絮凝剂聚丙烯酰胺的制备及应用实验报告
- 格式:docx
- 大小:36.80 KB
- 文档页数:2
重庆大学硕士学位论文阳离子聚丙烯酰胺絮凝剂P(AM-DAC)的合成、表征及应用研究姓名:唐雪申请学位级别:硕士专业:环境科学指导教师:郑怀礼2010-04摘要随着我国城市化和工业化进程的加快,淡水资源日益紧张,提高污水处理效率,保护我们赖以生存的淡水资源迫在眉睫。
絮凝法是重要的污水处理方法之一,絮凝剂的种类、性质是絮凝效果好坏的关键因素。
因此絮凝剂研究是实现絮凝处理过程优化的最重要途径。
本文旨在制备分子量高、溶解性好、絮凝性能优异的阳离子聚丙烯酰胺絮凝剂,对其合成条件和絮凝性能进行研究。
本文采用无机引发剂和偶氮有机引发剂B作为复合引发剂,通过水溶液共聚法制备了丙烯酰胺(AM)和丙烯酰氧乙基三甲基氯化铵(DAC)的共聚物P(AM-DAC),优化合成条件为:温度为30℃,无机引发剂用量0.15‰、偶氮有机引发剂B用量0.5‰、单体总质量分数30%、络合剂EDTA用量0.5‰、链转移剂苯甲酸钠用量为0.5‰、阳离子度40%及增溶剂C用量0.2‰。
在该条件下,合成了分子量为1200万,残留丙烯酰胺含量为1.33%,溶解时间为3h的阳离子聚丙烯酰胺P(AM-DAC)。
红外光谱分析证实了产物的结构。
TGA-DTA分析表明P(AM-DAC)在200℃以上发生热分解,常温下稳定可靠。
初步建立了测定阳离子聚丙烯酰胺P(AM-DAC)中丙烯酰胺残留量的紫外分光光度分析方法,绘制了丙烯酰胺在无水乙醇-水溶液中的标准曲线。
该标准曲线具有良好的线性关系,在205nm处的线性回归方程为:A=0.134 C AM (mg·L-1)+0.025,回归系数为R=0.9985。
分别测定了阳离子度为30%、40%(未加增溶剂C)、40%(加增溶剂C)和50%的P(AM-DAC)中丙烯酰胺残留量,含量分别为3.15%、1.51%、1.33%和1.12%。
将自制的P(AM-DAC)用于重庆市某污水处理厂重力浓缩池的活性污泥处理,研究了阳离子度和投加量对污泥脱水效果的影响,并综合污泥脱水效果和处理成本两个因素,将自制的P(AM-DAC)与国内污水处理厂常用的四种絮凝剂进行了比较。
1.1.3 表征与测试对于超支化阳离子聚丙烯酰胺表征的分析主要分为以下几个部分:(1)红外光谱分析。
通常情况下,对于阳离子聚丙烯酰胺以及阳离子聚丙烯酰胺絮凝剂的红外光谱分析,主要借助由美国尼高力公司研发生产的智能型傅里叶红外光谱仪(型号NICOLET5700)来实现。
(2)核磁共振氢谱分析。
借助瑞士 Bruker Avance 研发生产的核磁共振波谱仪(型号400MHz)完成相应的测定工作,期间溶剂选用氘代二甲亚砜。
(3)热性能分析。
本次研究中,对于聚丙烯酰胺絮凝剂的热性能分析,其关键在于热重分析。
具体操作过程中,借助热重/差热综合分析仪来实现,期间温度控制在26~600℃这一范围内,仪器升温速度控制在10℃/min 即可。
1.2 结果分析通过对本次实验研究结果的综合分析,发现实验获得的超支化阳离子聚丙烯酰胺絮凝剂,其分子结构末端位置含有较多的端基,同时进一步分析得出,超支化聚酯物质自身结构相对复杂,加上支链较多。
因此,在具体的实验操作过程中,为了获得理想化的结果,保证新型聚丙烯酰胺絮凝剂物质的合成效果,强化对丙烯酸用量的控制十分关键。
此外,相关研究结果显示,单体质量比、引发剂的用量、反应温度控制、反应时间等一系列因素,均会对最终的新型聚丙烯酰胺絮凝剂物质合成效果产生不同程度的影响,应该给予高度重视[1]。
2 新型聚丙烯酰胺絮凝剂的性能分析2.1 实验部分2.1.1 主要试剂与仪器对于新型聚丙烯酰胺絮凝剂的性能,实验试剂需要用到PAD 和PADS(实验室自制),硅藻土(北京百灵威科技有限公司,规格:AR)、氢氧化钠(天津市大茂化学试剂厂,规格:AR)、盐酸(天津基准化学试剂有限公司,规格:AR)。
实验所需仪器主要包括:电热恒温水浴锅(北京市永光明医疗仪器有限公司,型号:DZKW-D-1)、环境扫描电镜(美国FEI 公司,型号:Q45)、数显电动搅拌器(上海梅颖浦仪器仪表制造有限公司,型号:JB90-S)、电热鼓风干燥箱(天津市泰斯特仪器有限公司,型号:101-1AB)、电子天平(北京赛多利斯仪器系统有限公司,型号:BS2202S)、纳米粒度表面电位分析仪(英国 Malvern 公司,型号:Zeta sizer nano-ZS90)、紫外光谱仪(安捷伦科技有限公司,型号:Cary 60型)。
阳离子聚丙烯酰胺絮凝剂的制备及表征
离子聚丙烯酰胺絮凝剂( IPN) 被广泛应用于石油改性、界面活性剂、分离剂、
液体稳定剂等领域。
离子聚丙烯酰胺絮凝剂的制备成本低、制备过程控制更为容易、制备条件可控性强等,使得其广大的应用。
本实验乃以阴离子聚丙烯酰胺为原料,运用溶剂热法制备阴离子聚丙烯酰胺絮凝剂,用采用傅里叶变换红外光谱
(FTIR)和X射线衍射(XRD)等手段对所制备的离子聚丙烯酰胺絮凝剂进行
表征,进一步探究通过改变溶剂类型和添加剂类型等因子的影响,对制备的离子聚丙烯酰胺絮凝剂的性质及应用提出建议。
实验步骤:
1、将阴离子聚丙烯酰胺和溶剂分别放入烧瓶中;
2、加热搅拌,将其混合成半流动固体;
3、将调配好的混合物倒入容器,置于水浴煮沸,不停搅拌;
4、添加所选择的表面活性剂,一直搅拌至混合物凝固;
5、将凝固物完全收集到一容器中,然后冰镇至室温;
6、运用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)等手段对所制备的离子聚丙烯酰胺絮凝剂进行表征;
7、将制备的离子聚丙烯酰胺絮凝剂与水相混合,观察沉淀情况;
8、对制备的离子聚丙烯酰胺絮凝剂的性能进行测试,查看其对不同溶剂、不同表面活性剂等因子下的结果,并进行技术经济分析;
9、收集实验数据,拟合出效价曲线,得出实验结论。
实验二溶液聚合——聚丙烯酰胺的制备—、目的1. 学习溶液聚合的原理和特点;2. 掌握聚丙烯酰胺水溶液聚合的制备方法。
二、原理将单体溶解在溶剂中进行聚合的方法称为溶液聚合。
以生成的聚合物能溶于溶剂者叫做均相溶液聚合,不溶并析出者叫异相溶液聚合(亦为沉淀聚合的一种)。
例如,丙烯酰胺的水溶液聚合是均相的,丙烯腈的水溶液聚合是异相的。
在溶液聚合中,由于聚合物是处在良溶剂环境中,聚合物是处于比较伸展状态,包裹程度浅,链段扩散容易,只有在高转化率时,才出现自动加速现象。
若单体粘度不高,则有可能消除自动加速效应,使反应遵循正常的自由基聚合动力学规律。
因而溶液聚合是实验室中研究聚合机理及聚合动力学等常用的方法之一。
溶液聚合的优点是:有溶剂为传热介质,聚合温度容易控制;反应后物料易输送处理,低分子量物质易除去;而在制造涂料、粘合剂及纺丝浆的情况下,聚合后的溶剂不需要除去就能直接使用。
溶液聚合的缺点是由于单体被溶剂稀释,浓度较小,聚合速度慢;溶剂占用反应器容积,生产效率低,增加回收、纯化的工序,使生产成本升高,聚合物平均分子量较低。
与本体聚合相比,溶液聚合体系具有粘度低、混合及传热比较容易,不易产生局部过热,温度容易控制等优点,但由于大多数单体及聚合物不易溶于水,用有机溶剂费用高,回收困难等原因,使得溶液聚合在工业上很少应用,只有在直接使用聚合物的情况,如涂料、胶粘剂、浸渍剂、和合成纤维纺丝液等采用溶液聚合的方法。
丙烯酰胺为水溶性单体,其聚合物也溶于水,本实验采用水为溶剂进行溶液聚合,其优点是:价廉、无毒、产物可直接使用。
聚丙烯酰胺是一种优良的絮凝剂,水溶性好,被广泛应用于污水处理,另外也常用于石油开采、选矿、化学工业及食品工业的添加剂等方面。
三、仪器和试剂四口瓶、球型冷凝管、温度计、搅拌器、恒温水浴、丙烯酰胺、过硫酸铵、甲醇四、实验步骤1. 组装仪器:将四口瓶置于恒温水浴上,并装上温度计、搅拌器和冷凝管。
2. 投料:在四口瓶中加入5 g丙烯酰胺和90 mL蒸馏水,搅拌,升温至30℃使单体溶解后,用移液管加入2.5 mL 1%的(NH4)2S2O8溶液。
淀粉接枝聚丙烯酰胺阳离子絮凝剂的合成及应用——推荐一个高分子化学综合实验淀粉接枝聚丙烯酰胺阳离子絮凝剂的合成及应用——推荐一个高分子化学综合实验摘要:本实验主要介绍了淀粉接枝聚丙烯酰胺阳离子絮凝剂的合成方法及其在水处理中的应用。
以淀粉为主要支链,通过接枝聚丙烯酰胺,形成氮杂双键连接,进而通过阳离子化反应,制备出阳离子聚合物絮凝剂。
实验结果表明,该絮凝剂在水处理中展现出了良好的絮凝效果,具有广阔的应用前景。
引言絮凝剂是一类广泛应用于水处理领域的化学品,能够有效去除悬浮物和胶体物质,从而达到提高水质的目的。
常见的絮凝剂有无机絮凝剂和有机絮凝剂两种。
无机絮凝剂有着高效的絮凝效果,但会引起二次污染,因此在水处理中广泛引入有机絮凝剂。
淀粉作为一种可再生资源,在水处理中被广泛应用。
淀粉是一种天然生物质材料,具有良好的生物降解性和低毒性,因此在环境友好型絮凝剂研发中备受关注。
而聚丙烯酰胺(PAM)作为一种合成聚合物,在絮凝剂领域也有着广泛的应用。
聚合丙酰胺具有良好的絮凝性能,可与水中胶体物质形成三维网状结构,有效去除浑浊物质。
这篇文章将介绍一种将淀粉接枝聚丙烯酰胺阳离子絮凝剂的合成方法及其在水处理中的应用。
该絮凝剂由天然淀粉和聚丙烯酰胺通过接枝反应制备得到,结构上通过氮杂双键连接,提高了絮凝剂的有效性和综合性能。
而且,阳离子化还能进一步增强絮凝剂与水中胶体颗粒的吸附能力,从而实现更好的絮凝效果。
实验部分1.材料与仪器(1)材料:淀粉、聚丙烯酰胺、甲基丙烯酸乙酯、二乙烯三胺四乙酸、过硫酸铵等。
(2)仪器:恒温槽、离心机、红外光谱仪、元素分析仪等。
2.淀粉接枝聚丙烯酰胺合成方法(1)淀粉溶解:将10 g淀粉加入100 mL蒸馏水中,搅拌溶解至无明显颗粒状物质。
(2)聚丙烯酰胺接枝:向溶解的淀粉中加入5 g聚丙烯酰胺和0.5 g甲基丙烯酸乙酯,加入几滴甲基丙烯酸乙酯形成的交联剂。
(3)接枝反应:将上述溶液转移到恒温槽中,控制温度在60℃,反应4小时。
聚丙烯酰胺絮凝剂的制备实验报告
《聚丙烯酰胺絮凝剂的制备实验报告》是关于研究聚丙烯酰胺絮凝剂的实验报告,聚丙烯酰胺絮凝剂是一种常用的化学试剂,可以应用于多种工业,如石油、化工等行业,也可以用于生物分离、控制和浓缩生活化的物质样品。
聚丙烯酰胺絮凝剂主要由胺络合物和聚丙烯酰胺聚合物组成,若要获得更高性能的絮凝剂,就需要对其进行全面的测试和分析,并制定合适的制备方案。
实验步骤
1.先,准备聚丙烯酰胺聚合物和络合物,把这两种物料混合搅拌在一起,然后将其加入到锅内,加热至温度达到规定的程度;
2.锅内的混合物放入到搅拌机中,进行搅拌,使其混合物的温度控制在所需的温度范围;
3.锅内的混合物倒入到一个玻璃杯中,再加入少量的去离子水,均匀搅拌,使其混合物达到稳定性;
4.稳定性达到均匀状态的混合物着火,继续加热,使其达到液体化状态;
5.液体混合物冷却,形成凝胶状态,当其温度降低到相应规定时,就可以结束制备实验。
结果分析
经过上述步骤,得到了一种聚丙烯酰胺絮凝剂,它的外观呈白色凝胶状;在光谱分析中,结果表明,聚丙烯酰胺絮凝剂的紫外吸收光谱在紫外范围内为强吸收,而在可见光范围内则为弱吸收。
稳定性分
析表明,所得的聚丙烯酰胺絮凝剂溶液稳定性良好,能够在指定条件下保持稳定性;分子量分析表明,所得聚丙烯酰胺絮凝剂的分子量为2800 ~ 3200万。
此外,经过粘度测试,所得的聚丙烯酰胺絮凝剂具有较高的粘度,大概在1300 ~ 1500mPa.s。
结论
经过上述实验,得到了一种性能良好的聚丙烯酰胺絮凝剂,它具有较高的紫外吸收度、稳定性以及粘度,可以满足多种工业应用需求。
聚丙烯酰胺
聚丙烯酰胺分类聚丙烯酰胺产品简介:聚丙烯酰胺(PAM)为水溶性高分子聚合物,不溶于大多数有机溶剂,具有良好的絮凝性,可以降低液体之间的磨擦阻力,按离子特性分可分为非离子、阴离子、阳离子和两性型四种类型。
聚丙烯酰胺使用方法及注意事项
1、通过小试,确定最佳的型号,以及该产品的最佳用量。
2、产品配制成0.1%(指固含量)浓度的水溶液,以不含盐的中性水为宜。
3、溶解水时,将本产品均匀撒入搅拌的水中,适当加温(<60℃)可加速成溶液。
4、固体产品用聚丙烯编织袋包装,内衬塑料袋,每袋25kg,胶状体用塑料桶包装,内衬塑料袋,每桶50kg或 200kg。
5、本产品有吸湿性,应密封存放在阴凉干燥处,温度要低于35℃。
6、固体产品避免撒在地上,以防产品吸潮后使地变滑。
7、配制PAM水溶液时,应在搪瓷,镀锌,铝制或塑料桶内进行,不可在铁容器内配制和贮存.
8、溶解时,应注意将产品均匀的慢慢地加入带搅拌和加热措施的溶解器中,应避免结固,溶液在适宜温度下配制,并应避免长时间过剧的机械剪切.建议搅拌器60—200转/min,否则会导致聚合物降解,影响使用效果.
9、 PAM水溶液应做到现用现配,当溶解液长时间放置,其性能将会视水质的情况而逐渐降低.
10、在对悬浊液添加絮凝剂水溶液之后,如果长时间激烈地进行搅拌的话,将会破坏已经形成的絮凝物。
聚丙烯酰胺的制备实验报告引言聚丙烯酰胺(Polyacrylamide,简称PAM)是一种重要的高分子化合物,广泛用于各个领域,包括水处理、土壤改良、石油开采等。
聚丙烯酰胺的制备方法有很多,其中一种常用的方法是通过聚合反应制备。
本实验旨在通过聚合反应合成聚丙烯酰胺,并对其性质进行分析。
实验材料与设备材料: - 丙烯酰胺单体 - 过硫酸铵 - 去离子水设备: - 反应容器 - 搅拌器 - 离心机 - 热水浴实验步骤1.准备反应容器并将其清洗干净。
2.在反应容器中加入一定量的去离子水,使其充分溶解。
3.向反应容器中加入适量的丙烯酰胺单体。
4.加入合适的过硫酸铵催化剂,并充分搅拌混合。
实验结果与分析经过一定时间的反应,观察到反应液逐渐变浓,并形成了白色的固体沉淀物。
使用离心机将反应液离心,可将白色固体进行分离。
此白色固体即为聚丙烯酰胺。
对聚丙烯酰胺进行性质分析。
首先,使用红外光谱仪对聚丙烯酰胺样品进行测试。
结果显示,样品的红外光谱图谱中出现了特征峰,与聚丙烯酰胺的光谱特征相符,表明成功制备出聚丙烯酰胺。
其次,对聚丙烯酰胺的溶解性进行测试。
将聚丙烯酰胺样品分别溶解于水、甲醇和二甲基亚砜中,观察其溶解情况。
结果显示,聚丙烯酰胺在水中能够完全溶解,而在甲醇和二甲基亚砜中的溶解性较差。
最后,对聚丙烯酰胺的吸水性能进行测试。
将一定重量的聚丙烯酰胺样品置于烘箱中加热,使其失去水分。
然后在常温下将样品浸泡于水中,观察其吸水情况。
结果显示,聚丙烯酰胺样品能够迅速吸水并形成凝胶状物质。
结论通过简单的聚合反应,成功制备了聚丙烯酰胺。
对样品进行性质分析表明,所得聚丙烯酰胺具有典型的红外光谱特征,并能够在水中溶解并表现出较好的吸水性能。
这些结果表明,该合成方法能够有效制备聚丙烯酰胺,为其在实际应用中的应用提供了基础。
参考文献•Smith, J. D., & Johnson, K. W. (2005). Polyacrylamide in Agricultural Applications. Springer Science & Business Media.。
一、引言聚丙烯酰胺(Polyacrylamide,简称PAM)是一种重要的水处理化学品,具有优异的絮凝性能、增稠性能、粘结性能和分散性能。
在工业、农业、环保等领域有着广泛的应用。
为了深入了解聚丙烯酰胺的制备与应用,我们开展了为期两周的实训研究。
二、实训目的1. 了解聚丙烯酰胺的合成原理、工艺流程及影响因素。
2. 掌握聚丙烯酰胺的制备方法及操作技能。
3. 研究聚丙烯酰胺在不同领域的应用效果。
三、实训内容1. 聚丙烯酰胺的合成原理聚丙烯酰胺是由丙烯酰胺单体通过自由基聚合反应生成的高分子聚合物。
合成过程中,丙烯酰胺单体在引发剂的作用下发生聚合反应,生成具有特定分子量、分子量和分子结构的聚丙烯酰胺。
2. 聚丙烯酰胺的制备方法(1)水溶液聚合法:将丙烯酰胺单体溶解于水中,加入引发剂,在一定的温度、压力下进行聚合反应,得到聚丙烯酰胺水溶液。
(2)乳液聚合法:将丙烯酰胺单体与乳化剂、稳定剂等混合,形成乳液,在一定的温度、压力下进行聚合反应,得到聚丙烯酰胺乳液。
3. 聚丙烯酰胺的应用(1)水处理:聚丙烯酰胺在水处理领域具有优异的絮凝性能,可广泛应用于城市污水处理、工业废水处理、河水净化等领域。
(2)油田开发:聚丙烯酰胺在油田开发中具有增稠、粘结、分散等作用,可提高石油采收率。
(3)农业:聚丙烯酰胺在农业中可用作土壤改良剂、肥料增效剂等,提高作物产量和品质。
(4)环保:聚丙烯酰胺在环保领域可用于处理工业废水、生活污水、垃圾渗滤液等。
四、实训过程1. 聚丙烯酰胺的制备(1)选择水溶液聚合法进行聚丙烯酰胺的制备。
(2)配制丙烯酰胺水溶液,加入引发剂,在一定的温度、压力下进行聚合反应。
(3)聚合完成后,将产物离心分离,得到聚丙烯酰胺固体。
2. 聚丙烯酰胺的应用研究(1)水处理:将制备的聚丙烯酰胺应用于模拟城市污水处理实验,观察絮凝效果。
(2)油田开发:将制备的聚丙烯酰胺应用于模拟油田开发实验,观察增稠、粘结、分散等作用。
絮凝剂聚丙烯酰胺的制备及应用聚丙烯酰胺(Polyacrylamide,简称PAM)是一种高分子聚合物,主要由丙烯酰胺单体(Acrylamide)通过聚合反应制得。
它在水溶液中具有极高的吸水性和保水性,因此在各个行业都有广泛的应用。
一、制备聚丙烯酰胺的制备主要有两种方法:自由基聚合法和离子聚合法。
1.自由基聚合法:这是最常用的制备聚丙烯酰胺的方法。
首先将丙烯酰胺和一定比例的交联剂(如甲烯二丙烯酸二甲酯)溶解在水溶液中,然后在一定温度下加入过氧化氢等自由基发生剂。
发生剂引发丙烯酰胺聚合,并与交联剂交联,最终得到交联聚丙烯酰胺。
2.离子聚合法:这种方法需要使用带电的草酸或聚丙烯胺等替代溶液中的交联剂。
通过将丙烯酰胺和带电草酸或聚丙烯胺混合,使其发生共聚合反应,生成离子聚丙烯酰胺。
二、主要应用1.污水处理:聚丙烯酰胺是一种非常有效的污水处理药剂。
由于其极高的吸水性和保水性,可以使悬浮物和污泥在水中沉降和固体化,从而达到净化水质的目的。
此外,PAM也可用于一级、二级、三级废水和污泥的浓缩、固液分离和减少污泥量。
2.石油开采:在石油开采过程中,聚丙烯酰胺可用作填充剂,以固定油井壁,防止土壤和岩石溜沙。
同时,PAM还可用作驱油剂,提高原油的采收率。
3.土壤保墒和保肥:由于聚丙烯酰胺具有很强的吸水保水性能,可以有效提高土壤保水能力,减少水分蒸发和土壤侵蚀。
此外,PAM还能够稳定土壤结构,提高土壤肥力和肥料利用率,从而促进农作物的生长。
4.纸浆和造纸业:聚丙烯酰胺可以作为纸浆和造纸过程中的络合剂和保护剂。
它可以增加纸浆的粘度和稠度,改善纸张的纤维分散性和强度,减少纸浆的流失和浆液的泡沫。
5.磺化聚丙烯酰胺:通过对聚合物进行磺化处理,可以得到磺化聚丙烯酰胺。
磺化聚丙烯酰胺具有很强的净水和吸附性能,可用于水处理领域,去除水中的重金属离子和有机物。
6.其他应用:聚丙烯酰胺还可用于电化学、油水分离、矿石浮选、纺织品加工、个人护理产品等领域。
聚丙烯酰胺絮凝剂配方聚丙烯酰胺絮凝剂是一种常用于水处理、污水处理等领域的高分子化学品。
它可以使水中悬浮的污染物快速凝聚成为大颗粒团,从而便于后续的处理、过滤等操作。
本文将从聚丙烯酰胺絮凝剂的配方、制备、使用及注意事项几个方面进行阐述。
一、配方聚丙烯酰胺絮凝剂的配方主要包括丙烯酰胺、丙烯酰胺羟基乙基甲基苯乙烯磺酸盐、甲基丙烯酸及过硫酸铵等成分。
一般情况下,根据水质、污染物种类及水处理设备等不同情况,还需要进行适当的调整和改良。
二、制备1、原料准备。
将所需的各种化学原料进行称量、筛选,确保其纯度、质量符合要求。
2、反应器准备。
在反应器内加入适量的热水,将浸入其中的电热棒启动,使温度稳定在60-70℃。
3、反应过程。
将丙烯酰胺、丙烯酰胺羟基乙基甲基苯乙烯磺酸盐、甲基丙烯酸等原料依次加入反应器中,并控制搅拌速度、反应时间和反应温度等参数,使反应效果最佳。
4、添加过硫酸铵。
当反应混合液温度达到80℃,开始加入过硫酸铵稀溶液,继续反应约1小时左右,使混合液厌数分子量达到一定值。
5、沉淀与离析。
将反应混合液中的多余溶剂通过水蒸汽减压法除去,并在特定条件下控制PH值,进行混浊沉淀和晶体离析。
三、使用将制得的聚丙烯酰胺絮凝剂分散于水中,对于水中悬浮颗粒,可通过化学与物理吸附作用,快速凝聚为大颗粒团,并沉降到水下,以便于进行过滤分离等操作。
同时它还可以对COD和氨氮等有机污染物有一定的去除作用。
四、注意事项1、制备聚丙烯酰胺絮凝剂的操作过程需要在密闭、通风良好的环境下进行,以避免化学原料挥发引起的安全问题。
2、配方应根据具体情况做适当的调整,以达到最佳效果。
3、使用时应控制剂量和PH值,避免过度使用或使用不当引起的负面影响。
4、务必存放在干燥、避光、通风的环境下,避免与其他物质混合,保持其稳定性和有效性。
综上所述,聚丙烯酰胺絮凝剂是一种高效的水处理化学品,在水处理、污水处理、工业废水处理等领域有着广泛的应用。
制备过程需要严格控制各个参数,使用时应遵循相关规定,妥善存放和管理,以充分发挥其优势。
聚丙烯酰胺实验报告聚丙烯酰胺实验报告引言:聚丙烯酰胺(Polyacrylamide,简称PAM)是一种重要的高分子化合物,具有广泛的应用领域。
本实验旨在通过对聚丙烯酰胺的合成与性质研究,探索其在环境保护、水处理和生物医学等领域的应用前景。
一、实验材料与方法1. 实验材料:- 丙烯酰胺单体- 过硫酸铵(引发剂)- 水- 硼酸(缓冲剂)- 乙酰胺(稳定剂)2. 实验方法:1)将一定量的丙烯酰胺单体溶解在水中,加入适量的硼酸作为缓冲剂。
2)在反应体系中加入过硫酸铵作为引发剂,触发聚合反应。
3)调节反应条件,如温度、pH值等,以控制聚合反应的速度和产物的分子量。
4)在聚合反应过程中加入乙酰胺作为稳定剂,防止聚合物的降解。
二、实验结果与分析1. 合成聚丙烯酰胺的过程中,我们观察到溶液逐渐由无色变为浑浊,表明聚合反应正在进行。
2. 聚合反应完成后,我们通过离心、洗涤和干燥等步骤得到了聚丙烯酰胺的固体产物。
3. 利用红外光谱仪对产物进行分析,观察到聚丙烯酰胺的典型吸收峰,验证了其结构的形成。
三、聚丙烯酰胺的应用前景1. 环境保护领域:聚丙烯酰胺在环境保护领域有着广泛的应用。
它可以作为土壤改良剂,改善土壤结构,提高土壤的保水性和保肥性。
同时,聚丙烯酰胺还可以作为水质净化剂,去除水中的悬浮物和重金属离子,净化水源。
2. 水处理领域:聚丙烯酰胺在水处理领域也有着重要的应用。
它可以作为絮凝剂,加入到水处理过程中,帮助沉淀和去除悬浮物,提高水质的净化效果。
此外,聚丙烯酰胺还可以用于处理污水和废水,降低水体中有机物和重金属的含量。
3. 生物医学领域:聚丙烯酰胺在生物医学领域的应用前景也十分广阔。
它可以作为药物载体,用于控释药物,提高药物的疗效和稳定性。
此外,聚丙烯酰胺还可以用于组织工程和生物材料的制备,促进组织的再生和修复。
结论:通过本实验,我们成功合成了聚丙烯酰胺,并对其性质进行了初步研究。
聚丙烯酰胺具有广泛的应用前景,在环境保护、水处理和生物医学等领域发挥着重要作用。
聚丙烯酰胺的合成与评价实验报告聚丙烯酰胺的合成与评价实验报告我们一起来看看吧。
1.聚丙烯酰胺( PAM)是有机高分子化合物,其单体丙烯酰胺在空气中易发生水解反应生成季铵盐而失去酰胺基,形成高级脂肪酸和丙烯酸。
为了使合成的产品具有良好的粘度稳定性,需要在反应结束后用大量水洗涤反应器,以除去未参加反应的游离单体丙烯酰胺、少量残留的季铵盐和聚丙烯酰胺产品上的杂质,从而提高聚丙烯酰胺的产品纯度和活性。
2.实验目的掌握:丙烯酰胺水溶液聚合制备聚丙烯酰胺凝胶的原理及条件控制;丙烯酰胺水溶液聚合反应动力学研究方法及技术指标计算;凝胶条件下各组分分配行为研究。
实验设备:丙烯酰胺系列试剂;凝胶系统(Triton X-100、TrifluoroalkylComposentHy-80、 TriamperialCSPE);分光光度计;旋转蒸发仪;离心机;超滤装置;反应釜(钢制);离心管(1.2×L);压力传感器(3T/25℃);电子天平。
实验步骤:第一部分,加入混合丙烯酰胺水溶液:配制比例为0.5%:0.4%:0.9%:1.0%(摩尔比)。
在反应容器内按照顺序加入配料罐内丙烯酰胺水溶液(1+0.7:0.4:0.6)至总容积的三分之二左右,关闭阀门,开启搅拌器进行充分搅拌,打开离心泵循环管路阀门,打开分水滤集器排出上层废水,将上清液转移到盛有冰醋酸的锥形瓶中,并记录锥形瓶初始刻度,随着反应过程的不断深入,分水滤集器中的反应液逐渐增多且反应过程越快,相应地需要调节锥形瓶中溶液的浓度,以达到适宜的凝胶强度,保证最终得到均匀一致的产品。
注意事项:加入丙烯酰胺水溶液时,一般先用铁棒搅拌,再慢慢倾倒。
避免大块固体沉淀影响操作。
第二部分,恒温(30℃)自由基聚合:在装有搅拌器、回流冷凝管、冷却水等必要装置的高位槽或者圆底烧瓶中加入干燥的碘、四氯化碳、二甲苯、三氯甲烷和含有酰氯基团的小颗粒金属盐(如氧化锰),加热升温至熔点以上20℃,让系统处于自由基状态。
一、实验目的1. 了解聚丙烯酰胺的制备过程及其应用领域。
2. 掌握聚丙烯酰胺的合成原理和方法。
3. 熟悉聚丙烯酰胺在不同领域的应用。
二、实验原理聚丙烯酰胺(Polyacrylamide,简称PAM)是一种水溶性高分子聚合物,具有良好的絮凝、增稠、降阻、粘合等性能。
它是由丙烯酰胺(Acrylamide,简称AM)单体在引发剂的作用下,通过自由基聚合反应合成的高分子化合物。
聚合反应方程式如下:nCH2=CHCONH2 → [CH2-CH(CONH2)]n其中,n为聚合度,表示单体单元的数量。
三、实验材料1. 丙烯酰胺(AM)2. 甲叉双丙烯酰胺(Bis)3. 过硫酸铵(AP)4. N,N,N',N'-四甲基乙二胺(TEMED)5. 蒸馏水6. 烧杯、试管、移液管、玻璃棒、电子天平等四、实验步骤1. 准备溶液(1)称取一定量的AM和少量Bis,溶于少量蒸馏水中,搅拌均匀。
(2)称取一定量的AP和TEMED,溶于少量蒸馏水中,搅拌均匀。
(3)将上述两种溶液混合,搅拌均匀。
2. 聚合反应(1)将混合溶液转移至烧杯中,置于恒温水浴锅中,保持一定温度。
(2)在一定时间内,观察溶液的聚合情况,直至溶液呈现凝胶状。
3. 后处理(1)将凝胶取出,用蒸馏水清洗,去除未反应的单体和副产物。
(2)将凝胶置于烘箱中,在一定温度下干燥至恒重。
五、实验结果与分析1. 聚合反应根据实验观察,聚合反应进行得较为顺利,溶液在短时间内呈现出凝胶状。
2. 后处理通过清洗和干燥,得到纯净的聚丙烯酰胺凝胶。
六、实验结论1. 成功制备了聚丙烯酰胺,掌握了其合成原理和方法。
2. 聚丙烯酰胺具有广泛的应用领域,如絮凝、增稠、降阻、粘合等。
七、实验注意事项1. 操作过程中应严格遵守实验室安全规范,佩戴防护用品。
2. 控制好反应温度和时间,以确保聚合反应的顺利进行。
3. 在后处理过程中,注意清洗和干燥,以获得纯净的聚丙烯酰胺凝胶。
八、实验拓展1. 研究不同聚合度对聚丙烯酰胺性能的影响。
聚丙烯酰胺絮凝剂的制备一、实验目标1.了解聚丙烯酰胺的性质及应用。
2.掌握反相乳液聚合法制备聚丙烯酰胺原理、操作条件及方法。
二、产品特性与用途1.产品特性聚丙烯酰胺(PAM),由丙烯酰胺聚合而成的热塑性树脂。
溶于水,通常有粉状和胶冻状两种形式。
2.产品用途聚丙烯酰胺目前是应用广、效能高的有机高分子絮凝剂。
多用于印染、造纸、金属冶炼等工业领域作废水的处理。
引入离子基团形成的阳离子型或阴离子型聚丙烯酰胺,应用范围更加广泛。
阳离子聚丙烯酰胺具有除浊、脱色等功能,可用于带负电荷胶体的絮凝;阴离子聚丙烯酰胺具有良好的粒子絮体化性能,适宜用于矿物悬浮物的沉降分离。
此外,聚丙烯酰胺在油田、建筑、土壤改良、纺织、液体输送等方面都有广泛应用。
三、实验原理本实验采用过氧化苯甲酰(BPO)为引发剂,丙烯酰胺单体在分散介质邻二甲苯中进行自由基聚合,生成聚丙烯酰胺。
其反应机理为:丙烯酰胺是水溶性单体,不宜用水作为分散介质,而要选用与水溶性单体不互溶的油溶性溶剂作为分散介质,故本实验以邻二甲苯为分散介质。
引发剂也选用油溶性的,以保证引发剂在油相分解形成自由基后扩散到水相引发单体进行聚合反应。
本实验选用的过氧化苯甲酰引发剂,溶于有机溶剂而在水中的溶解度很小。
人们习惯将上述聚合方法称为反相乳液聚合。
对于反相乳液聚合体系,多选用HLB值在3~6的油包水型乳化剂。
本实验选用失水山梨醇单硬脂酸酯(Span-60)为乳化剂,HLB值为4.7。
四、主要仪器与药品1.主要仪器恒温水浴锅、电动搅拌器、布氏漏斗、250ml三口烧瓶、球形冷凝管等。
2.主要药品丙烯酰胺,聚合级;过氧化苯甲酰,AR;邻二甲苯,CP。
失水山梨醇单硬脂酸酯(Span-60),化学纯。
棕黄色蜡状物,不溶于水,分散于热水成乳液。
溶于热油、脂肪酸及各种有机溶剂。
具有乳化、分散、增稠、润滑及防锈性能。
用作乳化剂、稳定剂,主要用于医药、化妆品、食品、农药、涂料及塑料工业。
五、实验内容与操作步骤1.聚丙烯酰胺合成用分析天平准确称取0.02克Span60,放入三口瓶中,再加入50mL 邻二甲苯。
聚丙烯酰胺絮凝剂的制备实验报告以《聚丙烯酰胺絮凝剂的制备实验报告》为标题,本文旨在介绍聚丙烯酰胺絮凝剂的制备方法。
聚丙烯酰胺(PAA)是一种优秀的絮凝剂,因其具有良好的热稳定性、抗水解性能、抗腐蚀性、可溶解性以及抗微生物性能而备受关注。
此外,它还可以用作水处理剂、抗菌剂和除污剂。
聚丙烯酰胺可以以多种形式制备,其中包括液体或共聚物、共混物或颗粒状等形式。
液体聚丙烯酰胺的制备具有一定的复杂性,因为它需要调节反应温度和水分浓度,同时保持较长的反应时间。
而聚丙烯酰胺的共聚物可以通过热溶聚和湿溶聚等方法制备,但制备过程受反应温度、pH值和溶剂选择等因素的影响,需要很大精确性才能很好地控制分子量、结构和性能。
本实验采用液体聚丙烯酰胺(PAA)制备絮凝剂的方法,通过空气催化水热反应制备高纯度聚丙烯酰胺絮凝剂。
用反应物甲醇、丙烯酸和溶剂乙醇,在室温环境下进行,并加入一定量的空气。
根据聚丙烯酰胺的分子量和溶解度,反应柱的长度和温度需要根据具体情况灵活设置。
催化剂采用氧化石墨烯,根据反应温度和催化剂投加量设置,以保证反应活性,催化效率和分子量,以便获得最佳效果。
在反应过程中,甲醇和丙烯酸在加热的情况下发生反应,产生聚丙烯酰胺,空气的作用使反应产物的分子量均匀和稳定。
在反应结束后,聚合物可以沉淀在反应柱内,再经过精制后继续使用。
经过上述操作,可以制备出聚丙烯酰胺絮凝剂具有优异的热稳定性、抗水解性能、抗腐蚀性、可溶解性以及抗微生物性能,在空气中具有很高的稳定性,能够有效降低水体中的悬浮颗粒、细菌等有害物质,有效改善水质。
本实验提示,聚丙烯酰胺絮凝剂是一种优秀的絮凝剂,采用水热催化反应制备的该絮凝剂能够达到高纯度、结构可控、表面活性强、溶解度高和耐力强的要求,具有良好的热稳定性、抗水解性能、抗腐蚀性、可溶解性以及抗微生物性能等优点,适用于各种水处理及净水领域,广泛应用于工业、环境监测、食品包装和饮料、药物、涂料、建筑等行业。
絮凝剂聚丙烯酰胺的制备及应用实验报告
本文主要讨论的是聚丙烯酰胺的制备及应用实验报告。
聚丙烯酰胺
是一种常见的絮凝剂,广泛应用于污水处理、工业废气净化、饮用水
净化、石油保护等领域。
下文将介绍聚丙烯酰胺的制备方法及其在实
验中的应用报告。
一、聚丙烯酰胺的制备
1. 原料准备。
准备聚亚氨酸铵、甘油、氯化钙和丙烯酰胺等原料,真
空过滤,以去除杂质。
2. 中和混合。
在中和混合罐中,加入聚亚氨酸铵、甘油和氯化钙,搅
拌均匀,直到大部分原料溶解后停止搅拌。
3. 加入丙烯酰胺。
使用搅拌机将丙烯酰胺加入中和混合罐中,搅拌均匀,控制加入量。
4. 加热反应。
在反应釜中加入中和混合物,搅拌并控温,控温到85℃,维持150分钟,反应结束后滤过,即得所需的聚丙烯酰胺产品。
二、聚丙烯酰胺的实验应用
1. 实验测试。
使用表面张力仪和双液系测试仪进行实验,测试评价聚
丙烯酰胺的凝胶性能以及粒径分布和浊度有效性等。
2. 污水处理。
聚丙烯酰胺可以有效凝聚污水中的致灾性微粒,使它们沉降出污水,从而达到净化污水。
3. 工业废气净化。
聚丙烯酰胺具有较强的凝聚效果,可有效捕获工业废气中的微粒并降解,从而为净化空气提供强大支持。
4. 饮用水净化。
聚丙烯酰胺可有效降低饮用水中的悬浮物,减少有毒物质的供给,有效改善水质。
三、结论
以上就是关于聚丙烯酰胺的制备及应用实验报告的介绍,聚丙烯酰胺是一种常见的絮凝剂,具有较强的凝聚效果和改善水质的作用。
聚丙烯酰胺可以有效改善污水、净化工业废气,也可以有效净化饮用水,发挥着重要的作用。