厌氧生物处理工艺
- 格式:doc
- 大小:1.50 MB
- 文档页数:32
厌氧生物滤池工艺流程
《厌氧生物滤池工艺流程》
厌氧生物滤池工艺是一种常用的废水处理方法,通过厌氧条件下的微生物群落来去除有机物质和氮磷等污染物。
其工艺流程一般包括预处理、厌氧生物滤池反应和后处理三个主要步骤。
首先是预处理阶段,废水首先经过粗筛、调节水质、去除沉积物等预处理步骤,将废水中的大颗粒杂质和污泥等物质去除,以保证后续的处理过程能够正常进行。
然后将预处理后的水送入厌氧生物滤池反应区。
在厌氧生物滤池反应区,废水接触到被固定在填料表面的微生物,通过微生物对有机物质的降解和氮磷的去除来洁净水体。
微生物在厌氧条件下对有机物质进行分解和氮磷的去除,同时产生甲烷等气体。
在这一过程中,需要控制好温度、PH值和氧化还原电位等参数,以保证微生物活性和反应效果。
最后是后处理阶段,主要是分离和处理出来的沉淀物和气体等产物。
将沉淀物进行浓缩、脱水等处理,以减少后续处置的负担,同时对排放的气体进行收集和处理,以保护环境。
整个工艺流程涉及到物理、化学和生物等多种工艺,需要严格控制各个环节的参数以保证处理效果。
厌氧生物滤池工艺在废水处理方面具有较好的效果和适用性,被广泛应用于各种工业废水和生活污水的处理中。
第六章厌氧生物处理工艺第一节厌氧生物处理工艺的发展概况及特征一、厌氧生物处理工艺的发展简史实际上,厌氧生物过程广泛地存在于自然界中,但人类第一次有意识地利用厌氧生物过程来处理废弃物,则是在1881年由法国的Louis Mouras所发明的“自动净化器”开始的,随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污泥(如各种厌氧消化池等)。
这些厌氧反应器现在通称为“第一代厌氧生物反应器”,它们的共同特点是:①水力停留时间(HRT)很长,有时在污泥处理时,污泥消化池的HRT会长达90天,即使是目前在很多现代化城市污水处理厂内所采用的污泥消化池的HRT也还长达20~30天;②虽然HRT相当长,但处理效率仍十分低,处理效果还很不好;③具有浓臭的气味,因为在厌氧消化过程中原污泥中含有的有机氮或硫酸盐等会在厌氧条件下分别转化为氨氮或硫化氢,而它们都具有十分特别的臭味。
以上这些特点使得人们对于进一步开发和利用厌氧生物过程的兴趣大大降低,而且此时利用活性污泥法或生物膜法处理城市污水已经十分成功。
但是,当进入上世纪50、60年代,特别是70年代的中后期,随着世界范围的能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得以强化,相继出现了一批被称为现代高速厌氧消化反应器的处理工艺,从此厌氧消化工艺开始大规模地应用于废水处理,真正成为一种可以与好氧生物处理工艺相提并论的废水生物处理工艺。
这些被称为现代高速厌氧消化反应器的厌氧生物处理工艺又被统一称为“第二代厌氧生物反应器”,它们的主要特点有:①HRT大大缩短,有机负荷大大提高,处理效率大大提高;②主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;③HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。
以上这些特点彻底改变了原来人们对厌氧生物过程的认识,因此其实际应用也越来越广泛。
厌氧生物处理工艺厌氧生物处理工艺是目前普遍应用于污水处理领域的一种可持续发展的技术。
其主要运用了厌氧微生物代谢作用,对有机质进行有效降解,达到净化水质的目的。
本文将从以下几个方面阐述关于厌氧生物处理工艺的相关知识。
一、工艺流程厌氧生物处理工艺主要包括预处理、进料、反应池、沉淀、出料等环节。
预处理阶段主要是将污水进行初步筛选、过滤,去除水中的大颗粒污染物。
进料与反应池则是本处理工艺的重要阶段,污水进入反应池后,进行厌氧微生物的生长代谢,通过不同的bacteria菌类在反应池中进行有机质降解。
沉淀阶段是将处理后的水进行固液分离,将污泥从水中分离。
最后,通过出料阶段,将净化后的水体进行排放。
二、优点厌氧生物处理工艺相比于其他处理手段,具有以下优点:(1)处理效果显著:该处理方法对于高浓度有机质污水的处理效果显著。
其降解效果与其他处理方式相比,化肥成本更低,同时也可提高污泥的容积负荷。
(2)技术成熟:与传统的污水处理方式相比,厌氧生物处理技术成熟且经济实用,可运用于各种规模的污水处理厂。
(3)经济环保性:厌氧生物处理工艺是一种环保型的技术,其处理过程没有使用化学物质,节约了化肥成本,同时也不会产生二次污染问题。
三、缺点尽管厌氧生物处理工艺在处理高浓度有机质污水方面效果显著,但也存在一些缺点。
(1)处理工艺较复杂,需要耗费一定的时间和成本。
(2)反应池温度和压力等主要处理参数的稳定性需要得到保证。
(3)反应池需要经常进行清理维护。
四、总结综上所述,厌氧生物处理工艺在污水处理技术中具有明显优势,在多领域得到了广泛应用。
尽管存在一些缺点,但随着技术的不断完善,厌氧生物处理工艺将会得到更广泛的应用。
以上就是本文对于厌氧生物处理工艺的阐述,希望能够对大家了解该技术的相关知识提供一些帮助。
试述厌氧生物处理工艺的原理及控制条件。
厌氧生物处理工艺是一种有效、高性能的污水净化技术,可以去除污染物,如有机物、氨氮和氰化物等。
厌氧生物处理实际上是几种微生物的合作来处理有机污染物,也被称为
生物床系统。
厌氧生物处理工艺的原理是利用厌氧微生物作用,以有机物为能量源,发酵转化为水
和二氧化碳,从而将有机物去除。
厌氧微生物体外具有多种代谢活性,可以分解很多有机
化合物,其中以酸性、中性、碱性代谢活性最为显著。
厌氧生物处理工艺的控制条件主要包括温度、pH值、溶解氧浓度、有机物负荷、氨氮浓度等因素。
为了保证厌氧生物的生存和有效分解污染物,这些参数的适宜范围必须保持。
首先,温度是影响厌氧生物活性的重要因素,常见温度范围通常在20-35°C之间,
在此温度范围中,厌氧微生物具有最高的分解效率。
其次,为了保持其最佳活性,pH值应控制在6-7.5之间。
另外,溶解氧的浓度也是影响厌氧生物处理的关键因素,应尽量保持溶解氧大于
2mg/L。
此外,有机物负荷工艺控制也是厌氧生物处理的关键因素,有机物的分解速度与有机
物负荷的大小成正比,因此,应控制有机物负荷,以便有效处理污水。
最后,氨氮是一种比较持久性和有害的污染物,为了有效去除氨氮,应控制其氨氮浓
度在0.2-2.0mg/L之间。
两相厌氧生物处理工艺
两相厌氧生物处理工艺是一种将厌氧消化和酸化结合在一起的处理工艺,适用于处理有机废水和有机固体废物。
该工艺主要包括两个阶段:酸化阶段和厌氧消化阶段。
在酸化阶段,废水或废物首先进入一个酸化反应器,通过调节温度和pH值,以及添加酸化剂和微生物种群,将有机废物转
化为有机酸、醇和氨等化合物。
这个阶段的主要目的是降低废物的pH值,并提供适宜的条件为后续的厌氧消化阶段做准备。
在厌氧消化阶段,酸化产物被输送到厌氧消化器,与厌氧菌共同代谢。
在厌氧消化过程中,有机物被微生物分解为甲烷、二氧化碳和水等产物。
厌氧消化的最终目的是将有机物质转化为可利用的生物气体。
相比于其他处理工艺,两相厌氧生物处理工艺具有以下优点:1. 适用于处理高浓度有机废物,具有较高的处理效率和负荷能力。
2. 生产的甲烷气体可以用于能源回收或发电。
3. 在厌氧消化过程中,产生的污泥量较小,节约处理成本。
4. 可以适应不同的废物和废水类型,具有较强的适应性。
然而,两相厌氧生物处理工艺也存在一些局限性,例如较长的停留时间、对温度和pH值的敏感性,以及对微生物的要求较
高等。
总之,两相厌氧生物处理工艺是一种有效的废水和废物处理工艺,可以实现有机物的高效转化和能源回收。
7.1厌氧工艺厌氧生物处理是利用厌氧性微生物的代谢特性,在不需提供外源能量的条件下,以被还原有机物作为受氢体,将有机物最终转化为甲烷、二氧化碳、水、硫化氢和氨等小分子物质的处理方法。
在此过程中,不同的微生物的代谢过程相互影响,相互制约,形成复杂的生态系统厌氧降解过程可以被分为四个阶段。
①水解阶段:蛋白质、碳水化合物和脂类等高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能被细菌直接利用。
因此它们在第一阶段被细菌胞外酶分解为小分子。
如废水中的纤维素被纤维素酶水解为纤维二糖与葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等,这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
②发酵阶段:在这一阶段,上述的小分子的化合物在发酵细菌的细胞内转化为更为简单的化合物并分泌到细胞外,这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。
与此同时,酸化菌也利用部分物质合成新的细胞物质,氨基酸、糖类、较高级的脂肪酸及醇类被厌氧氧化。
③产乙酸阶段:在此阶段,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
④产甲烷阶段:在这一阶段里,乙酸、氢气、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新的细胞物质。
厌氧生物处理技术由于高效率、低成本、高有机负荷和多用途等方面,已广泛应用于高、中、低浓度的有机废水处理,应用行业涉及造纸、皮革、制糖、酒精、制药、肉类食品加工、合成脂肪酸等。
近二十多年来,发展了多种由于处理高浓度有机废水的高效厌氧消化工艺,有厌氧接触工艺、厌氧生物滤池、厌氧流化床反应器、上流式厌氧污泥床反应器、两相厌氧消化系统等。
7.2.1厌氧接触工艺是在传统的完全混合反应器(Complete Stirred TankReactor,简写作CSTR)的基础上发展而来的,在一个厌氧的完全混合反应器后增加了污泥分离和回流装置,从而使污泥停留时间(SRT)大于水力停留时间(HRT),有效的增加了反应器中的污泥浓度。
共享知识分享快乐废水的厌氧生物处理技术厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。
1厌氧生物处理的基本原理1.1两阶段理论在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。
第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。
第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。
1.2三阶段理论三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。
有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。
产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。
该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。
1.3四阶段理论几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。
与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria), 该菌群的代谢特点是能将H2/CO2合成为乙酸。
但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。
目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。
2厌氧生物处理的优缺点卑微如蝼蚁、坚强似大象共享知识分享快乐厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。
(1)厌氧法的主要优点:①应用范围较广:适用于处理污泥及有机废水;可处理好氧法难降解的有机物,也可处理含有毒有害物质较高的有机废水。
②运行成本与能耗较低:厌氧处理的污泥产率低;厌氧法所需营养成分较少,一般可不必投加营养分;厌氧法不需要供氧设备,因而能耗较少。
厌氧生物处理法工艺流程厌氧生物处理法(Anaerobic Biological Treatment)是一种常用的污水处理方法,适用于有机废水的处理。
该方法在缺氧的环境中利用厌氧微生物对有机物进行降解和转化,产生可利用的能源和无害的废物。
厌氧生物处理工艺流程可以分为四个主要的步骤:1. 预处理:原始废水首先需要经过预处理,去除大颗粒物质和沉淀物,以防止对后续处理设备和微生物的不利影响。
预处理可以通过筛网和沉砂池等物理方法进行。
2. 缺氧反应器:预处理后的废水被引入缺氧反应器,该反应器是厌氧微生物生长和代谢的主要环境。
厌氧微生物分解有机物质产生沼气,其中主要成分为甲烷和二氧化碳。
反应器内的厌氧微生物通过发酵和酸化作用将有机物分解成短链脂肪酸和氨基酸等中间产物。
3. 沼气收集和利用:产生的沼气可以通过收集系统进行收集和处理。
沼气中的甲烷可以用作燃料,发电或供应给其他需要能源的设备,而二氧化碳则可以通过适当的处理回收利用。
4. 沉淀池和沉淀池:厌氧反应器后的废物水和厌氧微生物一起被引入沉淀池和沉淀池。
在这些装置中,微生物会沉淀在底部形成污泥,而水则从顶部流出。
污泥可以作为农业肥料或通过其他方法处理和处置。
厌氧生物处理法具有许多优点。
首先,它能够有效地处理高浓度有机废水,降解有机物质并减少废物对环境的影响。
其次,产生的沼气可用作能源,减少了对传统能源的需求,同时还可以降低温室气体排放。
此外,相对于其他生物处理方法,厌氧生物处理工艺具有更低的能耗和操作成本。
然而,厌氧生物处理法也存在一些挑战。
首先,该方法对温度和pH等环境条件较为敏感,必须在一定范围内才能正常运行。
其次,处理效果可能受到一些抑制剂和毒物的影响,这需要进行适当的控制和监测。
总而言之,厌氧生物处理法是一种具有广泛应用前景的污水处理方法,能够有效降解有机废水,并产生可利用的能源。
在实际应用中,可以根据具体情况对工艺流程进行调整和优化,以提高处理效果和经济效益。
常见的厌氧生物处理工艺说到厌氧生物处理工艺,哎呀,那可是个有趣的话题。
听起来可能有点复杂,但其实就是利用一些小生物来帮我们处理污水,嘿,这些生物可真是勤劳的小家伙。
想象一下,咱们的生活中产生的垃圾水,如果不处理,那可就成了麻烦的源头了。
不过有了厌氧处理工艺,这一切就迎刃而解了。
简而言之,就是在没有氧气的环境下,让这些小生物来“吃”掉污水里的脏东西。
怎么说呢,像是请了一群小厨师,专门做污水的“大餐”。
这种工艺常用在一些特定的地方,比如说污水处理厂。
咱们的日常生活中,洗澡、冲厕所、洗衣服,这些产生的污水,如果任由它们“横行”,可就麻烦了。
而厌氧生物处理就像是把污水送到了一个隐秘的厨房,里面的小生物们开始大显身手。
就像你在厨房里忙活,切菜、炒菜、煮汤,这些小家伙们也是在不停地工作。
它们用自身的代谢,把那些复杂的有机物“消化”掉,最终变成简单的物质,真是个神奇的过程!说到这里,咱们得提到几个具体的工艺了,别急,别急,这里可不是高深莫测的科学课,而是有趣的生活知识。
有个常见的工艺叫做“厌氧消化”。
想象一下,把污水放到一个大罐子里,里面是个“黑暗厨房”,小生物们在里面忙得不可开交。
这个罐子就像是个派对,大家在这里尽情享受。
它们吃掉污水中的有机物,产生甲烷和二氧化碳。
甲烷呢,可以用来发电,简直是环保又省钱。
而二氧化碳,嘿嘿,虽然不那么受欢迎,但在这里也算是个“重要配角”了。
还有一个不得不提的工艺叫做“厌氧滤池”。
这个就像是个小型的水族馆,里面有些特殊的微生物。
这些小家伙们在滤池里生活,慢慢地“喝”掉污水中的营养物质。
这就像是给它们准备了一顿丰盛的自助餐,生物们一个个兴奋得不得了。
污水经过这个滤池,变得越来越干净,真是太神奇了。
别以为只有这些工艺,咱们还有“厌氧槽”,这是个更复杂的系统。
就像是一场精心策划的演出,多个小生物在这里合力表演。
这个工艺可以处理大流量的污水,效率杠杠的,像极了繁忙的城市,大家都在为了共同的目标而努力。
什么是厌氧生物处理工艺
厌氧生物处理又称为厌氧消化或厌氧发酵,它是一个复杂的生物
化学过程,主要依靠水解产酸菌、产氢产乙酸菌和产甲烷菌的共同作用来完成。
厌氧生物处理工艺是指在无氧的条件下,通过厌氧和兼氧微生物的共同作用,使污水中的碳水化合物、脂肪和蛋白质等复杂有机物经厌氧分解,转化成短链脂肪酸等简单且稳定的物质,同时释放能量。
如果控制条件适宜,产甲烷细菌将继续进行厌氧反应,最终形成甲烷和二氧化碳等。
由于仅有少量的有机物被转化成新的细胞组织,相对于好氧生物处理,厌氧生物处理的污泥增长率要小得多。
厌氧生物处理既适用于高浓度有机废水的处理,又可用于降解某些好氧生物处理难以降解的有机物。
在大多数高浓度有机废水的处理中,厌氧生物处理多是作为好氧
生物处理的预处理工艺,目的是提高处理效果和节省运行费用。
第六章厌氧生物处理工艺第一节厌氧生物处理工艺的发展概况及特征一、厌氧生物处理工艺的发展简史实际上,厌氧生物过程广泛地存在于自然界中,但人类第一次有意识地利用厌氧生物过程来处理废弃物,则是在1881年由法国的Louis Mouras所发明的“自动净化器”开始的,随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污泥(如各种厌氧消化池等)。
这些厌氧反应器现在通称为“第一代厌氧生物反应器”,它们的共同特点是:①水力停留时间(HRT)很长,有时在污泥处理时,污泥消化池的HRT会长达90天,即使是目前在很多现代化城市污水处理厂内所采用的污泥消化池的HRT也还长达20~30天;②虽然HRT相当长,但处理效率仍十分低,处理效果还很不好;③具有浓臭的气味,因为在厌氧消化过程中原污泥中含有的有机氮或硫酸盐等会在厌氧条件下分别转化为氨氮或硫化氢,而它们都具有十分特别的臭味。
以上这些特点使得人们对于进一步开发和利用厌氧生物过程的兴趣大大降低,而且此时利用活性污泥法或生物膜法处理城市污水已经十分成功。
但是,当进入上世纪50、60年代,特别是70年代的中后期,随着世界范围的能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得以强化,相继出现了一批被称为现代高速厌氧消化反应器的处理工艺,从此厌氧消化工艺开始大规模地应用于废水处理,真正成为一种可以与好氧生物处理工艺相提并论的废水生物处理工艺。
这些被称为现代高速厌氧消化反应器的厌氧生物处理工艺又被统一称为“第二代厌氧生物反应器”,它们的主要特点有:①HRT大大缩短,有机负荷大大提高,处理效率大大提高;②主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;③HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。
以上这些特点彻底改变了原来人们对厌氧生物过程的认识,因此其实际应用也越来越广泛。
进入20世纪90年代以后,随着以颗粒污泥为主要特点的UASB反应器的广泛应用,在其基础上又发展起来了同样以颗粒污泥为根本的颗粒污泥膨胀床(EGSB)反应器和厌氧内循环(IC)反应器。
其中EGSB 反应器利用外加的出水循环可以使反应器内部形成很高的上升流速,提高反应器内的基质与微生物之间的接触和反应,可以在较低温度下处理较低浓度的有机废水,如城市废水等;而IC反应器则主要应用于处理高浓度有机废水,依靠厌氧生物过程本身所产生的大量沼气形成内部混合液的充分循环与混合,可以达到更高的有机负荷。
这些反应器又被统一称为“第三代厌氧生物反应器”。
二、厌氧生物处理的主要特征1、主要优点与废水的好氧生物处理工艺相比,废水的厌氧生物处理工艺具有以下主要优点:①能耗大大降低,而且还可以回收生物能(沼气);因为厌氧生物处理工艺无需为微生物提供氧气,所以不需要鼓风曝气,减少了能耗,而且厌氧生物处理工艺在大量降低废水中的有机物的同时,还会产生大量的沼气,其中主要的有效成分是甲烷,是一种可以燃烧的气体,具有很高的利用价值,可以直接用于锅炉燃烧或发电;②污泥产量很低;这是由于在厌氧生物处理过程中废水中的大部分有机污染物都被用来产生沼气——甲烷和二氧化碳了,用于细胞合成的有机物相对来说要少得多;同时,厌氧微生物的增殖速率比好氧微而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD 。
③ 厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;因此,对于某些含有难降解有机物的废水,利用厌氧工艺进行处理可以获得更好的处理效果,或者可以利用厌氧工艺作为预处理工艺,可以提高废水的可生化性,提高后续好氧处理工艺的处理效果。
2、主要缺点与废水的好氧生物处理工艺相比,废水厌氧生物处理工艺也存在着以下的明显缺点:① 厌氧生物处理过程中所涉及到的生化反应过程较为复杂,因为厌氧消化过程是由多种不同性质、不同功能的厌氧微生物协同工作的一个连续的生化过程,不同种属间细菌的相互配合或平衡较难控制,因此在运行厌氧反应器的过程中需要很高的技术要求;② 厌氧微生物特别是其中的产甲烷细菌对温度、pH 等环境因素非常敏感,也使得厌氧反应器的运行和应用受到很多限制和困难;③ 虽然厌氧生物处理工艺在处理高浓度的工业废水时常常可以达到很高的处理效率,但其出水水质仍通常较差,一般需要利用好氧工艺进行进一步的处理;④ 厌氧生物处理的气味较大;⑤ 对氨氮的去除效果不好,一般认为在厌氧条件下氨氮不会降低,而且还可能由于原废水中含有的有机氮在厌氧条件下的转化导致氨氮浓度的上升。
三、厌氧生物处理技术是我国水污染控制的重要手段我国高浓度有机工业废水排放量巨大,这些废水浓度高、多含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物;我国当前的水体污染物还主要是有机污染物以及营养元素N 、P 的污染;目前的形势是:能源昂贵、土地价格剧增、剩余污泥的处理费用也越来越高;厌氧工艺的突出优点是:① 能将有机污染物转变成沼气并加以利用;② 运行能耗低;③ 有机负荷高,占地面积少;④ 污泥产量少,剩余污泥处理费用低;等等;厌氧工艺的综合效益表现在环境、能源、生态三个方面。
四、厌氧消化过程中沼气产量的估算糖类、脂类和蛋白质等有机物经过厌氧消化能转化为甲烷和CO 2等气体,这样的混合气体统称为沼气(Biogas );产生沼气的数量和成分取决于被消化的有机物的化学组成,一般可以用下式进行估算:42248248224CH b a n CO b a n O H b a n O H C b a n ⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛+-→⎪⎭⎫ ⎝⎛--+理论上认为,1gCOD 在厌氧条件下完全降解可以生成0.25 gCH 4,相当于标准状态下的甲烷气体体积为0.35L ;沼气中CO 2和CH 4的百分含量不仅与有机物的化学组成有关,还与其各自的溶解度有关;由于一部分沼气(主要是其中的CO 2)会溶解在出水中而被带走,同时,一小部分有机物还会被用于微生物细胞的合成,所以实际的产气量要比理论产气量小。
第二节 早期的厌氧生物反应器这是厌氧消化应用于废水处理的初级阶段,是从1881年法国Mouras 设计的自动净化器开始到本世纪的20年代;主要代表有:① 1881年法国Mouras 的自动净化器:② 1891年英国Moncriff 的装有填料的升流式反应器:③ 1895年,英国设计的化粪池(Septic Tank );④ 1905年,德国的Imhoff 池(又称隐化池、双层沉淀池);等等。
这些早期的厌氧生物反应器的共同特点是:①处理废水的同时,也处理从废水中沉淀下来的污泥;②前几种构筑物由于废水与污泥不分隔而影响出水水质;③双层沉淀池则有了很大改进,有上层沉淀池和下层消化池;④停留时间很长,出水水质也较差;⑤后两种反应器曾在英、美、德、法等国得到广泛推广,在我国目前仍有应用。
第三节厌氧消化池随着活性污泥法、生物滤池等好氧生物处理工艺的开发和推广应用,厌氧生物处理被认为是效率低、HRT长、受温度等环境条件的影响大,因此处于一种被遗弃的状态;但好氧生物处理工艺的广泛应用,产生的剩余污泥也越来越多,其稳定化处理的主要手段是厌氧消化,这是第二阶段的主要特征;1927年,首次在消化池中加上了加热装置,使产气速率显著提高;随后,又增加了机械搅拌器,反应速率进一步提高;50年代初又开发了利用沼气循环的搅拌装置;带加热和搅拌装置的消化池被称为高速消化池,至今仍是城市污水处理厂中污泥处理的主要技术。
一、消化池的类型与构造厌氧消化池主要应用于处理城市污水厂的污泥,也可应用于处理固体含量很高的有机废水;它的主要作用是:①将污泥中的一部分有机物转化为沼气;②将污泥中的一部分有机物转化成为稳定性良好的腐殖质;③提高污泥的脱水性能;④使得污泥的体积减少1/2以上;⑤使污泥中的致病微生物得到一定程度的灭活,有利于污泥的进一步处理和利用。
1、消化池的分类:消化池可以按其形状分为:圆柱形、椭圆形(卵形)和龟甲形等几种形式;也可以按其池顶结构形式的不同将其分为:固定盖式和浮动盖式的消化池;或者还可以按其运行方式的不同分为:传统消化池和高速消化池。
1) 传统消化池:传统消化池又称为低速消化池,在池内没有设置加热和搅拌装置,所以有分层现象,一般分为浮渣层、上清液层、活性层、熟污泥层等,其中只有在活性层中才有有效的厌氧反应过程在进行,因此在传统消化池中只有部分容积有效;传统消化池的最大特点就是消化反应速率很低,HRT很长,一般为30~90天。
2) 高速消化池与传统消化池不同的是,在高速消化池中设有加热和/或搅拌装置,因此缩短了有机物稳定所需的时间,也提高了沼气产量,在中温(30~35 C)条件下,其HRT可以为15天左右,运行效果稳定;但搅拌使高速消化池内的污泥得不到浓缩,上清液与熟污泥不易分离。
3) 两级串联消化池两级串联,第一级采用高速消化池,第二级则采用不设搅拌和加热的传统消化池,主要起沉淀浓缩和贮存熟污泥的作用,并分离和排出上清液;二者的HRT的比值可采用1 : 1~1 : 4,一般为1 : 2。
2、消化池的构造消化池一般由池顶、池底和池体三部分组成;消化池的池顶有两种形式,即固定盖和浮动盖,池顶一般还兼做集气罩,可以收集消化过程中所产生的沼气;消化池的池底一般为倒圆锥形,有利于排放熟污泥。
1) 消化池内的搅拌:在高速消化池内均设有搅拌装置,可以分为机械搅拌和沼气搅拌两种形式。
其中的机械搅拌又分为:①泵搅拌:从池底抽出消化污泥,用泵加压后送至浮渣层表面或其它部位,进行循环搅拌,一般与进料和池外加热合并一起进行;②螺旋浆搅拌:在一个竖向导流管中安装螺旋桨;③水射器搅拌:利用污泥① 气提式搅拌;② 竖管式搅拌;③ 气体扩散式搅拌。
2) 消化池内的加热:在高速消化池内一般需要将反应温度控制在中温范围内,即约为35︒C 左右,因此必须考虑对进入消化池的污泥或直接在消化池内部进行加热。
消化池内的加热方式主要有:① 池内蒸汽直接加热,其优点是设备简单,但容易造成局部污泥过热,会影响厌氧微生物的正常活动,而且蒸气直接通入池内会增加污泥的含水率;② 池外加热:将进入消化池的污泥预热后再投配到消化池中,所需预热的污泥量较少,易于控制;预热温度较高,有利于杀灭虫卵;不会对厌氧微生物不利;但设备较复杂。
二、消化池的设计计算消化池的设计计算的主要内容包括:① 消化池体积的计算与池体设计;② 消化池内搅拌设备的设计与计算;③ 消化池所需要的加热保温系统的设计与计算;等。
1、消化池的池体设计目前,国内一般按污泥投配率来计算所需的消化池容积,即:pV V '=式中:V ——消化池的有效容积,m 3;V ’——每天需要处理的新鲜污泥的统计,m 3/d ;p ——污泥投配率。