同济大学高等数学第七版1.4--无穷小与无穷大
- 格式:ppt
- 大小:2.35 MB
- 文档页数:1
高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
课时授课计划课次序号:一、课题:§1.4 无穷小与无穷大§1.5 极限运算法则二、课型:新授课三、目的要求:1.理解无穷小和无穷大的概念,掌握无穷小、无穷大以及有界量之间的关系;2.掌握极限的运算法则.四、教学重点:无穷小和无穷大的概念,极限的运算法则.教学难点:极限运算法则的应用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–4 4(1);习题1–5 1(1)(5)(7)(14),3(2)八、授课记录:授课日期班次九、授课效果分析:复习1.两种变化趋势下函数极限的定义,左右极限(单侧极限)2.函数极限的性质:唯一性、局部有界性、局部保号性、函数极限与数列极限的关系.对于函数极限来说,有两种情形比较特殊:一种是极限为零,另一种是极限无穷不存在,我们分别称之为无穷小和无穷大.下面我们先介绍无穷小与无穷大,在此基础上,进一步介绍极限的运算法则.第四节无穷小与无穷大一、无穷小定义1 若limα(x)=0,则称α(x)为该极限过程中的一个无穷小.例1当x→2时,y=2x-4是无穷小,因为容易证明(2x-4)=0.当x→∞时,y=也是无穷小,因为=0.定理1(无穷小与函数极限的关系定理lim f(x)=A的充要条件是f(x)=A+(x,其中(x为该极限过程中的无穷小.证为方便起见,仅对x→x0的情形证明,其他极限过程可仿此进行.设f(x=A,记(x=f(x-A,则ε>0,δ>0,当x∈(x0,δ)时,|f(x)-A|<ε,即|(x|<ε.由极限定义可知,(x=0,即(x是x→x0时的无穷小,且f(x)=A+(x.反过来,若当x→x0时,(ξ是无穷小,则ε>0,δ>0,当x∈(x0,δ)时,|(ξ-0|=|(ξ|<ε,即|f(ξ)-A|<ε,由极限定义可知,f(ξ)=A.二、无穷大在lim f(ξ)不存在的各种情形下,有一种较有规律,即当x→x0或x→∞时,|f(ξ)|无限增大的情形.例如,函数f(ξ)=,当x→1时,|f(ξ)|=无限增大,确切地说,M>0(无论它多么大),总δ>0,当x∈(1,δ)时,|f(ξ)|>M,这就是我们要介绍的无穷大.定义2 若M>0(无论它多么大),总δ>0(或X>0),当x∈(x0,δ)(或|ξ|>X)时,|f(ξ)|>M恒成立,则称f(ξ)当x→x0(或x→∞)时是一个无穷大.若用f(ξ)>M代替上述定义中的|f(ξ)|>M,则得到正无穷大的定义;若用f(ξ)<-M代替|f(ξ)|>M,则得到负无穷大的定义.某极限过程中的无穷大、正无穷大、负无穷大分别记作:.注(1)若,则称为曲线的垂直渐近线.(2)称一个函数为无穷大时,必须明确地指出自变量的变化趋势.对于一个函数,一般来说,自变量趋向不同会导致函数值的趋向不同.例如函数y=,当x→时,它是一个无穷大,而当x→时,它则是一个无穷小.(3)由无穷大的定义可知,在某一极限过程中的无穷大必是无界变量,但其逆命题不成立.例如, 当n→∞时,(1+(-1nn是无界变量,但它不是无穷大.例2=+∞,=-∞,=-∞,=+∞, =-∞.三、无穷小与无穷大的关系定理2在某极限过程中,若f(ξ)为无穷大,则为无穷小;反之,若f(ξ)为无穷小,且f(ξ)≠0,则为无穷大.证我们仅对x→x0的情形证明,其他情形仿此可证.设f(ξ)=∞,则ε>0,令M=,则δ>0,当x∈(x0,δ)时,|f(ξ)|>M=,即<ε,故为x→x0时的无穷小.反之,若f(ξ)=0,且f(ξ)≠0,则M>0,令ε=,则δ>0,当x∈(x0,δ)时,|f(ξ)|<ε=,即>M,故为x→x0时的无穷大.第五节极限运算法则一、无穷小运算法则定理1在某一极限过程中,如果(x,(x是无穷小,则(x± (x也是无穷小.证我们只证x→x0的情形,其他情形的证明类似.由于x→x0时,(x,(x均为无穷小,故ε>0,δ1>0,当0<|x-x0|<δ1时,|(x|<,(1)δ2>0,当0<|x-x0|<δ2时,|(x|<,(2)取δ=min(δ1,δ2),则当0<|x-x0|<δ时,(1)、(2)两式同时成立,因此|(x±(x|≤|(x|+|(x|<+=ε.由无穷小的定义可知,x→x0时,(x± (x为无穷小.推论在同一极限过程中的有限个无穷小的代数和仍为无穷小.定理2在某一极限过程中,若(x是无穷小,f(x)是有界变量,则(x f(x)仍是无穷小.证我们只证x→∞时的情形,其他情形证法类似.设f(x)为x→∞时的有界变量,则M>0,当|x|>X1>0时,|f(x)|<M,又因(x=0,则ε>0,对来说,X2>0,当|x|>X2时,|(x|<,取X=m ax{X1,X2},则当|x|>X时,有|(x·f(x)|=|(x|·|f(x)|<·M =ε.这就证明了当x→∞时,(x f(x)是无穷小.例1求.解因为x∈(-∞,+∞),|sin x|≤1,且=0,故由定理2得sin x=0.推论在某一极限过程中,若C为常数,(x和(x是无穷小,则C(x,(x(x)均为无穷小.这是因为C和无穷小均为有界变量,由定理2即可得此推论.此推论可推广到有限个无穷小乘积的情形.定理3在某一极限过程中,如果(x是无穷小,f(x)以A为极限,且A≠0,则(x\f(x)仍为无穷小.证由定理2可知,我们只需证为该极限过程中的有界变量即可.我们仅对x→x0时进行证明,其他情形类似可证.因为f(x)=A,A≠0, 则对ε=,δ>0,当x∈(x0,δ)时,有||f(x)|-|A||≤|f(x)-A|<,从而<|f(x)|<,故<=M, 即为时的有界变量.利用无穷小的性质及无穷小与函数极限的关系,我们可得极限四则运算法则.二、极限的四则运算法则定理4若,则(1 ;(2 ;(3 l= (.证我们仅证(2),(3).因为,所以f(x)=A +(x,g(x)=B +β(x,其中,于是f(x g(x=[A+][B+β(x]=AB+Aβ(x+B+β(x.由定理1及其推论可得, , .故由第四节定理1及本节定理1可知.同理,对于式(3),只需证-是无穷小即可,因为-=-=,由定理1及其推论可知.由刚获证的式(2)可知.所以,其中为无穷小.最后由第四节中的定理1便得lim==(B≠0).推论1 若存在,C为常数,则.这就是说,求极限时,常数因子可提到极限符号外面,因为.推论2 若存在,n∈N,则.例2 求.结论:多项式函数当极限为,而解===-2.例3求,其中m,n∈N.解由于分子分母的极限均为零,这种情形称为“”型,对此情形不能直接运用极限运算法则,通常应设法去掉分母中的“零因子”.===.例4求.解此极限仍属于“”型,可采用二次根式有理化的办法去掉分母中的“零因子”.====.例5求.解分子分母均为无穷大,这种情形称为“”型.对于它,我们也不能直接运用极限运算法则,通常应设法将其变形.==.结论当,例6求解====1例7求解====.例8设f(x=问b取何值时,存在.解由于==2,==b,由第三节定理1可知,要存在,必须=,因此b=2.三、复合函数极限运算法则定理5设函数由复合而成,如果,且在x0的一个去心邻域内,,又=A,则=A.该定理可运用函数极限的定义直接推出,故略去证明.例9求解因为=0,=1,故=1.例10 求.解因为=0,=0,故=0.课堂总结1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则.在计算极限时,应注意法则成立的条件,不要错误地运用以上法则.。
高等数学第七版教材目录第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限运算法则1.4 无穷小与无穷大1.5 极限存在准则1.6 函数的连续性第二章:导数与微分2.1 导数的概念与性质2.2 导数的计算2.3 高阶导数与导数的应用2.4 微分的概念与性质2.5 微分中值定理2.6 隐函数与参数方程的求导第三章:微分中值定理与导数的应用3.1 罗尔定理与拉格朗日中值定理3.2 函数的单调性与曲线的凸凹性3.3 泰勒公式与函数的近似计算3.4 误差估计与导数的应用3.5 函数的图形与曲线的切线与法线第四章:积分与微分方程4.1 不定积分与定积分4.2 定积分的应用4.3 定积分的计算4.4 定积分中值定理与变限积分4.5 微积分基本定理4.6 微分方程的基本概念第五章:多元函数微分学5.1 二元函数的极限与连续性5.2 偏导数与全微分5.3 多元复合函数的求导法则5.4 隐函数与参数方程的求导5.5 多元函数的极值问题5.6 条件极值与拉格朗日乘数法第六章:重积分6.1 二重积分的概念与性质6.2 二重积分的计算6.3 二重积分的应用6.4 三重积分的概念与性质6.5 三重积分的计算6.6 三重积分的应用第七章:曲线与曲面积分7.1 曲线积分的概念与性质7.2 曲线积分的计算7.3 曲线积分的应用7.4 曲面积分的概念与性质7.5 曲面积分的计算7.6 曲面积分的应用第八章:无穷级数8.1 数项级数的收敛性与敛散性8.2 正项级数的审敛法8.3 一般级数的审敛法8.4 幂级数与幂函数8.5 傅里叶级数的概念与性质8.6 傅里叶级数的计算第九章:常微分方程9.1 微分方程的基本概念9.2 一阶微分方程的解法9.3 高阶微分方程的解法9.4 变量可分离方程与齐次方程9.5 常系数线性微分方程9.6 非齐次线性微分方程的特解第十章:数值计算方法10.1 插值多项式与拉格朗日插值10.2 牛顿插值与分段插值10.3 数值积分与复化公式10.4 数值微分与数值解微分方程10.5 常微分方程的数值解法10.6 线性方程组的数值解法通过以上目录,我们可以清楚地了解到高等数学第七版教材涵盖的知识内容。
高等数学第七版上册教材目录第一章函数与极限1.1 实数集及其表示方法1.1.1 实数及其性质1.1.2 实数集合及其表示方法1.2 函数的概念及表示方法1.2.1 函数的定义与表示方法1.2.2 函数的性质与运算1.3 极限的概念1.3.1 数列极限的定义1.3.2 函数极限的定义1.3.3 极限的运算法则1.3.4 极限存在准则1.4 极限的性质1.4.1 极限存在性的判定1.4.2 极限唯一性的证明1.4.3 极限与基本四则运算的关系1.5 无穷小与无穷大1.5.1 无穷小的定义与性质1.5.2 无穷大的定义与性质1.5.3 极限与无穷小的关系1.5.4 极限与无穷大的关系1.6 函数的连续性1.6.1 连续函数的概念与性质1.6.2 连续函数的运算与复合函数的连续性 1.6.3 分段连续函数的连续性1.7 一元函数的微分学1.7.1 导数的概念与几何意义1.7.2 导数的计算1.7.3 导数的运算法则1.7.4 高阶导数与高阶微分1.7.5 微分与近似计算1.8 函数的应用1.8.1 函数的导数与变化率1.8.2 回顾平均值定理1.8.3 罗尔中值定理1.8.4 拉格朗日中值定理1.8.5 函数的单调性与单调函数的性质第二章导数与微分2.1 基本初等函数的导数2.1.1 幂函数的导数2.1.2 指数函数的导数2.1.3 对数函数的导数2.1.4 三角函数的导数2.1.5 反三角函数的导数2.1.6 双曲函数的导数2.2 高阶导数与高阶微分2.2.1 高阶导数的计算2.2.2 高阶微分的计算2.2.3 高阶导数与高阶微分的关系2.3 隐函数与参数方程的导数2.3.1 隐函数的导数2.3.2 参数方程的导数2.4 微分中值定理2.4.1 极值定理2.4.2 魏尔斯特拉斯中值定理2.4.3 柯西中值定理2.5 导数的应用2.5.1 泰勒公式2.5.2 麦克劳林公式2.5.3 应用一—函数近似计算2.5.4 应用二—函数图形的描绘2.5.5 应用三—曲线运动的问题第三章微分学中值定理与高阶导数的应用 3.1 微分中值定理3.1.1 罗尔中值定理3.1.2 拉格朗日中值定理3.1.3 泰勒中值定理3.2 凸函数与曲率3.2.1 凸函数的概念与性质3.2.2 曲率与凹凸性3.3 最值与单调性3.3.1 最值问题3.3.2 单调性与最值的关系3.4 弧长与曲线的表达式3.4.1 弧长的定义与计算3.4.2 曲线的参数方程与弧长 3.5 平面曲线的切线与法线3.5.1 曲线的切线与法线3.5.2 弧微分与切线方程3.6 曲率与曲率半径3.6.1 曲率的定义与计算3.6.2 曲率与切线、法线的关系 3.6.3 曲率半径的概念与计算 3.7 高阶导数的应用3.7.1 正定矩阵及其判别3.7.2 一元函数的最值问题3.7.3 二元函数的最值问题3.7.4 条件极值问题与拉格朗日乘数法 3.7.5 重要定理与其应用第四章不定积分4.1 不定积分的概念4.1.1 不定积分的定义4.1.2 不定积分的性质4.1.3 一些常用积分公式4.2 基本积分公式与运算法则4.2.1 幂函数与三角函数的积分4.2.2 指数函数与对数函数的积分4.2.3 反三角函数的积分4.2.4 一些特殊函数的积分4.3 定积分的概念与性质4.3.1 定积分的定义4.3.2 定积分的性质4.4 定积分的计算4.4.1 定积分的基本计算方法 4.4.2 特殊函数的定积分4.4.3 无穷区间上的定积分 4.5 反常积分4.5.1 反常积分的定义4.5.2 收敛与发散性的判定 4.5.3 反常积分的计算方法 4.5.4 收敛反常积分的性质 4.5.5 瑕积分及其收敛性第五章定积分的应用5.1 定积分的应用5.1.1 曲线长度5.1.2 曲线面积5.1.3 旋转体的体积5.2 物理应用5.2.1 质点沿直线的运动5.2.2 质点的曲线运动5.2.3 质点的匀加速运动5.3 泰勒公式的应用5.3.1 函数近似计算的误差估计 5.3.2 级数的收敛域5.3.3 常微分方程的初值问题 5.3.4 二阶常微分方程的应用。
第七版高等数学教材目录第一章极限与连续1.1 数列与极限1.1.1 数列的概念及表示方法1.1.2 数列极限的定义与性质1.1.3 常见数列的极限计算1.1.4 数列极限存在准则与夹逼定理1.2 函数与极限1.2.1 函数的概念与表示方法1.2.2 函数极限的定义与性质1.2.3 函数的连续性与间断点1.2.4 导数与微分1.2.5 函数的极值与最值1.3 极限的运算1.3.1 无穷小与无穷大量1.3.2 极限的四则运算1.3.3 极限的复合与反函数1.4 一元函数的连续性1.4.1 一元函数连续的概念1.4.2 连续函数的运算与性质1.4.3 闭区间上连续函数的性质第二章导数与微分2.1 函数的导数2.1.1 导数的定义与几何意义2.1.2 导数的运算法则2.1.3 高阶导数与导数的应用2.2 微分学基本定理2.2.1 微分的定义与计算2.2.2 微分的几何意义与应用2.3 隐函数与参数方程2.3.1 隐函数及其导数2.3.2 参数方程及其导数2.4 极值与最值2.4.1 极值与最值的概念2.4.2 高阶导数与极值判定2.4.3 边界条件下的最值问题2.5 凹凸性与拐点2.5.1 凹凸性与凹凸函数2.5.2 拐点及其判定条件2.5.3 曲线的凹凸性与拐点的应用第三章微分学的应用3.1 泰勒公式与函数逼近3.1.1 泰勒公式的定理与推论3.1.2 泰勒展开与函数逼近3.2 级数与幂级数3.2.1 级数的概念与性质3.2.2 幂级数的收敛域3.2.3 幂级数的运算与应用3.3 曲线的特性与曲率3.3.1 弧微分与曲线的弧长3.3.2 曲率及其计算3.3.3 曲线的曲率半径与造型设计3.4 微分方程3.4.1 常微分方程与初值问题3.4.2 一阶线性常微分方程3.4.3 可降解与可分离变量的微分方程3.4.4 高阶线性常微分方程第四章不定积分与定积分4.1 不定积分4.1.1 不定积分的概念与性质4.1.2 基本不定积分表4.1.3 牛顿—莱布尼茨公式4.1.4 积分方法与积分应用4.2 定积分4.2.1 定积分的概念与性质4.2.2 定积分的基本定理4.2.3 微积分基本公式4.2.4 定积分的性质与运算4.2.5 定积分的应用第五章微分方程与数值计算5.1 微分方程的基本概念5.1.1 微分方程的类型与表示5.1.2 微分方程的解与通解5.1.3 微分方程的初值问题5.2 一阶微分方程5.2.1 可分离变量的一阶微分方程5.2.2 线性一阶微分方程5.2.3 可降解的一阶微分方程5.2.4 齐次线性一阶微分方程5.3 高阶微分方程5.3.1 常系数线性高阶微分方程5.3.2 常系数齐次线性高阶微分方程5.3.3 变系数线性高阶微分方程第六章向量代数与空间解析几何6.1 向量的基本运算6.1.1 向量的表示与运算6.1.2 向量的数量积与夹角6.1.3 向量的向量积与混合积6.2 空间解析几何6.2.1 点与直线的位置关系6.2.2 空间直线的方程6.2.3 利用向量表示平面6.2.4 空间曲线的方程与几何性质第七章多元函数微分学7.1 多元函数的概念与表示7.1.1 多元函数的定义与场域7.1.2 多元函数的极限与连续性7.2 偏导数与全微分7.2.1 偏导数的概念与性质7.2.2 全微分与偏导数的关系7.3 多元函数的微分法7.3.1 隐函数与反函数的求导7.3.2 多元复合函数的求导7.3.3 链式法则与高阶导数7.4 多元函数的极值与最值7.4.1 多元函数的极值与最值的定义7.4.2 条件极值与拉格朗日乘数法7.5 多元函数的积分与曲线积分7.5.1 多元函数的积分定义与性质7.5.2 曲线积分与格林公式7.5.3 曲面积分与高斯公式7.6 多元函数的微分方程7.6.1 一阶常微分方程的几何解释7.6.2 齐次与非齐次的常微分方程7.6.3 二阶常系数线性微分方程以上是第七版高等数学教材的目录,涵盖了数学分析的基础知识与方法,包括极限与连续、导数与微分、微分方程、积分与微分学应用等内容。
高等数学第7版教材目录本教材分为以下主要章节:第一章:函数和极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限存在准则与计算1.4 无穷小与无穷大1.5 极限的运算法则1.6 连续与间断第二章:导数与微分2.1 导数的概念与几何意义2.2 导数的计算2.3 高阶导数与导数公式2.4 已知导函数求原函数2.5 微分的概念与计算2.6 高阶微分与微分公式第三章:微分中值定理3.1罗尔中值定理3.2 拉格朗日中值定理3.3 函数单调性与函数的图像 3.4 函数的极值与最值3.5 函数的凹凸性与拐点3.6 分析作图与最优化问题第四章:不定积分4.1 原函数与不定积分4.2 不定积分的基本公式与性质 4.3 第一换元法4.4 第二换元法4.5 分部积分法4.6 综合运用不定积分法求积分第五章:定积分与数值积分5.1 定积分的定义与性质5.2 定积分的计算5.3 定积分的应用5.4 定积分的几何应用5.5 数值积分的概念与公式5.6 数值积分的误差估计第六章:微分方程6.1 微分方程基本概念与解的存在唯一性定理 6.2 一阶微分方程的常见类型6.3 可分离变量的方程6.4 齐次方程与伯努利方程6.5 一阶线性方程6.6 变量可分离的高阶方程第七章:多元函数微分学7.1 多元函数的极限与连续7.2 偏导数及其计算7.3 隐函数与参数方程7.4 多元函数的微分学定理与全微分7.5 多元复合函数的求导法则7.6 多元函数的高阶导数第八章:多元函数微分学的应用 8.1 多元函数的极值问题8.2 最小二乘法8.3 条件极值与拉格朗日乘子法 8.4 多元函数的泰勒展开8.5 多元函数的方向导数与梯度 8.6 多元函数的极值与最值问题第九章:重积分9.1 二重积分的概念与性质9.2 二重积分的计算9.3 两类重要的曲线与曲面积分 9.4 三重积分的概念与性质9.5 三重积分的计算9.6 重积分的应用第十章:曲线积分与曲面积分 10.1 曲线积分的概念与计算10.2 曲线积分的物理应用10.3 曲面积分的概念与计算10.4 曲面积分的物理应用10.5 斯托克斯公式10.6 散度定理与高斯公式第十一章:无穷级数11.1 数项级数的概念与性质11.2 收敛级数的判别法11.3 幂级数的收敛半径与收敛域11.4 泰勒级数与带余项的计算11.5 函数展开成幂级数11.6 傅里叶级数与一些特殊函数通过以上章节的学习,可以全面系统地掌握高等数学的基本内容和方法,为进一步学习相关学科打下坚实的基础。