的基本性质的字母表达式.a b =a ·c b ·c ,a b =a ÷c b ÷c.(其中a ,b ,c 是实数,且c ≠0) 二、探究新知1.分式与分数也有类似的性质,你能说出分式的基本性质吗? 分式的基本性质:分式的分子与分母乘(或除以)同一个不为零的整式,分式的值不变.你能用式子表示这个性质吗?A B =A ·C B ·C ,A B =A ÷C B ÷C.(其中A ,B ,C 是整式,且C ≠0) 如x 2x =12,b a =ab a 2,你还能举几个例子吗? 回顾分数的基本性质,让学生类比写出分式的基本性质,这是从具体到抽象的过程.学生尝试着用式子表示分式的性质,加强对学生的抽象表达能力的培养.2.想一想下列等式成立吗?为什么?-a -b =a b ;-a b =a -b =-a b. 教师出示问题.学生小组讨论、交流、总结.例1 不改变分式的值,使下列分式的分子与分母都不含“-”号:(1)-2a -3a ;(2)-3x 2y ;(3)--x 2y.例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数都化为正数:(1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x +1. 引导学生在完成习题的基础上进行归纳,使学生掌握分式的变号法则.例3 填空:(1)x 3xy =( )y ,3x 2+3xy 6x 2=x +y ( ); (2)1ab =( )a 2b ,2a -b a 2=( )a 2b.(b ≠0) 解:(1)因为x 3xy的分母xy 除以x 才能化为y ,为保证分式的值不变,根据分式的基本性质,分子也需除以x ,即x 3xy =x 3÷x xy ÷x =x 2y. 同样地,因为3x 2+3xy 6x 2的分子3x 2+3xy 除以3x 才能化为x +y ,所以分母也需除以3x ,即3x 2+3xy 6x 2=(3x 2+3xy )÷(3x )6x 2÷(3x )=x +y 2x. 所以,括号中应分别填入x 2和2x.(2)因为1ab的分母ab 乘a 才能化为a 2b ,为保证分式的值不变,根据分式的基本性质,分子也需乘a ,即1ab =1·a ab ·a =a a 2b.同样地,因为2a -b a 2的分母a 2乘b 才能化为a 2b ,所以分子也需乘b ,即2a -b a 2=(2a -b )·b a 2·b =2ab -b 2a 2b. 所以,括号中应分别填a 和2ab -b 2.在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化.三、课堂小结1.分式的基本性质是什么?2.分式的变号法则是什么?3.如何利用分式的基本性质进行分式的变形?学生在教师的引导下整理知识、理顺思维.四、布置作业教材习题15.1第4,5题.教学反思通过算数中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但要重点强调分子分母同乘(或除)的整式不能为零,让学生养成严谨的态度和习惯.第2课时 分式的约分、通分教学目标1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念.2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤. 重点运用分式的基本性质正确地进行分式的约分与通分.难点通分时最简分分母的确定;运用通分法则将分式进行变形. 教学设计一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +b ab相等吗?为什么? 利用分式的基本性质,分式a 2+ab a 2b约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab. 教师点拨:分式a 2+ab a 2b 可以化为a +b ab,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分? 类似的,你能把分式a b ,c d变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分。
5.2 分式的基本性质 (2) 授课解析一.教材内容解析:本节的主要内容是:分式的基本性质。
分式的基本性质是分式的约分、通分、运算等恒等变形的依照。
课本经过详尽的例子,用分数的基本性质引入分式的基本性质易于学生理解、接受。
与传统教材不相同的是课本中没有明确给出分式的符号法规,而是在想一想中浸透的,所以在授课中应注意让学生领悟。
二.授课目的:1、经过类比分数的基本性质,说出分式的基本性质,并能用字母表示。
2、理解并掌握分式的基本性质和符号法规。
3、能运用分式的基本性质和符号法规对分式进行变性和约分。
三.授课重点:分式的基本性制及利用基本性质进行约分四.授课难点:对符号法规的理解和应用及当分子、分母是多项式时的约分。
五.授课过程:(一)试一试,研究新知:约分:2 x3 y(2). y x(1).2 y 2y24 x 2 x提出:上述约分,你的依照是什么?你能总结出分式约分的基本步骤吗?约分的基本步骤:(1)若分子﹑分母都是单项式,则约简系数,并约去相同字母的最低次幂;(2)若分子﹑分母含有多项式,则先将多项式分解因式,尔后约去分子﹑分母所有的公因式.注意:约分过程中,有时还需运用分式的符号法规使最后结果形式简捷;约分的依照是分式的基本性质。
分式的基本性质:分式的分子与分母同时乘以(或除以)同一个不等于零的整式,分式的值不变.用公式表示为 :A A M , A A M .B B M B B M(其中 M是不等于零的整式 )3 x2 1 1 可否相等,利用分式的基本性质比较:与6 x2 1 2由于 x2 1 1, 所以3 x2 1约分后得1 6 x2 1 2二做一做:化简以下各:116 x 2 y 3 4 a 2 3a 2 a a 3 a 1 a1 .4 2 .a 23 .1 6 a 9 a2 1 3a 220 xy 2a 1 3 a授课建议:教师让学生充分明确,分式的分子分母均为单项式时的约分规则,均是多项式时的约分规则,(学生应该能讲出的)。
16.1.2 分式的基本性质
教学目标
1.知识与技能
理解并掌握分式的基本性,了解最简分式的概念.根据分式的基本性质,•对分式进行约分化简及分式的通分运算,并能正确地找出最简公分母.
2.过程与方法
通过对分式基本性质的归纳,培养学生观察、类比、推理能力,•通过对分式约分,提高学生分析、解决问题的能力.
3.情感、态度与价值观
由分数、分式的基本性质的类比,加深对基本概念的理解,形成勤奋学习的良好习惯. 教学重点难点
重点:根据分式的基本性,对分式进行约分、通分等有关计算.
难点:把分式化成最简分式以及找最简公分母.
课时安排
2课时
教与学互动设计
第2课时
(一)创设情境,导入新课
做一做
1.下列各式与x y x y
-+相等的是 (C ) A .()5()5x y x y -+++ B .22x y x y
-+ C .222()x y x y --(x ≠y ) D .2222x y x y -+ 2.下列各式中,变形不正确的是 (C )
A .23y -=-23y
B .66y y x x
-=- C .3344x x y y =- D .-8833x x y y -=-- 3.分式约分的根据是 分式的基本性质 .
(二)合作交流,解读探究
明确 ①分式的通分和分数的通分类似
②通分的依据──→分式的基本性质
做一做 不改变分式的值,把213x 和512xy 化成相同分母的分式. 归纳 分式的通分,•即要求把几个异分母的分式分别化为与原来的分式相等的同分母分式.通分的关键是确定几个分式的公分母.通常取各分母所有因式的最高次幂作为公分母,叫最简公分母.最简公分母:(1)系数取最小公倍数;(2)字母取所有字母;(3)所有字母的最高次
幂,特别强调,当分母是多项时,应先将各分母分解因式,再确定最简公分母.
(三)应用迁移,巩固提高
例1分式1a b +,222a a b -,b b a
-的最简公分母为 ( ) A .(a 2-b 2)(a+b )(a-b ) B .(a 2-b 2)(a+b )
C .(a 2-b 2)(b-a )
D .a 2-b 2
解:因为a 2-b 2=(a+b )(a-b ) b-a=-(a-b )
因此最简公分母为a 2-b 2,故选D .
例2(1)21a b ,2
1ab ;(2)1x y -,1x y +;(3)221x y -,21x xy +. 解:(1)21a b 与21ab
的最简公分母为a 2b 2,所以 21a b =21b a b b =22b a b ,21ab =21a a b a =22
a a
b ; (2)
1x y -与1x y +的最简公分母为(x-y )(x+y ),即x-y ,所以 1x y -=1()()()x y x y x y +-+=22x y x y +- ,1x y +=1()()()x y x y x y -+-=22x y x y
--; (3)因为x 2-y 2=(x+y )(x-y ),x 2+xy=x (x+y ),
所以221x y -与21x xy
+的最简公分母为x (x+y )(x-y ),即x (x 2-y 2), 因此
221x y -=22()x x x y -,21x xy +=22()x y x x y --. 例3 某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v 1,下坡速度为v 2,求他上、下坡的平均速度为 ( )
A .122
v v + B .1212v v v v + C .1212v v v v + D .12122v v v v + 【分析】设坡长为S ,则上坡时间为1S v ,下坡时间为2S v ,故平均速度为122S S S v v +,•再运用分式的性质即可求解. 【答案】 D
例4已知1x -1y
=3,求分式2322x xy y x xy y +---的值. 【分析】 条件分式求值有两种途径:一种是将条件变形,求得待求式的特征;•一种是将待
求式进行变形,以适应已知条件. 解法一:因为1x -1y
=3,所以y-x=3xy , 从而2322x xy y x xy y +---=32()2()xy y x xy y x -----=32323xy xy xy xy ---=35xy xy --=35
. 解法二:=2322x xy y x xy y +---=223112y x y x +---=1132()112()x y x y
-----=32323-⨯--=35--=35
. 备选例题
1.(学案例4)(2005年中考·大连)若分式
x y x y +-中的x 、y 的值都变为原来的3倍,则此分式的值 ( )
A .不变
B .是原来的3倍
C .是原来的
13 D .是原来的16
【答案】 A
(四)总结反思,拓展升华
根据分式的基本性质对分式进行约分和通分,约分的关键是约去最大公约式,化成最简分式.通分的关键是确定几个分式的公分母,即最简公分母,•如果各个分母能因式分解,应先因式分解,再确定最简公分母.
(五)课堂跟踪反馈
一、夯实基础
1.下列分式中,最简分式是 (C ) A .22427bc a B .22()b a a b ++ C .a b a b
-+ D .22a b a b -- 2.分式8b a ,a b a b
-+,22x y x y -+,22x y x y --中,最简分式有 (C ) A .1个 B .2个 C .3个 D .4个 3.分式2223c a b ,224a b c -,2
52b ac 的最简公分母是 (D ) A .12abc B .-12abc C .24a 2b 4c 2 D .12a 2b 4c 2 4.分式m m n -,m n m -,2m n m +,m n m n -+的最简公分母是 (C ) A .(m-n )2(m+n )2 B .(m-n )2(m+n )
C .(m-n )(m+n )
D .(m-n )(m+n )2
5.下列各式约分中,正确的是 (B )
A .2a b a b ++=b
B .a b a b --+=-1
C .a b a b
---=-1 D .22a b a b --=a-b 6.1x
+y 可变形为 (C ) A .
1y x + B .1x y + C .1xy x + D .1x x + 7.填空
(1)化简322a a b a bc += a b bc
+. (2)化简()()()()()()
a b b c c a a c c b b a ------= -1 . (3)分式213x x -与229
x -的最简公分母是 x (x+3)(x-3) . (4)已知
x y =45,则x y x y +-= -9 . (5)若x+
1x =3,则x 2+21x
=7. 二、提升能力
8.通分 (1)
212a b ,234ab ,2
56ac ; (2)11x -,11x +,231
x x -; (3)222x x x +-,2144x x x --+. 【答案】(1)最简公分母是12a 2b 2c 2,所以212a b =2221626bc a b bc =2222
612bc a b c 234ab =2223343ac ab ac =2222912ac a b c ;256ac =2225262ab ac ab =22221012ab a b c
; (2)因为最简公分母是(x+1)(x-1),所以11x -=1(1)(1)
x x x +-+, 11x +=1(1)(1)
x x x -+-;
(3)最简公分母是x (x-2)2 所以222x x x +-=2(2)
x x x +-=2(2)(2)(2)x x x x +--=224(2)x x x -- 2144x x x --+=21(2)x x --=2(1)(2)x x x x --=22
(2)x x x x --. 9.已知:
1a -1b =5,两种方法求3432a ab b a ab b ----的值. 【答案】 197 三、开放探究
10.已知y 1=2x ,y 2=
12y ,y 3=22y ,……,y 2 004=20032y ,求y 1·y 2 004的值. 【答案】 2。