比和比例综合练习题及答案-
- 格式:docx
- 大小:37.07 KB
- 文档页数:3
比和比例练习题答案比和比例练习题答案在数学中,比和比例是非常重要的概念。
它们不仅在日常生活中有着广泛的应用,而且在数学领域中也扮演着重要的角色。
比和比例的概念可以帮助我们解决各种实际问题,比如商业领域中的定价和销售策略,科学研究中的数据分析以及金融市场中的投资决策等。
在本文中,我们将讨论一些常见的比和比例练习题,并给出详细的解答。
第一题:小明身高是150厘米,小红身高是120厘米,求小明身高与小红身高的比值。
解答:比值是用来比较两个量的关系的。
在这个问题中,我们需要比较小明的身高和小红的身高。
小明的身高是150厘米,小红的身高是120厘米。
所以小明身高与小红身高的比值是150:120,或者简化为5:4。
第二题:某商品的原价是200元,现在打8折出售,求打折后的价格。
解答:打折是一种常见的促销手段,可以吸引更多的消费者。
在这个问题中,原价是200元,打8折意味着价格打了80%。
所以打折后的价格是200元乘以80%,即200*0.8=160元。
第三题:小明去超市购买了一箱牛奶,每箱有12瓶。
如果他买了3箱牛奶,那么他总共购买了多少瓶牛奶?解答:这个问题涉及到了比例的概念。
每箱牛奶有12瓶,小明买了3箱牛奶,所以总共购买的瓶数是12*3=36瓶。
第四题:某公司的员工中,男性员工有120人,女性员工占总员工数的40%,求该公司的总员工数。
解答:这个问题需要我们通过比例来求解。
已知女性员工占总员工数的40%,那么男性员工占总员工数的60%(100%-40%)。
男性员工有120人,所以总员工数是120/0.6=200人。
通过以上几个例子,我们可以看到比和比例在解决实际问题中的重要性。
掌握比和比例的概念和运用方法,不仅可以帮助我们更好地理解数学知识,还可以在日常生活中应用到实际问题中去。
因此,我们应该多加练习和思考,提高自己的数学水平。
总结起来,比和比例是数学中的重要概念,它们在解决实际问题中具有广泛的应用。
小学数学比和比例练习题1. 题目:小明手中有10个苹果,小李手中有20个苹果,求小明手中苹果数量与小李手中苹果数量的比值。
解答:小明手中苹果数量与小李手中苹果数量的比值为1:2。
2. 题目:某校全校学生人数为500人,其中男生占总人数的40%,女生占总人数的60%,求男生和女生的人数各为多少。
解答:男生人数为500 × 40% = 200人,女生人数为500 × 60% = 300人。
3. 题目:小华每天步行上学的时间是30分钟,小明每天骑自行车上学的时间是20分钟,求二者上学时间的比值。
解答:小华上学时间与小明上学时间的比值为30分钟:20分钟,可以简化为3:2。
4. 题目:一桶油漆能涂刷50平方米的墙面,求涂刷100平方米的墙面需要多少桶油漆?解答:涂刷100平方米的墙面需要的油漆桶数为100平方米 ÷ 50平方米/桶 = 2桶。
5. 题目:某豆浆机每分钟可以榨取2升的豆浆,小明需要榨取10升的豆浆,求他榨取豆浆需要的时间。
解答:榨取10升的豆浆所需时间为10升 ÷ 2升/分钟 = 5分钟。
6. 题目:小玲的工资是小智的3倍,小智的工资是小明的2倍,若小明的工资为3000元,求小玲的工资。
解答:小智的工资为小明的2倍,所以小智的工资为2 × 3000元 = 6000元。
小玲的工资为小智的3倍,所以小玲的工资为3 × 6000元 = 18000元。
7. 题目:一种果汁的配方为果汁浓缩液:水 = 1:4,若需要制作20升果汁,求需要多少升的果汁浓缩液和水。
解答:根据配方比例,果汁浓缩液的量为总量的1/5,即20升 × 1/5 = 4升。
水的量为总量的4/5,即20升 × 4/5 = 16升。
8. 题目:一辆汽车每小时行驶60公里,小明骑自行车每小时行驶20公里,求一辆行驶了120公里的汽车所用的时间与小明骑自行车行驶了同样距离所用的时间的比值。
沪教版六年级上册《第3章比和比例》同步练习卷H(1)一、选择题(每题3分,共18分)1. 写同样多的作业,小杰用12分钟,小强用15分钟,小杰与小强的速度的比是()A.4:3B.12:15C.3:4D.5:42. 下列各组比能与15:16组成比例的是()A.5:6B.6:5C.16:1 53. 商店运来桔子6400千克,苹果8吨,香蕉4800千克。
则桔子、苹果、香蕉三者的重量的最简整数比为()A.6400:8000:4800B.4:5:3C.0.8:1:0.6D.8:10.64. 如果某班级女生人数是男生人数的23,那么男生人数是全班人数的()A.38B.25C.35D.535. 在比例尺是1:1000000的地图上,图上距离是10厘米的两地,实际距离是()A.100 000千米B.100千米C.1000千米D.10000千米6. 下列说法正确的是()A.若甲:乙=3:7,则甲数是3,乙数是7B.25厘米和0.35米的比值是57厘米C.0.25:14化简后的比为1D.已知a:b=4:5,a:c=5:8,则a:b:c=20:25:32二、填空题(每题2分,共24分)小数分数互化:0.48=________;11925=________.如果甲数是乙数的58,则乙数:甲数=________.比例4﹕9=20﹕45写成分数形式是________.根据比例的基本性质,写成乘法形式是________.5:13=()52=1.2:________.六(1)班有男生27人,女生18人,女生人数与全班人数的比是________;男生比女生多________.(几分之几)求比值:1.4小时:40分钟=________.已知x:217=134,则x =________.在一个比例中,两个内项互为例数,其中一个外项是215,另一个外项是________.已知4和b 的比例中项是6,则b =________.已知a:b =1:13,c:b =3:2,则a:b:c =________.在1.34、1.3˙、13100、1.31四个数中最大的数是________,最小的数是________.一辆汽车2小时行驶130千米,照这样的速度,从甲地到乙地共驶3.5小时,甲、乙两地间的公路长________千米。
比和比例练习题题目一某小组有10个苹果和5个梨,求这两种水果的比例。
解答:苹果和梨的比例为10:5,可以简化为2:1。
题目二班级里有30个男生和20个女生,求男生和女生的比例。
解答:男生和女生的比例为30:20,可以简化为3:2。
题目三某个城市有4000辆汽车和1000辆自行车,求汽车和自行车的比例。
解答:汽车和自行车的比例为4000:1000,可以简化为4:1。
题目四若两个数的比例为3:4,且其中一个数为12,求另一个数。
解答:假设另一个数为x,则有3/4 = 12/x。
通过交叉相乘可得:x = 16。
因此,另一个数为16。
题目五班级里有30个男生和40个女生,求男生和女生的比例,并将其写成百分数。
解答:男生和女生的比例为30:40,可以简化为3:4。
将这个比例转化为百分数,得到男生和女生的比例为3/7,女生占比56.2%,男生占比43.8%。
题目六若两个数的比例为4:5,且其中一个数为20,求另一个数。
解答:假设另一个数为x,则有4/5 = 20/x。
通过交叉相乘可得:x = 25。
因此,另一个数为25。
题目七某个城市有2000辆汽车和500辆自行车,求汽车和自行车的比例,并将其写成百分数。
解答:汽车和自行车的比例为2000:500,可以简化为4:1。
将这个比例转化为百分数,得到汽车和自行车的比例为4/5,汽车占比80%,自行车占比20%。
题目八若两个数的比例为2:3,且其中一个数为6,求另一个数。
解答:假设另一个数为x,则有2/3 = 6/x。
通过交叉相乘可得:x = 9。
因此,另一个数为9。
题目九班级里有20个男生和15个女生,求男生和女生的比例,并将其写成百分数。
解答:男生和女生的比例为20:15,可以简化为4:3。
将这个比例转化为百分数,得到男生和女生的比例为4/7,男生占比57.1%,女生占比42.9%。
题目十若两个数的比例为5:8,且其中一个数为40,求另一个数。
解答:假设另一个数为x,则有5/8 = 40/x。
比和比例〔一〕比的意义和性质1、将正确答案填在〔〕里〔1〕把5.2:6.5化成最简单的整数比是〔4〕:〔5〕〔2〕0.2吨:600千克的比值是〔13 〕〔3〕1.5小时:24分钟的最简整数比是〔15:4〕,比值是〔〕〔4〕3:〔4〕=18:〔24〔5〕〔〕:〔〕=〔〕〔〕=4÷ 答案不唯一〔6〕把45 :0.25化成最简整数比是〔16:5〕,比值是〔315 〕〔7〕小刚行走的路程比小丽多14 ,而小丽走路所用的时间比小刚多110 ,小刚和小丽的速度比是〔11:8〕〔8〕58 =〔〕〔用小数表示〕=〔5÷8〕〔用除式表示〕=62.5%〔用百分数表示〕=5:8〔用比表示〕〔9〕10.08 这个比的比值是〔〕〔10〕8:〔40〕=〔4〕20 =20%=1:〔5〕=6:〔30〕〔11〕一个正方形边长和周长的比是〔1:4〕〔12〕49 与它的倒数的比是〔16:81〕〔13〕甲数与艺术的比是9:4,甲数比乙数多〔125〕%〔14〕1:0.25化成最简单的整数比是〔4〕:〔1〕,比值是〔4〕〔15〕一个等腰三角形,一个地窖和定焦的i 是3:4,这个等腰三角形的顶角是〔72〕度。
〔16〕小圆半径是3厘米,大圆半径是4厘米,小圆和大圆的周长比是〔3:4〕,面积比是〔9:16〕 解法:根据圆周长公式,周长=半径×2×π。
把数据代入公式,小圆周长=3×2×π=6π。
大圆周长=4×2×π=8π。
小圆与大圆周长比为6π:8π,化简后为3:4。
根据圆面积公式,面积=半径×半径×π,把数据代入公式:小圆面积=3×3×π=9π;大圆面积=4×4×π=16π。
小圆与大圆面积比为9π:16π,化简后为9:16〔17〕参加学校课外小组的男生人数的319 正好与女生人数的322 相等,男生和女生人数的比是〔19:22〕〔18〕比的后项不能是〔0〕〔19〕大正方形与小正方形的边长的比是3:2,他们周长的比是〔3;2〕,面积比是〔9:4〕〔20〕甲数是乙数的135 ,乙数与甲数的比是〔5:8〕〔21〕34 与它的倒数的最简单的整数比是〔9:16〕〔22〕差相当于被减数的37 ,差和减数的比是〔3:4〕〔23〕a 、b 都是不等于0的自热桉树,假如a ×7=b ×9,那么,a:b=〔9:7〕〔24〕20克盐甲200克水融成盐水,盐和盐水的比是〔1:11〕,比值是〔111 〕〔25〕1千克的盐溶解在35千克的水中,盐水与盐最简单的整数比是〔36:1〕〔26〕一个比的比值是3,它的前项是2.25,后项是〔〕〔27〕两个完全相等的正方形拼成一个长方形,这个长方形的长和它周长的比是〔1:3〕 解法:设这个正方形的边长为a ,那么,拼成后的长方形的长为2a ,拼成后的长方形的周长是a ×2+〔2a 〕×2=2a+4a=6a 。
比和比例(一)一、 精学精用1、 填空(1) 两个数相除,又叫做( );( )叫做比值。
(2) 比号前面的数叫做比的( ),比号后面的数叫做比的( )。
(3) 比的前项和比的后项同时( ),( )不变,这就是比的基本性质。
(4) 把比化简成最简单的整数比,通常叫做( )。
(5) 填写下面比与除法、分数之间的关系表:(6) 甲正方体的棱长是5分米,乙正方体的棱长是甲正方体的4倍:① 甲乙两个正方体的棱长的比是( ); ② 甲乙两个正方体底面周长的比是( ); ③ 甲乙两个正方体的底面积的比是( ); ④ 甲乙两个正方体的表面积的比是( ); ⑤ 甲乙两个正方体的体积的比是( )。
2、求下列各比的比值105:35 2.4:8 70:0.5 12:48 105:51:二、 活学活用1、 求比的未知项X:18.4=141 1255:x=0.26 x:531212= 158542=X :2、 化简下列各比 8:0.5 69232.5:23.1:18.6 51:173、 求下列各比的比值3:45 18:4 0.25:12 6:61 3192:4、 配制一种糖水,在150克的水中,放了25克的糖。
(1)写出糖和水的质量的比,并化简。
(2)写出糖和糖水的质量的比,并化简。
(3)写出水喝糖水的质量的比,并化简。
比和比例(二)3、精学精练(3)填空 (1)()211530÷==( )÷( )=()35(2) 一辆汽车3小时行了195千米,汽车所行的路程和所用的时间的比是( )。
(3) 某班有男生18人,女生22人,男生和全班人数的比是( )。
(4) 甲数是乙数的1.5倍,甲数和乙数的比是( )。
(5) 直角三角形的两个锐角的比是2:3,它的两个锐角分别是( )度和( )度。
(6) 男生占全班人数的60%,女生人数和男生人数的比是( )。
(7) 大圆与小圆的半径的比是2:1,小圆与大圆的面积的比是( )。
比与比例六年级练习题1. 小华有100颗水果糖,小明有200颗水果糖,两人共有多少颗水果糖?解:小华和小明共有300颗水果糖。
2. 甲班有25名男生和15名女生,乙班有30名男生和20名女生,哪个班级男女比例更相等?解:甲班的男女比例为25:15,乙班的男女比例为30:20。
将它们化简为最简分数,甲班的男女比例为5:3,乙班的男女比例为6:4。
由此可见,甲班男女比例更相等。
3. 一张长方形花坛的长是4米,宽是2米。
另一张长方形花坛的长是6米,宽是3米。
两张花坛面积的比是多少?解:第一张花坛的面积是4米 × 2米 = 8平方米,第二张花坛的面积是6米 × 3米 = 18平方米。
两张花坛面积的比是8:18,化简为最简分数为4:9。
4. 一辆汽车以每小时80公里的速度行驶,而一辆自行车以每小时20公里的速度行驶。
两辆交通工具的速度比是多少?解:汽车的速度是80公里/小时,自行车的速度是20公里/小时。
两者的速度比是80:20,化简为最简分数是4:1。
因此,两辆交通工具的速度比为4:1。
5. 某班级有36名男生和24名女生。
男生人数与女生人数的比是多少?解:男生人数为36,女生人数为24。
男生人数与女生人数的比是36:24,化简为最简分数为3:2。
所以,男生人数与女生人数的比是3:2。
6. 一袋土豆有5千克,一袋大米有10千克。
一袋大米比一袋土豆重多少?解:一袋大米比一袋土豆重10千克 - 5千克 = 5千克。
7. 编号为1的箱子里有4只红球和6只蓝球,编号为2的箱子里有3只红球和9只蓝球。
两个箱子中红球和蓝球的比例是否相等?解:编号为1的箱子中红球和蓝球的比例为4:6,化简为2:3。
编号为2的箱子中红球和蓝球的比例为3:9,化简为1:3。
由此可见,两个箱子中红球和蓝球的比例不相等。
8. 小明拥有某款电子游戏的75%进度,小红拥有同款游戏的60%进度,两人进度的比是多少?解:小明进度为75%,小红进度为60%,可将两者化为75:100和60:100的比,进一步化简为3:4和3:5。
比和比例练习题一、 填空:1.甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。
甲、乙两数的比)()()()(是3:2,甲数是乙数的( )倍,乙数是甲数的。
)()(2.某班男生人数与女生人数的比是,女生人数与男生人数的比是( ),男生人数和女生人数的比43是( )。
女生人数是总人数的比是( )。
3.如果7x=8y ,那么x :y=( ):( )。
4.一根绳长2米,把它平均剪成5段,每段长是米,每段是这根绳子的。
)()()()(5.王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6.一个正方形的周长是米,它的面积是( )平方米。
587.吨大豆可榨油吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
89318.甲数的等于乙数的,甲数与乙数的比是( )。
32529.把甲数的给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。
71)()()()(10.甲数比乙数多,甲数与乙数比是( )。
乙数比甲数少。
41)()(11.在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
12. 4 :5 = 24÷( )= ( ) :1513.一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画( )厘米。
14.12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
写出两个比值是8的比( )、( )。
二、 判断1. 由两个比组成的式子叫做比例。
( )2.正方形的面积一定,它的边长和边长不成比例。
( )3.如果8A = 9B 那么B :A = 8 :9 ( )4.15 : 16 和6 :5能组成比例。
更多精品文档比和比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看72,这本书计划( )看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6. 一个正方形的周长是58米,它的面积是( )平方米。
7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
8. 甲数的32等于乙数的52,甲数与乙数的比是( )。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
10. 甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
12. 4 :5 = 24÷( )= ( ) :15 13. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画( )厘米。
14. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
写出两个比值是8的比( )、( )。
15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间( )比例;订数学书的本数与所需要的钱数( )比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数( )比例。
六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.把一个面积是72cm2的长方形按1∶2缩小,缩小后的长方形的面积是()。
A.18cm2B.36cm2C.72cm2D.144cm22.下面的说法中,正确的有()句。
①一个正方体的棱长扩大2倍,它的表面积扩大4倍,体积扩大8倍②把4:5的前项和后项同时增加5倍,比值不变③甲数的相当于乙数的,乙数与甲数的比值是④一根1米长的绳子,用去50%,还剩50%米⑤A=2×3×5,B=2×3×7,A和B的最小公倍数是210⑥时间一定,速度和路程成反比例关系A.2B.3C.4D.53.如果5a=3b,那么a和b的关系是()。
A.成正比例B.成反比例C.不成比例D.没有关系4.比例尺一定,实际距离扩大到原来的5倍,则图上距离()。
A.缩小到原来的B.扩大到原来的5倍 C.不变5.用地砖铺一间教室,地砖的块数和()成反比例。
A.每块地砖的边长B.每块地砖的面积C.每块地砖的周长6.把一个正方形接2:1的比例放大后,得到的图形与原来的图形相比较,()。
A.面积扩大到原来的2倍B.周长扩大到原来的2倍C.面积扩大到原来的D.周长缩小到原来的7.把1块饼平均分成若干份,每块饼的大小和份数()。
A.成正比例B.成反比例C.不成比例8.把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米9.下面选项,()是比值。
A.篮球比赛记分牌上显示21:16B.比例尺C.圆周率 D.a:b10.下列各题中,哪两种量不成比例()。
A.长方形的面积一定,长和宽B.征订《小学生周报》,征订的数量和总价C.收入一定,支出和结余11.下列各种关系中,成反比例关系的是()。
A.某人年龄一定,他的身高与体重。
B.平行四边形的面积一定,它的底和高。
1、在比例尺是1:6000000的地图上,量得甲乙两个火车站的距离是2.4厘米。
求甲乙两个车站的实际距离是多少千米?
2、在某城市的公交路线图上,2路公交车从火车站到终点站的实际距离是20千米,已知这幅图的比例尺是1:50000,从火车站到终点站的图上距离是多少厘米?
3、学校班车4分钟行驶了2400米,照这样的速度,从第1站到学校共行驶了30分钟,这段路程有多少千米?
4、为了预防冬季感冒,校医室按1:200的配比配制了消毒液。
现在有2瓶105毫升的药液,需要加入多少升水?
5、用同样的地砖铺地,铺完36平方米的房间用了方砖180块地砖,如果再铺个48平方米的房间,还要用地砖多少砖?(用比例解)
6运一批药品,每箱装36瓶,需要40只箱子。
如果每箱24瓶,需要多少只箱子?(用比例解)
7、面积相等的两块长方形试验田,一块长150米,宽45米,另一块长112.5米,宽是多少米?(用比例解)
8、学校一楼中厅,用边长0.5米的大理石铺地,需要1280块,如果改用边长是1米的大理石铺地,需要多少块?(用比例解)。
章节测试题1.【题文】【答案】=0.4【分析】此题考查的是解比例.【解答】2.【题文】【答案】=30【分析】此题考查的是解比例.【解答】3.【题文】【答案】=【分析】此题考查的是解比例.【解答】4.【题文】根据条件列出比例,并解比例.(1)5和8的比等于48与的比.(2)两个内项是和24,两个外项是上和.(3)和的比同和的比相等.【答案】(1)5:8=48:,=;(2):=24:(比例不唯一),=45;(3):=:,=【分析】此题考查的是解比例,比的意义.依据题意列式计算即可.【解答】(1)(2)(3)5.【题文】甲、乙、丙三个养猪专业户共养猪480头,养猪头数比是9:10:11.求各户养猪的头数.【答案】甲户:144头;乙户:160头;丙户:176头【分析】此题考查的是按比分配.根据题意,甲户养猪头数占总头数的=,乙户养猪头数占总头数的=,丙户养猪头数占总头数的=;已知共养猪480头,求各户养猪的头数,用乘法计算即可. 【解答】9+10+11=30480×=144(头)480×=160(头)480×=176(头)答:甲户养猪144头;乙户养猪160头;丙户养猪176头.6.【题文】一个长方形操场,周长152米,长与宽的比是10:9.这块操场的面积是多少平方米?【答案】1440平方米【分析】此题考查的是按比分配.先根据长方形的周长=(长+宽)×2,计算出长和宽的和,已知长与宽的比是10:9,按比分配可计算出长方形的长和宽,由此可根据长方形的面积=长×宽计算出操场的面积.【解答】152÷2=76(米)10+9=1976×=40(米)76×=36(米)40×36=1440(平方米)答:这块操场的面积是1440平方米.7.【题文】把下面的三角形,分成两部分,使它们面积的比是1:1,你能分一分吗?【答案】答案不唯一【分析】此题考查的是比的应用,三角形的面积.【解答】答案不唯一.分成的两部分,每一部分都占三角形总共面积的=,根据三角形的面积公式,如果把底平均分成两份,高不变,每个小三角形的面积是原来的.如下图,将三角形的一条边作为底,平分成两份,将中间的点与顶点相连,形成的两部分的面积是1:1.8.【题文】六(3)班男生人数与女生人数的比是4:3,已知男生有36人,女生有多少人?【答案】27人【分析】此题考查的是比例的应用.根据男生人数:女生人数=4:3,列方程解答即可. 【解答】解:设女生有人.答:女生有27人.9.【题文】小红有邮票120张,小明有邮票104张,小明给小红多少张邮票后,小红与小明的邮票数之比为9:5?【答案】9:5【分析】此题考查的是按比分配.先求出小红和小明一共有多少张邮票,再求出如果按9:5分配,两个各能分到多少张邮票,然后用小明现在的邮票张数减去能分到的邮票张数,就是小明要给小红多少张邮票.【解答】120+104=224(张)9+5=14224×=144(张)224×=80(张)104-80=24(张)答:小明给小红24张邮票后,小红与小明的邮票数之比为9:5.10.【题文】李惠家8月份共交水费、电费、煤气费140元,其中电费占整个费用的,水费与煤气费的比是1:3,李惠家水费、电费、煤气费各付多少元?【答案】水费14元,电费84元,煤气费42元【分析】此题考查的是按比分配,分数乘法.电费=水费、电费、煤气费的总和140元×;水费与煤气费的比是1:3,先求出水费、煤气费的和=水费、电费、煤气费的总和-电费,再根据按比分配的方法分别计算出水费、煤气费.【解答】140×=84(元)140-84=56(元)56×=42(元)56×=14(元)答:李惠家水费付14元,电费付84元,煤气费付42元.11.【题文】商店运进苹果、橘子、梨三种水果,平均重量是168千克.苹果、橘子、梨三种水果重量的比是8:7:6.苹果、橘子、梨各运进多少千克?【答案】苹果运进192千克,橘子运进168千克,梨运进144千克【分析】此题考查的是按比分配.先根据平均数的计算方法计算出三种水果的总质量=平均质量×3,再用按比分配的方法分别计算三种水果各有多少千克.【解答】168×3=504(千克)8+7+6=21504×=192(千克)504×=168(千克)504×=144(千克)答:苹果运进192千克,橘子运进168千克,梨运进144千克.12.【题文】如图,甲、乙两个图形重叠部分的面积相当于甲图面积的,相当于乙图面积的,甲、乙两个图形的面积比是多少?【答案】6:5【分析】此题考查的是比例的基本性质.根据题意可列出关系式:甲图的面积×=乙图的面积×.【解答】甲图的面积×=甲图的面积×答:甲、乙两个图形的面积比是6:5.13.【题文】从下面的水果中任意选三种,按三种水果的质量比为1:3:4配成果篮,每个果篮中的水果重8千克.至少写出两种配果篮方案,并计算每种果篮的价钱.【答案】答案不唯一【分析】此题考查的是按比分配.【解答】因为三种水果的质量比为1:3:4,且果篮中的水果重8千克,所以三种水果的质量分别为1千克,3千克,4千克.方案一:苹果1千克,8×1=8(元)葡萄3千克,10×3=30(元)橙子4千克,6×4=24(元)果篮的价钱是8+30+24=62(元)方案二:樱桃1千克,17×1=17(元)苹果3千克,8×3=24(元)橙子4千克,6×4=24(元)果篮的价钱是17+24+24=65(元)14.【答题】比的______除以______所得的结果叫做比值.【答案】前项后项【分析】此题考查的是比值.【解答】比表示两个数相除.两个数相除的结果,叫做比值.所以比的前项除以后项所得的结果叫做比值.故此题的答案是前项,后项.15.【答题】6:5读作______,比值是______(填小数),6叫做比的______.【答案】6比5 1.2 前项【分析】此题考查的是比的读法,求比值,比的各部分的名称.【解答】6:5读作6比5,求比值是6÷5=1.2,6是比的前项,5是比的后项.故此题的答案是6比5,1.2,前项.16.【答题】比和分数比较,比的前项相当于分数的______,比的后项相当于分数的______,比值相当于______.(填“分数值”“分子”或“分母”)【答案】分子分母分数值【分析】此题考查的是比的意义.【解答】比表示两个数相除,前项是被除数,后项是除数;根据分数与除法的关系,分数的分子是被除数,分母是除数.所以比和分数比较,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值.17.【答题】2.5吨:100千克的比值是______.【答案】25【分析】此题考查的是求比值.先统一单位再求比值.【解答】2.5吨=2500千克,2.5吨:100千克=2500千克:100千克=2500÷100=25.故此题的答案是25.18.【答题】汽车3小时行驶180千米,路程和时间的最简整数比是______:______,比值是______,比值表示的是汽车的______.【答案】60 1 60 速度【分析】此题考查的是比的基本性质,求比值,速度、时间、路程的关系.【解答】路程和时间的比是180:3,化为最简整数比180:3=60:1;求比值60:1=60÷1=60;路程和时间的比就是路程÷时间,求出的是速度.故此题的答案是60,1,60,速度.19.【答题】六(2)班有男生26名,女生24名,男生人数和女生人数的比是______:______,女生人数和全班人数的比是______:______.(均填最简整数比)【答案】13 12 12 25【分析】此题考查的是比的意义,化简比.【解答】男生26名,女生24名,男生人数和女生人数的比是26:24=13:12,全班有学生26+24=50(名),女生人数和全班人数的比是24:50=12:25.故此题的答案是13,12,12,25.20.【答题】一个三角形的底是12厘米,高是8厘米,高与底的比是______:______.(填最简整数比)【答案】2 3【分析】此题考查的是比的意义,化简比.【解答】底是12厘米,高是8厘米,高与底的比是8:12=2:3.故此题的答案是2,3.。
六年级下册数学小升初比和比例专项练习一.选择题(共20题,共40分)1.下面的问题,还需要确定一个信息才能解决,是()。
某花店新进了玫瑰、百合,菊花三种花,已知玫瑰有200朵,是三种花中数量最多的。
这个花店一共新进了多少朵花?A.玫瑰比菊花多20朵B.三种花的总数是百合的6倍C.玫现的数量占三种花总数的D.攻瑰、百合的数量比是5:32.下列各题中,哪两种量不成比例()。
A.长方形的面积一定,长和宽B.征订《小学生周报》,征订的数量和总价C.收入一定,支出和结余3.在这幅地图上量得广州到北京的距离是24.5厘米,广州到北京的实际距离是()。
A.1960千米B.19600千米C.196000千米 D.1960000千米4.我国资源总量一定,人均资源占有量和我国人口总数()。
A.成正比例B.成反比例C.不成比例5.9x-=0(x、y均不为0),x和y成()。
A.正比例B.反比例C.不成比例6.将一个平面图形按1∶10缩小,就是()变为原来的。
A.图形各边的长B.图形的面积7.下面说法正确的有()句。
①《小学生学习报》的单价一定,总价与订阅数量成正比例。
②圆锥体积一定,它的底面积与高成反比例。
③书的总页数一定,已看的页数和没看的页数成反比例。
④出勤率一定,出勤人数与全班人数成正比例。
A.4B.3C.2D.18.如图将四边形AEFG变换到四边形ABCD,其中E、G分别是AB、AD的中点,下列叙述不正确的是()。
A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角的大小不变D.面积扩大到原来的2倍9.如果A×2=B÷3,那么A:B=()。
A.2:3B.1:6C.3:210.圆的周长和半径所成的比例是()。
A.正比例B.反比例C.不成比例11.下题中的两种量成什么比例?在小明家的客厅里铺地砖,每块地砖的面积和所需要的块数。
()A.成正比例B.成反比例C.不成比例12.班级数一定,每班人数和总人数()。
六年级下学期数学小升初比和比例专项练习一.选择题(共20题, 共40分)1.三个数的比是1∶2∶3, 平均数是60, 则最大的一个数是()。
A.30B.90C.602.把线段比例尺改写成数字比例尺为()。
A.1: 200B.1: 2000C.1: 200003.分母一定, 分子和分数值()。
A.成正比例B.成反比例C.不成比例D.不成正比例4.当X、Y互为倒数时, X与Y()。
A.成正比例B.成反比例C.不成比例5.给一个房间铺地砖, 所需砖的块数与每块砖的()成反比例。
A.边长B.面积C.体积6.120克盐水中含盐30克, 盐与水的比是( )。
A.1∶3B.1∶4C.1∶57.我国资源总量一定, 人均资源占有量和我国人口总数()。
A.成正比例B.成反比例C.不成比例8.下面()中的两个比不能组成比例。
A.3∶5和0.4∶B.12∶2.4和3∶0.6 C.∶和∶ D.1.4∶2和2.8∶49.班级人数一定, 每行站的人数和站的行数()。
A.成正比例B.成反比例C.不成比例10.正方体的棱长和它的体积()。
A.成正比例B.成反比例C.不成比例11.0.25∶2与下面()不能组成比例。
A.2.5∶20B.2∶C.0.05∶0.4D.1∶812.比例3∶8=15∶40的内项8增加2, 要使比例成立, 外项40应该增加()。
A.3B.5C.10D.5013.和一定, 加数和另一个加数()。
A.成正比例B.成反比例C.不成比例14.在下面各比中, 能与: 组成比例的比是()。
A.4: 3B.3: 4C.: 3D.:15.如果A×2=B÷3, 那么A∶B=()。
A.2∶3B.6∶1C.1∶616.比例尺是()。
A.一个比例B.一个比C.一个方程17., 8, 1.5和下面四个数中的()可以组成一个比例。
A.4B.8C.12D.2018.下面不能组成比例的是()。
A.10∶12=35∶42B.4∶3=60∶45C.20∶10=60∶2019.小洋家客厅长5米, 宽3.8米, 画在练习本上, 选用比例尺()较合适。
1、一种盐水,盐的质量是水的25% ,现有5克盐,要配制这种盐水,需要加多少克水?2、一种盐水,盐与水的质量比是1:4 ,现有5克盐,要配制这种盐水,需要加入多少克水?3、从济南到郑州的公路长440千米,一辆中巴车2小时行了160千米,照这样计算,从济南到郑州需要多少小时?先说说路程和时间成什么比例,再用比例解。
4、文化路小学六年级征订《数学报》,一班订了25份,二班订了20份,一班比二班多花了100元。
每份《数学报》多少元?5、图书室有一个书架一共两层,上层数量与下层数量的比是5:6,从上层拿20本放到下层后,上、下两层的数量比是3:4。
上、下两层书架一共有多少本书?6、甲乙两辆汽车从两个城市相对开出,2小时后在距中点16千米处相遇,这时甲车与乙车所行的路程比是3:4,甲、乙两车的速度各是多少?7、甲乙两车同时从两地相向而行,两小时相遇,已知两地相距180千米,甲乙的速度比是3:2,甲乙两车的速度各是多少?8、上海到杭州的距离是144千米,在比例尺1:2000000的地图上,上海到杭州是多少厘米?9、天草服装厂3天加工女装1800套,照这样计算,要生产5400套,需要多少天?(用比例解)10、“百大三联”有一批电脑,卖出总数的80%,又运来140台,这时电脑总数与原来总数的比是2:3,百大三联原来电脑多少台?11、一辆汽车一次加油支付60元,行驶了300千米。
现在要去800千米的某地接运一批货物回来,需要多少汽油费?12、客车和货车同时从甲、乙两城中点处向相反方向开出,3小时后客车到达甲城,货车离乙城还有60千米,客车与货车的速度比是3:2,求甲、乙两城的距离。
13、火车用26秒的时间通过一个厂256米的隧道(即从车头进入车尾离开出口),这列火车又用16秒的时间通过了96米的隧道,求列车的长度。
(用比例解答)14、建一幢楼房,所占地是一个厂60米、宽45米的长方形,画在比例尺是1:1000的地图上,图上长方形的面积是多少平方厘米?15、某一时刻测得一烟囱在阳光下影长为16.2米,同时测得一根长4米的竹竿的影长为1.8米,求烟囱的高度(用比例)16、铺设一条管道,如果每天铺30米,15天铺完;如果每天铺45米,多少天铺完?(用比例)1 / 1017、在比例尺是1:600的图纸上,一个圆形花坛的周长是9.42厘米。
比和比例练习题及答案比和比例练习题及答案比和比例是数学中常见的概念,它们在我们日常生活中也有着广泛的应用。
无论是购物打折、做菜的配料比例,还是计算机的屏幕分辨率,都离不开比和比例的运算。
本文将给大家提供一些比和比例的练习题,并附上详细的答案解析,希望能帮助大家更好地理解和运用比和比例。
1. 某班级男生和女生的比例为3:5,如果男生有36人,那么女生有多少人?解析:根据题目可知,男生和女生的比例为3:5,即男生数/女生数 = 3/5。
已知男生数为36人,代入公式得 36/女生数 = 3/5。
通过交叉相乘法可得女生数 = (36 * 5) / 3 = 60人。
所以女生有60人。
2. 一辆汽车每小时行驶90公里,行驶8小时后,行驶的总里程是多少?解析:汽车每小时行驶90公里,行驶8小时,所以总里程为 90 * 8 = 720公里。
所以行驶的总里程是720公里。
3. 甲、乙两个人合伙做生意,甲出资5万元,乙出资3万元,他们的利润为30万元,根据出资比例,他们应该分别得到多少利润?解析:甲和乙的出资比例为5:3,利润为30万元,所以甲应得利润为 (5 / 8) *30 = 18.75万元,乙应得利润为 (3 / 8) * 30 = 11.25万元。
所以甲应得利润为18.75万元,乙应得利润为11.25万元。
4. 一桶液体中,水和酒精的比例为5:3,如果有60升液体,其中水的升数是多少?解析:水和酒精的比例为5:3,总液体量为60升,所以水的升数为 (5 / 8) * 60= 37.5升。
所以水的升数是37.5升。
5. 一根木棍的长短比例为2:3,如果长木棍的长度是45厘米,短木棍的长度是多少?解析:长木棍和短木棍的比例为2:3,已知长木棍的长度为45厘米,所以短木棍的长度为 (2 / 3) * 45 = 30厘米。
所以短木棍的长度是30厘米。
通过以上的练习题,我们可以看到比和比例在解决实际问题中的应用。
无论是计算人数、里程、利润还是长度,比和比例都能帮助我们准确地计算和推断。
比和比例的综合练习1、小明和小方各走一段路,小明走的路程比小方多51,小方用的时间比小明多81,小明和小方的速度之比是多少?3、一项工程,甲单独做要比乙少用51的时间,那么甲单独做的工效是乙的百分之几?5、小刚骑车从A地到B地,如果每小时多行5千米,将比原定时间提前91,原来小刚每小时骑多少千米?7、甲乙两地相距360米,前一半时间小华用速度A行走,后一半时间用速度B走完全程,又知A:B=5:4,前一半路程所用的时间与后一半路程所用时间比是多少?9、有甲乙老鼠分别爬AB、CD两杆,已知AB、CD分别高4米、4.5米.如果甲乙两鼠同时从爬杆的下端开始往上爬,甲乙两鼠的爬行速度比是4:3,而甲甲鼠爬到另一端下降时的速度是上升速度的3倍,问当甲鼠下降与乙鼠上升于同一高度时,乙鼠已上升了多少米?2、.甲乙二人从A地到B地,甲用去的时间比乙少41,甲乙二人的速度比是多少?4、.小明用120元去买练习本,由于价钱降低了25%,结果比原来多买了20本,原来每本练习本多少元?6、甲乙丙是三个互相咬合的齿轮,若使甲轮转5圈,乙轮转71 / 3圈,丙转2圈。
甲乙丙三个齿轮的齿数比是多少?8、小明骑车从家到学校,原计划用5小时30分,由于途中遇到3.6千米的不平的道路,行这段路时速度只有原来速度的43,因此晚到12分,小明家到学校的路程多少千米?10、一辆汽车从甲地开往乙地如果车速提高20%,可比原定时间提早1小时到达,如果比原定速度加快5千米,则可节省91的时间,那么甲乙两地的距离是多少千米?正比例(基础篇)1.某村要修一条长120米的水渠,前3天修了20%,照这样速度,修完这条水渠还要几天?2.儿童装厂要做396套童衣,前8天做了144套,剩下的还要几天做完?3.工程队要修一段长2400米的公路,24天刚好修了这段路的103,照这样的速度,修完这段路还要多少时间?4.师徒二人同时加工168个零件,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,两人各加工多少个?2 / 33 / 35.解放军某部进行野营训练,行程是1350千米,5天已经行了250千米,照这样计算,到达目的地还要多少天?反比例(基础篇)1.农机厂配件车间,生产每个零件的时间由原来的7分钟减少了4.5分钟,原来每天生产140个,现在生产多少个?2.一工程,原计划40人做15天完成,现在要提前3天完成,还需要增加多少人?3.电视机厂生产一批新产品,原计划每天生产40台,30天完成,实际比原计划多生产41,实际多少天完成?4.甲、两车,由A 、B 两地同时出发相向而行,甲、两车的速度比是2:3,甲行完全程用5.5小时,求两车几小时相遇?5.修一条公里,原计划15天完成,实际每天修300米,结果提前3天完成,实际每天比原计划多修多少米?。
比和比例综合练习题及答案-
一、填空
1.甲乙两数的比是11:9,甲数占甲、乙两数和的4/11,乙数占甲、乙两数和的7/11.
2.一根绳长2米,把它平均剪成5段,每段长是0.4米。
3.在6:5=1.2中,6是比的前项,5是比的后项,1.2是比的值。
在4:7 =48:84中,4和84是比例的前项,7和48是比例的后项。
4.4:5 = 24÷5=4.8:15
5.12的约数有6个,选择其中的四个约数,把它们组成一个比例是2:3:4:
6.
写出两个比值是8的比3:2、4:3.
6.如果x÷y=6,那么x和y成6:1比例;如果x:4=5:y,那么x和y成5:20比例。
8.三角形的面积一定,它的底和高成任意比例。
9.在盐水中,盐占盐水的比例称为盐度。
10.如果X=1/3,盐和水的比是1:2.
如果X=4/5,那么Y:X=5:4.
11.圆的半径与圆周长成1:2比例。
12.XXX从家里去学校,所需时间与所行路程成反比例。
13.一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙工作效率的最简比是2:3.
14.一个三角形三个内角度数的比是6:2:1,这个三角形是等腰直角三角形。
二、计算
1、求比值。
10:15=2:3;2.4:0.8=3:1;3=3:1.
2、化简比。
0.8:0.2=4:1;12:0.4=30:1.
11:1=11:1.
520:1=20:1.
三、解比例
25:7=X:35,X=10.
4.8:9.6:23=X:2.3:
5.8,X=
6.
12:14=6:7.
5:0.4=2:X,X=0.16.
2.8:X=0.7:5,X=1.75.
四、根据下面的条件列出比例,并且解比例
1.96和X的比等于16和5的比,96:X=16:5,X=300.
2.45和X的比等于25和8的比,45:X=25:8,X=144.
3.两个外项是24和18,两个内项是X和36,X=12.
五、应用题
1.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各32、48、80吨。
2、大型拖拉机台数是150,手扶拖拉机台数是400.
3、三角形三条边长度分别是36、48、60厘米。
4、甲、乙、丙三个数分别是36、48、60.。