北师大八年级上册第一章勾股定理的逆定理(基础)
- 格式:doc
- 大小:211.00 KB
- 文档页数:9
第一章勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2 + b 2 = c 2 。
即直角三角形两直角边的平方和等于斜边的平方.勾股定理的应用条件:在直角三角形中才可以运用例:在∆ABC 中,两直角边分别是3和4,则斜边为5.因为32+42=9+16=25=52勾股逆定理:如果三角形的三边长a ,b ,c 满足a 2 +b 2=c 2 ,那么这个三角形是直角三角形.例:在∆ABC 中,AC=5,BC=12,AB=13.∵AC 2+BC 2=52+122=169=132=AB 2,∴∠C=90°勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.常见勾股数:3,4,5;6,8,10;5,12,13;8,15,17;7,24,25.第二章实数有理数和无理数统称为实数整数(例如0,-4,9)有理数(例:-2,0,3,2.14,23 )分数(例如1.37,-0.25,25)实数 正无理数(例:√2,Π,1.010010001...)无理数(无限不循环小数)负无理数(例:-√3,-1.123456789...)数轴:具有原点、单位长度、正方向的直线叫数轴例:数轴上的点与实数是一一对应的,即数轴上的每一个点都对应一个实数,每一个实数都能在数轴上找到对应的点。
相反数:a 与-a 互为相反数的两数和为0(a 与b 互为相反数,则a+b=0)例:2与-2;-√3与√3倒数:b 与1b互为倒数的两数积为1(a 与b 互为倒数,则 ab=1) 例:-3与-13;√2与√22绝对值(到原点的距离):正数的绝对值是它本身(例:|3|=3;|√3|=√3)负数的绝对值是它的相反数(例:|-2|=2;|-√3|=√3)0的绝对值是0算数平方根:若a ≥0,x ≥0,x 2=a,则a a 的算术平方根;即a a 。
平方根:若a ≥0,x 2=a ,则x=a a 的平方根;即a a 。
八年级上册第一章勾股定理基础知识1、勾股定理直角三角形两直角边a,b 的平方和等于斜边 c 的平方,即 a 2b2 c 22、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a, b, c 有关系a2b2c2,那么这个三角形是直角三角形,且最长边所对的角是直角。
3、勾股数:满足a2b2 c 2的三个正整数,称为勾股数。
常见勾股数:(3、4、5)( 5、 12、 13)( 7、 24、 25)(6、 8、 10)( 15、 20、 25)( 8、 15、 17)( 9、 40、 41)(12、 35、 37)常见平方数:112=121122=144132=169142=196152=225 162=256172=289182 =324192=361102=100 152=225252=625242 =576【基础训练】1、在△ ABC中,∠ C= 90°,( l )若 a = 5, b=12,则 c =;( 2)若 c= 15, a= 9,则 b=.2、直角三角形的斜边长为17cm,一条直角边长为15cm,则直角三角形的面积为 _________cm23、如图,在 Rt ABC 中,AB=1,则 AB 2BC 2AC 2的值为()AA、2B、4C、6D、 8BC4、如图,求等腰△ABC的面积。
5、如图,在ABC 中, B =90,AC=17,BC=15,求AB的长。
7、一个零件的形状如图所示,已知AC AB , BC BD , AC 12cm, AB 16cm , CD52cm ,求这个零件 ABCD 的面积。
b ccb8、如图,阴影长方形的面积是多少?9、有一个圆柱,它的高等于 5 厘米,底面圆的半径等于 4 厘米.在圆柱下底面 A 点有一只蚂蚁,它想吃到上底面上与 A 点相对的 B 点处的食物,沿圆柱侧面爬行的最短路程是多少?( π的值取 3) .10、如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm,30cm, 在 AB 中点 C 处有一滴蜜糖,一只小虫从 P处爬到 C处去吃,有无数种走法,则最短路程是多少?11、如图,在棱长为10 厘米的正方体的一个顶点速度是 1 厘米 / 秒,且速度保持不变,问蚂蚁能否在A 处有一只蚂蚁,现要向顶点20 秒内从 A 爬到 B?B 处爬行,已知蚂蚁爬行的【巩固提高】一、选择题1. 下列结论错误的是().A. 三个角度之比为 1∶2∶ 3 的三角形是直角三角形B. 三条边长之比为 3∶4∶ 5 的三角形是直角三角形C. 三条边长之比为 8∶16∶ 17 的三角形是直角三角形D. 三个角度之比为 1∶1∶ 2 的三角形是直角三角形2. 小丰的妈妈买了一部 29 英寸 (74cm) 的电视机 , 下列对 29 英寸的说法中正确的是().A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度3. 下列各组数中不能作为直角三角形的三边长的是( ).A.1.5,2,3B.7,24,25C.6,8,10D.9,12,154. 直角三角形两直角边长分别为3 和 4, 则它斜边上的高是 ( )A.3.5B.2.4C.1.2D.5.5. 长方形的一条对角线的长为 10cm ,一边长为 6cm ,它的面积是() .A.60cm 2B.64 cm 2C.24 cm2D.48 cm26. 斜边为 17cm,一条直角边长为 15cm).的直角三角形的面积是(A.60B.30C.90D.1207. 如果梯子的底端离建筑物 5 米 ,13 米长的梯子可以达到该建筑物的高度是( ).A.12 米B. 13 米 C .14 米 D. 15 米8. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了 10分钟,小芳先去家拿了钱去图书馆,小芳到家用了 6分,从家到图书馆用了 8分,小芳从公园到图书馆拐了个 ( ) 角. A. 锐角 B. 直角 C. 钝角 D. 不能确定9. 如图 , 一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点 A 爬到点 B 处吃食 , 要爬行的最短路程 ( 取 3)是() . A.20cm B.10cm C.14cm D. 无法确定10. 小刚准备测量一段河水的深度, 他把一根竹竿插到离岸边1.5m 远的水底 把竹竿的顶端拉向岸边 , 竿顶和岸边的水面刚好相齐 , 则河水的深度为 ( , 竹竿高出水面).0.5m,A .2mB. 2.5mC. 2.25mD. 3m二、填空题11. 如图,带阴影的正方形面积是.5 米3 米第11题第 12题第 13题第14题12. 如图为某楼梯 , 测得楼梯的长为 5米, 高 3米 , 计划在楼梯表面铺地毯, 地毯的长度至少需要米 .13.如图,在△ ABC中,∠ C=90°, BC=3, AC=4.以斜边 AB为直径作半圆,则这个半圆的面积是________.14. 如图,由 Rt△ ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形 N 的面积之和为cm2.15.传说 , 古埃及人曾用"拉绳” 的方法画直角 , 现有一根长 24 厘米的绳子 , 请你利用它拉出一个周长为24 厘米的直角三角形, 那么你拉出的直角三角形三边的长度分别为_______厘米 ,______ 厘米 ,________厘米 .16.一座桥横跨一江,桥长 12m,一艘小船自桥北头出发,向正南方向驶去,由于水流原因,到达南岸以后,发现已偏离桥南头 5m,则小船实际行驶了 _________m.三、解答题17.如图,小李准备建一个蔬菜大棚,棚宽 4 米,高 3 米,长 20 米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积 .3米4米20米18. 如图 , 长方体的长 BE=15cm,宽 AB=10cm,高 AD=20cm,点 M在 CH上 , 且 CM=5cm,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 M,需要爬行的最短距离是多少?C HMD CFAEB19. 如图,一架 2.5 米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足 B 到墙底端 C的距离为 0.7 米,如果梯子的顶端沿墙下滑0.4 米,那么梯足将向外移多少米?AA1B1B C20.如图所示的一块地,∠ ADC= 90°, AD=12m,CD= 9m, AB= 39m, BC= 36m,求这块地的面积 .21.如图,有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC沿直线 AD折叠,使它落在斜边 AB上,且与 AE重合,你能求出 CD的长吗?22. 如图,A城气象台测得台风中心在 A 城正西方向320km的 B 处,以每小时 40km的速度向北偏东 60°的 BF方向移动,距离台风中心 200km的范围内是受台风影响的区域 .(1)A城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么A城遭受这次台风影响有多长时间?23、(本小题12 分)探索与研究(方法 1)如图 5:对任意的符合条件的直角三角形绕其锐角顶点旋转且四边形 ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形90°所得,所以∠ BAE=90°,ABFE面积等于 Rt ⊿BAE和Rt ⊿ BFE的面积之和。
勾股定理的逆定理(基础)【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长a, b, c ,满足a2 b2 c2,那么这个三角形是直角三角形.要点诠释:(1 )勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证c2与a2 b2是否具有相等关系•若c2 a2 b2,则△ ABC是/ C= 90°的直角三角形;若c2 a2 b2,则△ ABC不是直角三角形要点诠释:当a2 b2 c2时,此三角形为钝角三角形;当a2 b2 c2时,此三角形为锐角三角形,其中c为三角形的最大边.要点三、勾股数满足不定方程x2 y2 z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数)显然,以x、y、z为三边长的三角形一定是直角三角形熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13 15、17;④ 7、24、25;⑤ 9、40、41……如果a、b c是勾股数,当t为正整数时,以at、bt、ct为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)n2 1, 2n, n2 1 (n 1,n是自然数)是直角三角形的三条边长;2 2(2)2n 2n,2n 1,2n 2n 1 (n> 1, n是自然数)是直角三角形的三条边长;2 2 2 2(3)m n ,m n ,2mn ( m n, m n是自然数)是直角三角形的三条边长;【典型例题】类型一、勾股定理的逆定理1、判断由线段a, b, c组成的三角形是不是直角三角形.(1)a = 7, b = 24, c = 25;43(2) a =, b = 1, c =3 4(3) a m 2 n 2 , b m 2 n 2, c 2mn (m n 0);a 2b 2b 2c 2c222mn , m nb 2.b, c 组成的三角形是直角三角形. 【总结升华】解此类题的关键是准确地判断哪一条边最大, 行判断,即首先确定最大边,然后验证 c 2与a 2 b 2是否具有相等关系,再根据结果判断是否为直角三角形. 举一反三:【变式】(2015春?安陆市期中)发现下列几组数据能作为三角形的边:(1) 8, 15, 17;( 2)5, 12, 13; (3) 12, 15, 20; (4) 7, 24, 25.其中能作为直角三角形的三边长的有()A.1组B.2 组C.3组D.4 组【答案】C.解:①T 82+152=172,二能组成直角三角形;2 2 2② ••• 5+12=13 ,A 能组成直角三角形; ③ 12 +15工20 ,•••不能组成直角三角形; ④ 7+242=252,二能组成直角三角形. 故选C.【思路点拨】 两条线段的平方和是否等于最长线段的平方. 角形.【答案与解析】判断三条线段能否组成直角三角形, 关键是运用勾股定理的逆定理: 若是,则为直角三角形, 看较短的反之,则不是直角三a 2b 272 242 625 , c 2 252 6 25 ,由线段 a,b, c 组成的三角形是直角三角形.c , b 212i 2 25 16 1616 9由线段 (3)va,0,b, c 组成的三角形不是直角三角形.(m 2 \2n )(2 m n)2 m 4 2m 2 n 2 n 4 4m 2n 2m 2n 2 n 4,b 2(m 2 2\2n )m 4 2m 2n由线段a,然后再利用勾股定理的逆定理进C 2、(2016春?丰城市期末)如图,已知四边形 ABCD 中,/ B=Z 90°, AB= 3, BC = 4,C[> 12, At > 13,求四边形 ABCD 的面积.【思路点拨】 由AB = 3, BC = 4, / B = 90°,应想到连接 AC 则在Rt △ ABC 中即可求出△ ABC 的面积,也可求出线段 AC 的长.所以在厶ACD 中,已知AC, AD, CD 三边长,判断这个三角 形的形状,进而求得这个三角形的面积. 【答案与解析】解:连接AC ,在厶ABC 中,因为/ B = 90°, AB= 3, BC = 4,所以 AC 2 AB 2 BC 2 32 42 9 16 25,所以 AC = 5, 在厶 ACD 中, AD- 13, DC= 12, AC = 5, 所以 DC 2 AC 2 52 122 25 144 169 132 AD 2,即 DC 2 AC 2 AD 2. 所以△ ACD 是直角三角形,所以S四边形ABCDABC13 4 5 126 30 36 .2 2【总结升华】有关四边形的问题通常转化为三角形的问题来解, 本题是勾股定理及逆定理的综合考察.类型二、勾股定理逆定理的应用3、已知:a,b,c 为ABC 的三边且满足a 2 b 2 c 2 338 10a 24b 26c ,试判断ABC 的形状. 【答案与解析】 解:••• a 2 b 2 c 2338 10a 24 b 26c•••a 2 10a b 2 24 b c 226c 338且/ ACD- 90°.1 1S A ACDg AB g BC AC g DC1(a 5)2 (b 12)2 (c 13)2 0(2) 方程两边同时除以(a 2- b 2)时,没有考虑(a 2 - b 2)的值有可能是0; (3) ••• c 2 (a 2 - b 2) = ( a 2+b 2) (a 2- b 2)…c =a +b 或 a - b =0 a 2 - b 2=0• a+b=0 或 a - b=0■/ a+b ^0• c 2=a 2+b 2 或 a - b=0 • c =a +b 或 a=b•该三角形是直角三角形或等腰三角形.4、(2015?秦皇岛校级模拟)如图,铁路 MN 和铁路PQ 在P 点处交汇,点 A 处是第九 十四中学,AP=160米,点A 到铁路MN 的距离为80米,假使火车行驶时,周围 100米以内 会受到噪音影响.(1)火车在铁路 MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.• a 5,b 12, c 13, a 2 b 2c 2•••△ ABC 是直角三角形.【总结升华】此类问题中要判断的三角形一般都是特殊三角形,定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系•对条件等式进行变形常用的方法有配方法, 因式分解法等• 举一反三:【变式】请阅读下列解题过程:已知 试判断△ABC 的形状. 解:T a 2c 2- b 2c 2=a 4- b 4,• c 2 ( a 2- b 2) = ( a 2+b 2) (a 2- b 2), • c 2=a 2+b 2,• △ ABC 为直角三角形.问:(1) (2) (3)【答案】解: (1) a 、b 、c 为△ABC 的三边,且满足 a 2c 2 - b 2c 2=a 4 - b 4,在上述解题过程中,从哪一步开始出现错误:错误的原因是:_ 本题正确的结论是:第三步;第一步 第二步 第三步 第四步【思路点拨】(1)过点A 作AE 丄MN 于点E ,由点A 到铁路MN 勺距离为80米可知AE=80m 再由火车行驶时,周围 100米以内会受到噪音影响即可直接得出结论;(2)以点A 为圆心,100米为半径画圆,交直线MN 于BC 两点,连接AB AC,则AB=AC=100m 在Rt △ ABE 中利用勾股定理求出 BE 的长,进而可得出BC 的长,根据火车的速度是180千米 /时求出火车经过 BC 是所用的时间即可. 【答案与解析】 解:(1)会受到影响.过点A 作AE1 MN 于点E ,•••点A 到铁路MN 的距离为80米, /• AE=80m•••周围100米以内会受到噪音影响, 80V 100, •••学校会受到影响;(2)以点A 为圆心,100米为半径画圆,交直线MN 于 BC 两点,连接ABAC,贝U AB=AC=100m 在 Rt △ ABE 中, ■/ AB=100m AE=80m • BE =,'.l 二=II ・:II J =60m【巩固练习】 一.选择题1. (2016春?庆云县期末)下列各组数中,以 a , b , c 为边的三角形不是直角三角形的是 ( )A . a=1.5, b=2, c=3B . a=7, b=24, c=25C . a=6, b=8, c=10D . a=3, b=4, c=52. 如图,在单位正方形组成的网格图中标有AB CD EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是().• BC=2BE=120m•••火车的速度是 180千米/时=50m/s , = =2.4s .50 50在解答此类题目时要根据题意作出辅助线,构造• - t=出直角三角形,再利用勾股定理求解.A.CD EF 、GHB.AB 、EF 、GHC.AB 、CF 、EFD.GH AB CD2 2 23. 下列说法:(1 )在厶ABC 中,若a +b z C ,则厶ABC 不是直角三角形;(2)若厶ABC 是直 角三角形,/ C=90,贝U a 2+b 2=c 2; (3)在厶ABC 中,若 a 2+b 2=c 2,则/C=90 ; (4)直 角三角形的两条直角边的长分别为 5和12,则斜边上的高为一」.其中说法正确的有().13A.4个B.3个C.2 个D.1个4. (2015春?临沂期末)如图,正方形网格中的△ ABC 若小方格边长为1,则△ ABC 的形状为( )9.已知x 5 y 3 Z 4 0,则由此x, y, z 为边的三角形是 __________ 三角形•10•在△ ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 ___________ . 11.若一个三角形的三边之比为 __________________________ 5:A.直角三角形B. 锐角三角形C. 钝角三角形D.以上答案都不对5•已知三角形的三边长为A.—定是等边三角形 C. 一定是直角三角形 6.三角形的三边长分别为( ). A •直角三角形 B 二.填空题 n 、n 1、m (其中m 2 2n 1),则此三角形().B. 一定是等腰三角形 D.形状无法确定a 2b 2、2ab 、a 2 b 2 ( a 、b 都是正整数),则这个三角形是钝角三角形 C .锐角三角形 D .不能确定7. ( 2016春?岳池县期末)若三角形的边长分别为6、8、10,则它的最长边上的高为 _______ .8. (2015?本溪模拟)如图,在 2X2的正方形网格中有 9个格点,已经取定点 A 和B,在余下的7个点中任取一点。
第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
八年级数学上册知识大纲(北师版)第一章 勾股定理1 探索勾股定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b 和c 分别表示直角三角形的两直角边和斜边,那么222c b a =+。
(2)割补法证明勾股定理2 能得到直角三角形吗(1)勾股定理逆定理:如果三角形的三边长a ,b,c 满足222c b a =+,那么这个三角形是直角三角形.(2)勾股数:3,4,5;6,8,10;5,12,13;8,15,17;7,24,25… 3 蚂蚁怎样走最近-—最短路径问题(长方体、正方体、圆柱体、圆锥体等)第二章 实数1 数不够用了(1)无理数:无限不循环小数叫做无理数.(2)有理数总可以用有限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数.2 平方根(1)算术平方根:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为a 。
特别地,我们规定0的算术平方根是0,即00=。
(2)平方根:一般地,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根(也叫二次方根),记为a ±。
求一个数a 的平方根的运算,叫做开平方,其中a 叫做被开方数。
(3)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
3 立方根(1)立方根:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫三次方根)。
求一个数a 的立方根的运算,叫做开立方。
(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数。
4 公园有多宽5 用计算器开方6 实数(1)有理数和无理数统称为实数,即实数可分为有理数和无理数。
(2)实数也可以分为正实数、0、负实数。
(3)实数与数轴上的点一一对应.7 二次根式(1)二次根式:一般地,式子)0(≥a a 叫做二次根式.(2)二次根式乘除运算法则:)0,0();0,0(>≥=≥≥⋅=⋅b a b a ba b a b a b a (3)最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C .5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBACA B E D练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例 2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cmCABD练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62 ,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理(1)直角三角形两直角边a ,b 的平方和等于斜边c的平方,即222c b a =+(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法……(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数a ,b ,c ,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a 为奇数且a <b 时,如果b+c=a 2那么a,b,c 就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:2n,n 2-1,n 2+1如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积……(3)判定三角形形状: a 2 +b 2>c 2锐角~,a 2 +b 2=c 2直角~,a 2 +b 2<c 2钝角~判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状(4)构建直角三角形解题例1. 已知直角三角形的两直角边之比为3:4,斜边为10。
求直角三角形的两直角边。
解:设两直角边为3x ,4x ,由题意知:()()34100916100251004222222x x x x x x +=+===,,, ∴x=2,则3x=6,4x=8,故两直角边为6,8。
北师大版八年级上册第一章知识点一、勾股定理。
1. 定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别为a和b,斜边长度为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两条直角边分别为3和4,那么斜边的平方c^2=3^2+4^2=9 + 16=25,所以斜边c = 5。
2. 勾股定理的证明。
- 常见的证明方法有赵爽弦图证明法等。
- 赵爽弦图:以直角三角形的斜边c为边长的正方形的面积等于以直角边a、b 为边长的四个直角三角形与一个小正方形面积之和。
即c^2=4×(1)/(2)ab+(b - a)^2,化简后可得c^2=a^2+b^2。
3. 勾股定理的应用。
- 已知直角三角形的两边求第三边。
- 当已知两条直角边a、b时,斜边c=√(a^2)+b^{2}。
- 当已知一条直角边a和斜边c时,另一条直角边b=√(c^2)-a^{2}。
- 解决实际问题中的直角三角形问题。
- 例如,在一个长方形中求对角线长度(长方形的相邻两边与对角线构成直角三角形);在一个梯形中,通过作高构造直角三角形来求相关线段长度等。
二、勾股定理的逆定理。
1. 定理内容。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
2. 判断直角三角形的方法。
- 首先计算三边的平方,看是否满足两短边的平方和等于长边的平方。
- 例如,三角形三边分别为3、4、5,因为3^2+4^2=9 + 16 = 25=5^2,所以这个三角形是直角三角形,其中边长为5的边所对的角为直角。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
- 如果(a,b,c)是一组勾股数,那么ka、kb、kc(k为正整数)也是一组勾股数。
例如,(3,4,5)是勾股数,那么(6,8,10)(k = 2时)也是勾股数。
第1讲 勾股定理及其逆定理【知识梳理】1.勾股定理在直角三角形中,两直角边的 等于 .若用a 、b 为表示两条直角边,c 表示斜边,则 。
(勾股定理)【注】①直角三角形;②找准斜边、直角边。
2.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长c b a ,,满足____________,那么这个三角形是直角三角形。
(2)勾股数:满足222c b a =+的三个 ,称为勾股数。
3.勾股定理的简单应用利用勾股定理222c b a =+求直角三角形的边。
【注意】①已知三角形是 ;②找准已知边是 边或 边。
③所求是 边。
运用勾股定理的逆定理来判断三角形是否是直角三角形。
【演练巩固】1、已知三角形的三边长分别为5,13,12,则三角形的面积为( )A. 30B. 60C. 78D. 不能确定2、如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离是( )A .3B .4C .5D .63、如图,在△ABC 中,∠A=90°,∠C=45°,AB=6cm ,∠ABC 的平分线交AC 于点D ,DE ⊥BC ,垂足为E ,则DC+DE= _____cm .4、如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=15,那么AC 的长为______。
5、如图,已知Rt △ABC 中,AB=4,分别以AC,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2= 。
2题 3题 4题 5题6、如图,直线l 上有三个正方形a ,b ,c ,若a ,b 的面积分别为5和12, 则c 的面积为7、在Rt△ABC 中,△C=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.518 B.536 C.554 D.5801 8、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲。
第一章《勾股定理》知识点1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.若用a 、b 为表示两条直角边,c 表示斜边,则222a b c +=,其中222222,,b c a a c b b a c -=-=+=2.勾股定理的证明:勾股定理是通过面积拼图法来证明,其方法较多.3.勾股定理的逆定理:在三角形中,若两边的平方和等于第三边的平方,则这个三角形为直角三角形;即在△ABC 中,若222a b c +=,则△ABC 为直角三角形,∠C=900.这是判定一个三角形是直角三角形的方法.4.常见的勾股数:(3、4、5);(6、8、10);(9、12、15);(12、16、20);(15、20、25);(5、12、13);(10、24、26);(15、36、39);(8、15、17);(16、30、34);(7、24、25)等;将这些数扩大或缩小相同倍数后,它们仍然满足勾股定理,但不一定是勾股数(因为勾股数是正整数)!5.勾股定理(或逆定理)的应用:(1)直接利用勾股定理,由直角三角形的已知边求未知边:①只有一边为未知数;②有两边为未知数,但能用一个未知数表示;③求直角三角形斜边上的高通常采用“等面积法”;(2)添加辅助线,在图中构造出直角三角形,运用勾股定理求未知边.(有时还要借助方程、方程组和代数运算);(3)有些代数问题,其数量关系具有“勾股关系”,根据这种关系设计、构造出相应的几何 图形,然后借助图形的几何性质去解决代数问题,这就是“数形结合”的思想.(4)对立体图形问题,将其表面或侧面展开转化成平面问题,构造直角三角形,运用勾股 定理计算;(5)注意勾股定理或逆定理在解题中的格式!1.为什么要证明(1)因为通过观察、实验、归纳得到的结论是不可靠的,故必须要证明;(2)证明:从条件出发,结合已经学过的定义、公理、定理、性质等一步一步推导出结论的过程(即演绎推理的过程)称为证明.2.定义与命题(1)定义:对名称和术语的含义加以描述,做出明确的规定.(2)命题:判断一件事情的句子,叫做命题.(3)每个命题都由条件和结论两部分组成,都可以写成“如果......那么......”的形式,“如果”引出的是条件,“那么”引出的是结论;(4)命题分为真命题和假命题,真命题需要证明,假命题只需要举一个反例.3.学过的八条基本事实(公理)(1)两点确定一条直线;(2)两点之间线段最短;(3)同一平面内,过一点有且只有一条直线与已知直线垂直;(4)同位角相等,两直线平行;(5)过直线外一点有且只有一条直线与这条直线平行;(6)两边及其夹角分别相等的两个三角形全等;(7)两角及其夹边分别相等的两个三角形全等;(8)三边分别相等的两个三角形全等.4.部分性质定理:(1)同角(或等角)的余角相等;同角(或等角)的补角相等;(2)三角形的任意两边之和大于第三边;(3)内错角相等,两直线平行;同旁内角互补,两直线平行;(4)两直线平行,内错角相等;两直线平行,同旁内角互补;(5)两直线平行,同为角相等;(6)平行于同一条直线的两条直线平行;(7)三角形的内角和等于1800,外角和等于3600;(8)三角形的一个外角的能够与和它不相邻的两个内角的和;(9)三角形的一个外角大于任何一个和它不相邻的内角.一、实数:无理数:无限不循环小数叫做无理数;实数:有理数和无理数统称实数;实数与数轴上的点是一一对应关系.实数的表现形式:①无限不循环小数,如0....等;②开方开不尽的数339332,,,等;③特殊的数,如π,1-π,3π,等. 有些数本质上不是无理数,如.8430等,,π二、平方根与立方根:①平方根:若x 2=a ,则x 叫做a 的平方根,记作a x ±=; 一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. ②算术平方根:一个正数的正的平方根叫做这个数的算术平方根,即a x =;0的算术平方根是0;(只有非负数才有平方根和算术平方根)③立方根:若x 3=a ,则x 叫做a 的立方根,记作3a x =;正数的立方根是正数;负数的立方根是负数;0的立方根是0.(任何实数都有立方根)三、二次根式:1、二次根式:形如)0(≥a a 的式子叫做二次根式;被开方数a ≥0且.0≥a2、二次根式的运算:(1)乘法:ab b a =⋅(可以逆算) a a =2)((条件a ≥0);⎩⎨⎧≤-≥==)0()0(2a a a a a a (a 为任意实数). (2)除法:b a ba =(条件a ≥0,b >0,可以逆算) (3)加减法:①最简二次根式的条件:①根号内不含开方开得尽的因数;②分母中不含根号;③根号中不含分母;②分母有理化(化去分母中的根号):常见的两种形式)(或和ba cb ac a b ±±单项式型:如3333331=⋅=,55515151===等; 多项式型:如23)32(3232)32)(32(32321-=--=--=-+-=+ 223532535)35)(35(35351+=-+=+-+=- ③同类二次根式:几个二次根式化成最简二次根式后,若被开方数相同.................,则称它们是同类二次根式,同类..二次根式可以像同类项一样合并..............;(不是同类二次根式不能合并). 二次根式的混合运算:先乘方开方,再乘除,最后合并同类二次根式(可同步采用运算律简化运算)第六章《数据的分析》知识点一、“三数”(平均数、中位数、众数)刻画数据“更......”1、平均数: ①算术平均数:)...(121n x x x nx +++=②加权平均数: ....,......)...(1211112211据的重要程度),“权”表示一个数且的权出现的次数,是数据表示,的权,出现的次数,是数据表示(其中n m m m x x m x x m x m x m x m nx t t t t t t =++++++=③参照平均数:均数)为比较后所得数据的平为参照数,('',x a x a x +=. 2、中位数:n 个数据按大小顺序排列后,处于最中间位置的一个数据(或最中间位置两个 数据的平均数)叫做这组数据的中位数,中位数只有一个,可能在数据中,也 可能不在数据中.3、众 数:一组数据中出现次数最多的那个数据叫做这组数据的众数;众数可能不只一个. 平均数、中位数、众数都是描述数据集中趋势的统计量.平均数要求所有数据参与计算,但容易受端点值的影响;中位数计算简单,受端点值影响较小,但不能利用所有数据的信息;众数是多次重复的数据,人们颇为关心,但各数据重复次数一样时,众数没有特别意义.不同的研究者对“三数”的关注程度不一样...................! 二、“三图”(折线统计图,条形统计图,扇形统计图)分析数据的集中趋势三个统计图均能比较容易看出..一组数据的众数,可以求出..中位数,平均数.三、“三差”(方差、标准差、极差)刻画数据的离散程度(即波动性稳定性大小) ①方差:])()()[(1222212x x x x x x nS n -++-+-= ,其中.,......,,21的平均数是n x x x x (方差的四步求法:求平均数、作差、平方、求平均数)②标准差:S (方差的算术平方根);③极差:d = 最大数据 - 最小数据;一组数据的极差、方差或标准差越小,这组数据越稳定(方差和标准差运用较多)第三章《位置与坐标》一、确定位置:1、数轴上,确定一个点的位置,只需要一个数据;2、平面上,确定一个点的位置,需要两个数据;3、空间中,确定一个点的位置,至少需要三个数据.二、平面直角坐标系:1、定义:在平面上,两条互相垂直且有公共原点的数轴就组成了平面直角坐标系.水平方向 为x 轴(或横轴),向右为正;铅直方向为y 轴,向上为正;公共原点O 为坐标原点.2、平面内一个点P 的位置由有序实数对(x,y)即坐标来确定,有序实数对(x ,y)与点P 的位置是一一对应的关系.3、P (x ,y)在平面内的坐标特征⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==为任意实数轴上:在为任意实数轴上:在<>在第四象限:<<在第三象限:><在第二象限:>>在第一象限:y x y x y x y x y x y x y x ,0,00,00,00,00,0 4、平行于坐标轴的直线上点的坐标的特点⎩⎨⎧标相同,纵坐标不同轴的直线上的点的横坐平行于标相同,横坐标不同轴的直线上的点的纵坐平行于y x5、坐标系中对称点的坐标特点⎪⎩⎪⎨⎧.,,横、纵坐标都为相反数关于原点对称的两点,相同;纵坐标相反轴对称的两点,横坐标关于相反;纵坐标相同轴对称的两点,横坐标关于y x y y x x6、如何建立适当的坐标系,求点的坐标(力求简捷);7、坐标系中求图形的面积,可用割补法(向坐标轴作垂线,构造简单图形,求面积的和差)8、坐标系中求两点(所确定的直线不与坐标轴平行)之间的距离,可构造Rt △,利用勾股定理来求.第四章《一次函数》知识点一、函数:1、定义:在一个变化过程中有两个变量x 和y ,对于变量x 的每一个值,变量y 都有唯一的值与它对应,称y 是x 的函数,其中x 是自变量,y 是因变量.2、函数的表示方法:列表法、关系式法、图象法.3、列函数关系式的要求:用自变量x 的代数式表示因变量y .4、利用函数关系式求x 和y 的值.二、一次函数与正比例函数:1、定义:.0,)的函数叫做一次函数为常数,且(形如≠+=k b k b kx y.)0(0一次函数的特殊形式叫做正比例函数,它是时,函数当≠==k kx y b2、图象及画法:一次函数的图象是一条直线,任取两点如(0,b )和)0(,kb -就可画出; 正比例函数图象是过原点的直线,除原点O (0,0)外,再找一点(1,k )就可画出.3、图象及性质:①对正比例函数y =kx增减性:k >0,y 随x 的增大而增大,k <0,y 随x 的增大而减小,反之亦然.区域性:k >0,图象经过一、三象限,k <0,图象经过二、四象限,反之亦然.②对一次函数y=kx+b增减性:k >0,y 随x 的增大而增大,k <0,y 随x 的增大而减小,反之亦然.区域性:k >0,b >0,图象经过一、二、三象限;k >0, b <0,图象经过一、四、三象限, k <0,b >0,图象经过二、一、四象限;k <0, b <0,图象经过二、三、四象限. ③一次函数y=kx+b 的图象可由正比例函数y =kx 的图象平移而来.b >0,沿y 轴向上平移b 个单位, b <0,沿y 轴向下平移b 个单位.4、待定系数法求一次函数的表达式:设.(设表达式),列.(代入坐标列方程组),解.(求出k 、b),写.(写出函数关系式). 5、一次函数图象的交点求法:①求与x 轴的交点坐标,令y=0,求x ,即(x ,0);②求与y 轴的交点坐标,令x =0,求y ,即(0,y );③求两直线的交点坐标,联立函数关系式解方程组,求出的解⎩⎨⎧y x 就是交点坐标(x ,y ). 6、一次函数的应用:①函数自变量x 的取值范围; ②观察图象读取有用信息点;③根据分段图象,求分段函数表达式; ④利用函数图象比较函数值的大小; ⑤动态几何求函数表达式; ⑥动态几何如何进行图形的分类.第五章《二元一次方程组》知识点一、基本概念:1、二元一次方程:含有两个..未知数,并且所含未知数的项的次数都是..........1.的方程叫做二元一次方程. 2、二元一次方程的解:适合一个二元一次方程的一组未知数的值叫做这个二元一次方程的一个解.3、二元一次方程组:共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.二、二元一次方程组的解法:①代入消元法:将有一个方程变形,用一个未知数的代数式表示另一个未知.................数.,进行代入.达 到消去一个未知数的目的.②加减消元法:将两个方程中同一个未知数的系数化为相反或相同.....,进行相加或相减.....达到消 去一个未知数的目的.三、三元一次方程组的解法:同二元一次方程组一样,利用(代入或加减)进行逐步消元:化三元为二元,化二元为一元求解.四、二元一次方程与一次函数的关系:①待定系数法求一次函数的表达式:解二元一次方程组求k,b ,可求得一次函数的表达式;②方程组⎩⎨⎧+=+=2211b x k y b x k y 的解就是一次函数2211b x k y b x k y +=+=与图象的交点坐标(x,y ). ③对方程组⎩⎨⎧+=+=2211b x k y b x k y 有⎪⎩⎪⎨⎧==≠=≠.,,2121212121,即方程组有无数个解时,两个函数图象重合当程组无解;行直线,无交点,即方时,函数图象是两条平当;点,即方程组有唯一解时,函数图象有一个交当b b k k b b k k k k 五、二元一次方程组的应用:解应用题的一般步骤:设、列、解、验、答.①数字关系类:(画方框表示数位及数位上的数字)②行程关系类:(画线段表示路程之间关系)③数据计算比较类:(画表格表示数量之间的关系)④利润(比率)类:(画表格表示数量之间的关系)。
勾股定理的逆定理与证明【知识要点】1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=那么这个三角形是直角三角形。
2.利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )②计算2c 与22a b +,并验证是否相等。
若2c =22a b +,则△ABC 是直角三角形。
若2c ≠22a b +,则△ABC 不是直角三角形。
3.勾股数组简介若a 、b 、c 均为自然数,且无1以外的整数公因式当它们满足关系式222a b c +=时, 我们称(a 、b 、c )为基本勾股数组。
()3,4,5,()5,12,13,()7,24,25,()8,15,17,()9,40,41,()11,60,61,…均为基本勾股数组。
【典型例题】例1、判断以下各组线段为边能否组成直角三角形。
(1)9、41、40; (2)5、5、 (3)13、14、15;(4)23、24、25 (5 (6)()2222,21,2210n n n n n n ++++≥例2、如图所示,已知△DEF 中,DE=17cm ,EF=30cm ,EF 边上中线DG=8cm 。
求证:△DEF 是等腰三角形。
例3、如图所示,在△ABC 中,D 是BC 上一点,AB=10,BD=6,AD=8,AC=17。
求△ABC 的面积。
例4、若a 、b 、c 是△ABC 的三边,且满足222244a cbc a b -=-,试判定三角形的形状。
DC例5、如图所示,已知正方形ABCD 中,E 是BC 边的中点,F 在CD 上,且DF=3CF ,求证:AE ⊥EF 。
例6、已知△ABC 中,AD 为BC 边上的高,且AD 2=BD ·DC ,求证:△ABC 是直角三角形。
思考:如图所示,已知△ABC 中,AB=AC ,D 为BC 上的任一点,求证:22AD BD DC AB +⋅=。
课堂练习BCEC1.下列各组数中不能构成直角三角形的一组是( ).A 、5 12 13B 、7 24 25C 、8 15 17D 、4 6 9 2.适合下列条件的△ABC 中,直角三角形的个数为( ). (1)31=a ,41=b ,51=c (2)b a =,︒=∠45A (3)︒=∠︒=∠58,32B A (4)7=a ,24=b ,25=c (5)25=a ,2=b , 3=c A 、2个 B 、3个 C 、4个 D 、5个 3.若的边a,b,c 满足()()0222=-+-cb a b a ,则△ABC 是 三角形.4.直角三角形的两直角边为6、8,则斜边上的高等于 。
中考总复习:勾股定理及其逆定理(基础)【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系. 【知识网络】【考点梳理】 考点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法. 用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变; ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理. 3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: ①已知直角三角形的任意两边长,求第三边,在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-;②知道直角三角形一边,可得另外两边之间的数量关系; ③可运用勾股定理解决一些实际问题. 考点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数;②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等; ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数).考点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及其逆定理的综合应用1.(2014春•河西区期末)在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且,试判断△AEF 是否是直角三角形?试说明理由.【思路点拨】首先设正方形的边长为4a ,则CF=a ,DF=3a ,CE=BE=2a .根据勾股定理可求出AF ,AE 和EF 的长度.如果它们三个的长度满足勾股定理,△AEF 为直角三角形,否则不是直角三角形. 【答案与解析】解:设正方形的边长为4a , ∵E 是BC 的中点,,∴CF=a,DF=3a ,CE=BE=2a .由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2=5a2,AE2=AB2+BE2=16a2+4a2=20a2,∴AF2=EF2+AE2,∴△AEF为直角三角形.【总结升华】勾股定理的应用.在解答此类题时有一个小窍门,题干中各边长都没有给出确定的值,我们已知各边长的比值,这时我们可以将边长设成具体的值.这样解题时用到的都是数字,表达方便.举一反三:【变式】如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().A.14B.16C.20D.28【答案】D.根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:∵AC=10,BC=8,∴A B=6,图中五个小矩形的周长之和为:6+8+6+8=28.2.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为().A.14B.15C. 223 D. 3【思路点拨】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【答案与解析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.可证∠FDB=90°,∠F=∠CBF,∴DF=CB=1,BF=2+2=4,∴BD=2215-=.故选B.BF DF【总结升华】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形从而求解.举一反三:【变式】(2015•黄冈模拟)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(4+)cm B.5cm C.2cm D.7cm【答案】B.【解析】解:侧面展开图如图所示:∵圆柱的底面周长为6cm,∴AC′=3cm.∵PC′=BC′,∴PC′=×6=4cm.在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选:B.类型二、勾股定理及其逆定理与其他知识的结合应用3.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到R t△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是________________.【思路点拨】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD【答案与解析】∵∠ACB=90°,AC=BC=1,∴AB=2,∴S 扇形ABD =6360)2(302ππ=⋅, 又∴Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE, ∴Rt△ADE≌Rt△ACB,∴S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD =6π. 【总结升华】本题考查了扇形的面积公式:3602R n S π=.也考查了勾股定理以及旋转的性质.考点涉及到扇形面积的计算;勾股定理;旋转的性质.4. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处, 折痕为AE ,且EF=3,则AB 的长为( ). A. 3 B. 4 C. 5 D. 6【思路点拨】先根据矩形的特点求出BC 的长,再由翻折变换的性质得出△CEF 是直角三角形,利用勾股定理即可求出CF 的长,再在△ABC 中利用勾股定理即可求出AB 的长. 【答案与解析】∵四边形ABCD 是矩形,AD=8, ∴BC=8,∵△AEF 是△AEB 翻折而成,∴BE=EF=3,AB=AF ,△CEF 是直角三角形, ∴CE=8-3=5,在Rt△CEF 中,CF=2222534CE EF -=-= , 设AB=x ,在Rt△ABC 中,AC 2=AB 2+BC 2,即(x+4)2=x 2+82,解得x=6, 故选D .【总结升华】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键. 举一反三:【变式】(2011台湾)如图为梯形纸片ABCD ,E 点在BC 上,且∠AEC=∠C=∠D=90°,AD =3,BC =9,CD =8.若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何( ).A .4.5B .5C .5.5D .6【答案】B .5.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.【思路点拨】根据已知得出假设AE =x ,可得EC =12-x ,利用勾股定理得出DC 2=DE 2+EC 2=4+(12-x )2,AE 2+BC 2=x 2+36,即可求出x 的值. 【答案与解析】假设AE =x ,可得EC =12-x ,∵坡角∠A=30°,∠B=90°,BC =6米, ∴AC=12米,∵正方形DEFH 的边长为2米,即DE =2米, ∴DC 2=DE 2+EC 2=4+(12-x )2, AE 2+BC 2=x 2+36, ∵DC 2=AE 2+BC 2,∴4+(12-x )2=x 2+36, 解得:x =314. 故答案为:314.【总结升华】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE ,AE 的长度是解决问题的关键.6 . 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长. 【思路点拨】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可. 【答案与解析】分三类情况讨论如下:(1)如图1所示,原来的花圃为Rt△ABC,其中BC =6m ,AC =8m ,∠ACB=90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ). (2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt△ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45.(3)如图3,设△ABD 中DA =DB ,再设CD =xm ,则DA =(x +6)m ,在Rt△ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ). 图1668DC BA图2486BC AD图3x +6x 68BC DA【总结升华】对于无附图几何问题,往往需要根据题意画出图形,结合已知条件及图形分析求解,这样便于寻找解题思路.举一反三:【变式】“希望中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC=40m ,BC=25m ,请求出这块花圃的面积. 【答案】作CD ⊥AB . ∵∠A=30°, ∴CD=12AC=12×40=20(m ), AD=22203AC CD -=(m ), BD=22BC CD -=15(m ).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =12AB •CD=12(203+15)×20=(2003+150)(m 2). (2)当∠ACB 为锐角时,AB=AD-BD=203-15.∴S △ABC =12AB •CD=12AB •CD=12(203-15)×20=(2003-150)(m 2).。
中考总复习:勾股定理及其逆定理(基础)【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系. 【知识网络】【考点梳理】考点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法. 用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变; ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理. 3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:①已知直角三角形的任意两边长,求第三边,在ABC ∆中,90C ∠=︒,则c =b ,a =;②知道直角三角形一边,可得另外两边之间的数量关系; ③可运用勾股定理解决一些实际问题. 考点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数;②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等; ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数).考点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及其逆定理的综合应用1.(2014春•河西区期末)在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且,试判断△AEF 是否是直角三角形?试说明理由.【思路点拨】首先设正方形的边长为4a ,则CF=a ,DF=3a ,CE=BE=2a .根据勾股定理可求出AF ,A E 和EF 的长度.如果它们三个的长度满足勾股定理,△AEF 为直角三角形,否则不是直角三角形. 【答案与解析】解:设正方形的边长为4a , ∵E 是BC 的中点,,∴CF=a ,DF=3a ,CE=BE=2a .由勾股定理得:AF 2=AD 2+DF 2=16a 2+9a 2=25a 2,EF 2=CE 2+CF 2=4a 2+a 2=5a 2,AE 2=AB 2+BE 2=16a 2+4a 2=20a 2,∴AF 2=EF 2+AE 2,∴△AEF 为直角三角形.【总结升华】勾股定理的应用.在解答此类题时有一个小窍门,题干中各边长都没有给出确定的值,我们已知各边长的比值,这时我们可以将边长设成具体的值.这样解题时用到的都是数字,表达方便. 举一反三:【变式】如图,矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( ).A.14B.16C.20D.28【答案】D.根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:∵AC=10,BC=8,∴A B=6,图中五个小矩形的周长之和为:6+8+6+8=28.2.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为().A.14B.15C. 223 D. 3【思路点拨】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【答案与解析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.可证∠FDB=90°,∠F=∠CBF,形从而求解.举一反三:【变式】(2015•黄冈模拟)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(4+)cm B.5cm C.2cm D.7cm【答案】B.【解析】解:侧面展开图如图所示:∵圆柱的底面周长为6cm , ∴AC ′=3cm . ∵PC ′=BC ′, ∴PC ′=×6=4cm .在Rt △ACP 中,AP 2=AC ′2+CP 2, ∴AP==5.故选:B .类型二、勾股定理及其逆定理与其他知识的结合应用3.如图,在Rt△ABC 中,∠ACB=90°,AC =BC =1,将Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE,点B 经过的路径为弧BD ,则图中阴影部分的面积是________________.【思路点拨】先根据勾股定理得到AB =2,再根据扇形的面积公式计算出S 扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD 【答案与解析】∵∠ACB=90°,AC =BC =1, ∴AB=2,∴S 扇形ABD =6360)2(302ππ=⋅, 又∴Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE, ∴Rt△ADE≌Rt△ACB,∴S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD =6π. 【总结升华】本题考查了扇形的面积公式:3602R n S π=.也考查了勾股定理以及旋转的性质.考点涉及到扇形面积的计算;勾股定理;旋转的性质.4. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处, 折痕为AE ,且EF=3,则AB 的长为( ). A. 3 B. 4 C. 5 D. 6【思路点拨】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【答案与解析】∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,=,在Rt△CEF中,4设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.【总结升华】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.举一反三:【变式】(2011台湾)如图为梯形纸片ABCD,E点在BC上,且∠AEC=∠C=∠D=90°,AD=3,BC=9,CD=8.若以AE为折线,将C折至BE上,使得CD与AB交于F点,则BF长度为何().A.4.5 B.5 C.5.5 D.6【答案】B.5.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE=米时,有DC2=AE2+BC2.【思路点拨】根据已知得出假设AE=x,可得EC=12-x,利用勾股定理得出DC2=DE2+EC2=4+(12-x )2,AE 2+BC 2=x 2+36,即可求出x 的值. 【答案与解析】假设AE =x ,可得EC =12-x ,∵坡角∠A=30°,∠B=90°,BC =6米, ∴AC=12米,∵正方形DEFH 的边长为2米,即DE =2米, ∴DC 2=DE 2+EC 2=4+(12-x )2, AE 2+BC 2=x 2+36, ∵DC 2=AE 2+BC 2,∴4+(12-x )2=x 2+36, 解得:x =314. 故答案为:314.【总结升华】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE ,AE 的长度是解决问题的关键.6 . 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长. 【思路点拨】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.【答案与解析】分三类情况讨论如下:(1)如图1所示,原来的花圃为Rt△ABC,其中BC =6m ,AC =8m ,∠ACB=90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ). (2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt△ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45.(3)如图3,设△ABD 中DA =DB ,再设CD =xm ,则DA =(x +6)m ,在Rt△ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37 ∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ).C46C图3x 6C【总结升华】对于无附图几何问题,往往需要根据题意画出图形,结合已知条件及图形分析求解,这样便于寻找解题思路. 举一反三:【变式】“希望中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC=40m ,BC=25m ,请求出这块花圃的面积. 【答案】。
勾股定理【要点梳理】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.a b ,c 222a b c +=222a c b =-222b c a =-()222c a b ab =+-要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题; 3. 与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用. 【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、. (1)若=5,=12,求; (2)若=26,=24,求.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.类型二、与勾股定理有关的证明2、阅读下面的材料 勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b ,斜边为c ,然后按图1的方法将它们摆成正方形. 由图1可以得到(a+b )2=4×,整理,得a 2+2ab+b 2=2ab+c 2. 所以a 2+b 2=c 2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到 , 整理,得 , 所以 .a b c a b c c b a a b c b c a :3:5a c b a c举一反三:【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2B.BD2C.BC2D.DE2类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.6类型四、与勾股定理有关的面积计算4、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6 B.5 C.11 D.16举一反三:【变式】如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=()A.25B.31C.32D.40类型五、利用勾股定理解决实际问题5、有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.举一反三:【变式】如图所示,一旗杆在离地面5处断裂,旗杆顶部落在离底部12处,则旗杆折断前有多高?【巩固练习】 一.选择题1.如图,△ABC 中,AB=AC,AD 是∠BAC 的平分线.已知AB=5,AD=3,则BC 的长为( )A .5B .6C .8D .102.若直角三角形的三边长分别为2,4,,则的值可能有( )mm x xA .1个B .2个C .3个D .4个3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( ) A .12米 B .10米 C .8米 D .6米 4.Rt △ABC 中,斜边BC =2,则的值为( )A .8B .4C .6D .无法计算5.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( )A .4B .6C .8D .56.如图,在△ABC 中,AB=AC=5,P 是BC 边上除B 、C 点外的任意一点,则代数式AP 2+PB•PC 等于( )A .25B .15C .20D .30 二.填空题7.在Rt △ABC 中,∠ACB=90°,AB=5cm ,BC=3cm ,CD ⊥AB 于D ,CD= . 8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离为 mm .10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树222AB AC BC ++m m m梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD 的顶点B ,点A 、C 到直线的距离分别是6、8,则正方形的边长是______.12.学习勾股定理相关内容后,张老师请同学们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同学通过计算得到第三边是5,你认为张华的答案是否正确: ,你的理由是 . 三.解答题13. 如图四边形ABCD 的周长为42,AB =AD =12,∠A =60°,∠D =150°,求BC 的长.14. 已知在三角形ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,CD =3,BD =5,求AC 的长.15.如图所示的一块地,AD=9m ,CD=12m ,∠ADC=90°,AB=39m ,BC=36m ,求这块地的面积.m ll。
第一章 勾股定理(基础)勾股定理(基础)【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以. a b ,c 222a b c +=222a c b =-222b c a =-()222c a b ab =+-方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以. 要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题;3. 与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【思路点拨】利用勾股定理来求未知边长.【答案与解析】解:(1)因为△ABC 中,∠C =90°,,=5,=12,所以.所以=13.(2)因为△ABC 中,∠C =90°,,=26,=24,所以.所以=10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.【答案】a b c a b c c b a 222a b c +=222a b c +=a b 2222251225144169c a b =+=+=+=c 222a b c +=c b 222222624676576100a c b =-=-=-=a a b c b c a :3:5a c =b a c解:(1)∵ ∠C =90°,=6,=10,∴ ,∴ =8.(2)设,,∵ ∠C =90°,=32,∴ .即.解得=8.∴ ,.类型二、与勾股定理有关的证明2、(2018•丰台区一模)阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b ,斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b )2=4×, 整理,得a 2+2ab+b 2=2ab+c 2.所以a 2+b 2=c 2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到 ,整理,得 ,所以 .【答案与解析】证明:∵S 大正方形=c 2,S 大正方形=4S △+S 小正方形=4×ab+(b ﹣a )2,∴c 2=4×ab+(b ﹣a )2,整理,得2ab+b 2﹣2ab+a 2=c 2,∴c 2=a 2+b 2. b c 2222210664a c b =-=-=a 3a k =5c k =b 222a b c +=222(3)32(5)k k +=k 33824a k ==⨯=55840c k ==⨯=故答案是:;2ab+b 2﹣2ab+a 2=c 2;a 2+b 2=c 2.【总结升华】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.举一反三: 【变式】如图,在△ABC 中,∠C =90°,D 为BC 边的中点,DE ⊥AB 于E ,则AE 2-BE 2等于( )A .AC 2B .BD 2C .BC 2D .DE 2【答案】连接AD构造直角三角形,得,选A .类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .6【答案】D ;【解析】解:设AB =,则AF =,∵ △ABE 折叠后的图形为△AFE ,∴ △ABE ≌△AFE .BE =EF ,EC =BC -BE =8-3=5,在Rt △EFC 中,由勾股定理解得FC =4,在Rt △ABC 中,,解得. 【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解. 类型四、与勾股定理有关的面积计算x x ()22284x x +=+6x =4、如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .6B .5C .11D .16【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b 是正方形,可求△ABC ≌△CDE .由勾股定理可求b 的面积=a 的面积+c 的面积.【答案】D 【解析】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,在△ABC 和△CDE 中,∵∴△ABC ≌△CDE∴BC=DE∵ ∴∴b 的面积为5+11=16,故选D .【总结升华】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.举一反三:【变式】(2018•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S =4,S =9,S =8,S =10,则S=( )A.25B.31C.32D.40ABC CDE ACB DEC AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩222AB BC AC +=222AB DE AC +=1234【答案】解:如图,由题意得:AB 2=S 1+S 2=13,AC 2=S 3+S 4=18,∴BC 2=AB 2+AC 2=31,∴S=BC 2=31,故选B . 类型五、利用勾股定理解决实际问题5、(2019春•淄博期中)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.【思路点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.【答案与解析】解:设门高为x 尺,则竹竿长为(x +1)尺,根据勾股定理可得:x 2+42=(x +1)2,即x 2+16=x 2+2x +1,解得:x=7.5,竹竿高=7.5+1=8.5(尺)答:门高7.5尺,竹竿高8.5尺.【总结升华】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键.举一反三:【变式】如图所示,一旗杆在离地面5处断裂,旗杆顶部落在离底部12处,则旗杆折断前有多高?【答案】解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5,AC =12,∴ .∴ ().∴ BC +AB =5+13=18().∴ 旗杆折断前的高度为18.mm m m 22222512169AB BC AC =+=+=13AB =m m m勾股定理(基础)【巩固练习】一.选择题1.(2019•荆门)如图,△ABC 中,AB=AC,AD 是∠BAC 的平分线.已知AB=5,AD=3,则BC 的长为( )A .5B .6C .8D .102.若直角三角形的三边长分别为2,4,,则的值可能有( )A .1个B .2个C .3个D .4个3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( )A .12米B .10米C .8米D .6米4.Rt △ABC 中,斜边BC =2,则的值为( )A .8B .4C .6D .无法计算5.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( )A .4B .6C .8D .56.(2018•深圳模拟)如图,在△ABC 中,AB=AC=5,P 是BC 边上除B 、C 点外的任意一点,则代数式AP 2+PB•PC 等于( )A .25B .15C .20D .30二.填空题7.(2019•黔东南州一模)在Rt △ABC 中,∠ACB=90°,AB=5cm ,BC=3cm ,CD ⊥AB 于D ,CD= .8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.x x 222AB AC BC ++9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离为 mm .10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD 的顶点B ,点A 、C 到直线的距离分别是6、8,则正方形的边长是______.12.(2018•延庆县一模)学习勾股定理相关内容后,张老师请同学们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同学通过计算得到第三边是5,你认为张华的答案是否正确: ,你的理由是 .三.解答题13. 如图四边形ABCD 的周长为42,AB =AD =12,∠A =60°,∠D =150°,求BC 的长.14. 已知在三角形ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,CD =3,BD =5,求AC的m m mm ll长.15.(2018春•滨州月考)如图所示的一块地,AD=9m ,CD=12m ,∠ADC=90°,AB=39m ,BC=36m ,求这块地的面积.【答案与解析】一.选择题1.【答案】C ;【解析】勾股定理.2.【答案】B ;【解析】可能是直角边,也可能是斜边.3.【答案】A ;【解析】设旗杆的高度为米,则,解得米. 4.【答案】A ;【解析】.5.【答案】B ;【解析】AD =8,,∴BD=6.6.【答案】A.【解析】解:过点A 作AD⊥BC 于D ,∵AB=AC=5,∠ADP=∠ADB=90°,∴BD=CD,根据勾股定理得:PA 2=PD 2+AD 2,AD 2+BD 2=AB 2,∴AP 2+PB•PC=AP 2+(BD+PD )(CD ﹣PD )=AP 2+(BD+PD )(BD ﹣PD )=AP 2+BD 2﹣PD 2=AP 2﹣PD 2+BD 2=AD 2+BD 2=AB 2=25.故选A.x x ()22215x x +=+12x =222228AB AC BC BC ==++2222210836BD AB AD =-=-=二.填空题7.【答案】; 8.【答案】2;【解析】走捷径是5米,少走了7-5=2米.9.【答案】150;【解析】∵AC=150﹣60=90mm ,BC=180﹣60=120mm ,,所以AB=150mm .10.【答案】10;【解析】∵=100,∴飞行距离为10m . 11.【答案】10;【解析】可证两个三角形全等,∵,∴正方形边长为10.12.【答案】不正确;若4为直角边,第三边为5;若4为斜边,第三边为. 【解析】解:张华的答案不正确,理由为:若4为直角边,第三边为=5; 若4为斜边,第三边为=. 三.解答题13.【解析】解:连接BD ,因为AB =AD =12,∠A =60°所以△ABD 是等边三角形,又因为∠D =150°,所以△BCD 是直角三角形,于是BC +CD =42-12-12=18,设BC =,从而CD =18-,利用勾股定理列方程得,解得=13,即BC 的长为13.14.【解析】解:过D 点作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =CD =3,易证△ACD ≌△AED ,∴AE =AC ,在Rt △ DBE 中,∵BD =5 ,DE =3,∴BE =4在Rt △ACB 中,∠C =90°设AE =AC =,则AB =∵ ∴ 12522222500AB AC BC =+=()22882+-22268=10+x x 222(18)12x x -+=x x 4x +222AB AC BC =+()22248x x +=+解得,∴AC =6.15.【解析】解:解:连结AC ,由勾股定理可知AC===15, 又∵AC 2+BC 2=152+362=392=AB 2,∴△ABC 是直角三角形,故这块地的面积=S △ABC ﹣S △ACD =×15×36﹣×12×9=216(m )2,即这块地的面积是216平方米.勾股定理的逆定理(基础)【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助: 6x=a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c 222x y z +=x y z 、、① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长; (2)(n ≥1,是自然数)是直角三角形的三条边长;(3) (是自然数)是直角三角形的三条边长;【典型例题】 类型一、勾股定理的逆定理1、判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=; (3),,();【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ ,,∴ .∴ 由线段组成的三角形是直角三角形.(2)∵ ,,, ∴ . ∴ 由线段组成的三角形不是直角三角形.(3)∵ ,∴ ,.∵, ,a b c 、、t at bt ct 、、22121n n n -+,,1,n n >2222,21,221n n n n n ++++n 2222,,2m n m n mn -+,m n m n >、a b c ,,a b c a 43b c 3422a m n =-22b m n =+2c mn =0m n >>2222724625a b +=+=2225625c ==222a b c +=a b c ,,a b c >>222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭2241639a ⎛⎫== ⎪⎝⎭222b c a +≠a b c ,,0m n >>222m n mn +>2222m n m n +>-2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++22224224()2b m n m m n n =+=++∴ .∴ 由线段组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证与是否具有相等关系,再根据结果判断是否为直角三角形.举一反三:【变式】(2018春•安陆市期中)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( )A.1组B.2组C.3组D.4组【答案】C.解:①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C .2、(2019春•丰城市期末)如图,已知四边形ABCD 中,∠B =∠90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.【思路点拨】由AB =3,BC =4,∠B =90°,应想到连接AC ,则在Rt △ABC 中即可求出△ABC 的面积,也可求出线段AC 的长.所以在△ACD 中,已知AC ,AD ,CD 三边长,判断这个三角形的形状,进而求得这个三角形的面积.【答案与解析】解:连接AC ,在△ABC 中,因为∠B =90°,AB =3,BC =4,所以,所以AC =5,在△ACD 中,AD =13,DC =12,AC =5,所以,即.所以△ACD 是直角三角形,且∠ACD =90°.所以222a c b +=a b c ,,2c 22a b+222223491625AC AB BC =+=+=+=2222225122514416913DC AC AD +=+=+===222DC AC AD +=1122ABC ACD ABCD S S S AB BC AC DC =+=+△△四边形.【总结升华】有关四边形的问题通常转化为三角形的问题来解,本题是勾股定理及逆定理的综合考察.类型二、勾股定理逆定理的应用3、已知:为的三边且满足,试判断的形状.【答案与解析】解:∵∴∴,∴△ABC 是直角三角形.【总结升华】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等.举一反三:【变式】请阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:∵a 2c 2﹣b 2c 2=a 4﹣b 4, 第一步∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2), 第二步∴c 2=a 2+b 2, 第三步∴△ABC 为直角三角形. 第四步问:(1)在上述解题过程中,从哪一步开始出现错误: _________ ;(2)错误的原因是: _________ ;(3)本题正确的结论是: _________ .【答案】解:(1)第三步;(2)方程两边同时除以(a 2﹣b 2)时,没有考虑(a 2﹣b 2)的值有可能是0;(3)∵c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2) 113451222=⨯⨯+⨯⨯63036=+=,,a b c ABC ∆222338102426a b c a b c +++=++ABC ∆222338102426a b c a b c +++=++0338262410222=+-+-+-c c b b a a 0)13()12()5(222=-+-+-c b a 5,12,13a b c ===222c b a =+∴c2=a2+b2或a2﹣b2=0∵a2﹣b2=0∴a+b=0或a﹣b=0∵a+b≠0∴c2=a2+b2或a﹣b=0∴c2=a2+b2或a=b∴该三角形是直角三角形或等腰三角形.4、(2018•秦皇岛校级模拟)如图,铁路MN和铁路P Q在P点处交汇,点A处是第九十四中学,AP=160米,点A到铁路MN的距离为80米,假使火车行驶时,周围100米以内会受到噪音影响.(1)火车在铁路MN上沿PN方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?【思路点拨】(1)过点A作AE⊥MN于点E,由点A到铁路MN的距离为80米可知AE=80m,再由火车行驶时,周围100米以内会受到噪音影响即可直接得出结论;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中利用勾股定理求出BE的长,进而可得出BC的长,根据火车的速度是180千米/时求出火车经过BC是所用的时间即可.【答案与解析】解:(1)会受到影响.过点A作AE⊥MN于点E,∵点A到铁路MN的距离为80米,∴AE=80m,∵周围100米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中,∵AB=100m,AE=80m,∴BE===60m,∴BC=2BE=120m,∵火车的速度是180千米/时=50m/s,∴t===2.4s.答:学校受到影响的时间是2.4秒.【总结升华】题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.【巩固练习】一.选择题1. (2019春•庆云县期末)下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a=1.5,b=2,c=3B .a=7,b=24,c=25C .a=6,b=8,c=10D .a=3,b=4,c=52. 如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD 、EF 、GHB.AB 、EF 、GHC.AB 、CF 、EFD.GH 、AB 、CD 3. 下列说法:(1)在△ABC 中,若a 2+b 2≠c 2,则△ABC 不是直角三角形;(2)若△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2;(3)在△ABC 中,若a 2+b 2=c 2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有( ).A.4个B.3个C.2个D.1个4.(2018春•临沂期末)如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.已知三角形的三边长为(其中),则此三角形( ). A.一定是等边三角形 B.一定是等腰三角形1n n m +、、221m n =+C.一定是直角三角形D.形状无法确定6.三角形的三边长分别为 、、(都是正整数),则这个三角形是( ).A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定二.填空题7.(2019春•岳池县期末)若三角形的边长分别为6、8、10,则它的最长边上的高为 .8.(2018•本溪模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的点C 有 个.9. 已知,则由此为边的三角形是 三角形.10.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .11.若一个三角形的三边之比为5:12:13,且周长为60,则它的面积为 .12.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.三.解答题13.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =,求证:AF ⊥FE .14.观察下列各式:,,,,…,22a b +2ab 22a b -a b、0435=-+-+-Z y x x y z ,,cm CB 41322345+=2228610+=22215817+=222241026+=你有没有发现其中的规律?请用含的代数式表示此规律,再根据规律写出接下来的式子.15.(2018春•石林县校级月考)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,求这块空地的面积?【答案与解析】一.选择题1.【答案】A【解析】∵1.52+22≠32,故构不成直角三角形.2.【答案】B【解析】AB 2=22+22=8,CD 2=42+22=20,EF 2=12+22=5,GH 2=32+22=13,所以AB 2+EF 2=GH 2.3.【答案】B【解析】(1)根据勾股定理的逆定理,若a 2+c 2=b 2,则△ABC 也为直角三角形,故错误;(2)符合勾股定理,故正确;(3)符合勾股定理的逆定理,故正确;(4)首先根据勾股定理计算其斜边是13,再根据面积计算其斜边上的高,该高等于两条直角边的乘积除以斜边,故正确.4.【答案】A.【解析】解:∵正方形小方格边长为1,∴BC==2, AC==, AB==, 在△ABC 中,∵BC 2+AC 2=52+13=65,AB 2=65,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选:A .5.【答案】C【解析】,满足勾股定理的逆定理. 6.【答案】A【解析】,满足勾股定理的逆定理. 二.填空题n ()()222221,211n m n n n n +=+++=+()2222222()2()a b ab a b -+=+7.【答案】4.8;【解析】∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h ,∴6×8=10h ,解得,h=4.8.8.【答案】4;【解析】解:如图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形.故答案为:4.9.【答案】直角;10.【答案】108【解析】△ABC 是直角三角形.11.【答案】120【解析】这个三角形是直角三角形,设三边长为,则,解得,它的面积为. 12.【答案】6【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt△.三.解答题13.【解析】解:连结AE ,设正方形的边长为,则DF =CF =,CE =,BE =,在Rt △ADF 中,,在Rt △CEF 中,,在Rt △ABE 中,,因为,所以三角形AEF 为直角三角形,AF ⊥FE .14.【解析】解:, .(≥1且为整数) 5;12;13x x x 512133060x x x x ++==2x =1151260412022x x ⋅=⨯⨯=4a 2a a 3a 22222216420AF AD DF a a a =+=+=22222245EF CE CF a a a =+=+=22222216925AE AB BE a a a =+=+=222AE AF EF =+222351237+=()()()22222112111n n n ⎡⎤⎡⎤+-++=++⎡⎤⎣⎦⎣⎦⎣⎦n n15.【解析】解:如图,连接AC .在△ACD 中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积﹣△ACD 的面积=×5×12﹣×3×4=24(平方米).《勾股定理》全章复习与巩固(基础)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;a b 、c 222a b c +=(4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形;若时,△ABC 是锐角三角形;若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及逆定理的简单应用1、(2019•益阳)在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729【思路点拨】根据题意正确表示出AD 2的值是解题关键. 【答案与解析】解:如图,在△ABC 中,AB=15,BC=14,AC=13, 设BD=x ,则CD=14﹣x ,由勾股定理得:AD 2=AB 2﹣BD 2=152﹣x 2,AD 2=AC 2﹣CD 2=132﹣(14﹣x )2,故152﹣x 2=132﹣(14﹣x )2, 解之得:x=9. ∴AD=12.∴S △ABC =BC •AD=×14×12=84.【总结升华】此题主要是要读懂解题思路,然后找到解决问题的切入点,问题才能迎刃而解. 举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长. 【答案】解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得.∴ .同理.∴ .①当∠ACB >90°时,BC =BD -CD =9-5=4.∴ △ABC 的周长为:AB +BC +CA =15+4+13=32. ②当∠ACB <90°时,BC =BD +CD =9+5=14.∴ △ABC 的周长为:AB +BC +CA =15+14+13=42. 综上所述:△ABC 的周长为32或42.2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:.22222151281BD AB AD =-=-=9BD =22222131225CD AC AD =-=-=5CD =2222AM BM CM +=【思路点拨】欲证的等式中出现了AM 2、BM 2、CM 2,自然想到了用勾股定理证明,因此需要作CD ⊥AB . 【答案与解析】证明:过点C 作CD ⊥AB 于D . ∵ AC =BC ,CD ⊥AB , ∴ AD =BD . ∵ ∠ACB =90°, ∴ CD =AD =DB .∴在Rt △CDM 中,, ∴ .【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证. 举一反三:【变式】已知△ABC 中,AB =AC ,D 为BC 上任一点,求证:.【答案】解:如图,作AM ⊥BC 于M ,∵AB =AC ,∴BM =CM,则在Rt △ABM 中:……①在Rt △ADM 中:()()2222AM BM AD DM AD DM +=-++222222AD AD DM DM AD AD DM DM =-⋅+++⋅+222()AD DM =+222()CD DM =+222CD DM CM +=2222AM BM CM +=22AB AD BD CD -=⋅222AB AM BM =+……②由①-②得:= (MC +DM )•BD =CD·BD 类型二、勾股定理及逆定理的综合应用3、(2018秋•黎川县期中)如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【思路点拨】根据勾股定理求出BE 2、EF 2、BF 2,根据勾股定理的逆定理判断即可. 【答案与解析】解:∵△BEF 是直角三角形,理由是:∵在正方形ABCD 中,AB=4,AE=2,DF=1, ∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3, ∵由勾股定理得:BE 2=AB 2+AE 2=42+22=20,EF 2=DE 2+DF 2=22+12=5,BF 2=BC 2+CF 2=42+32=25,∴BE 2+EF 2=BF 2, ∴∠BEF=90°,即△BEF 是直角三角形.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE 2+EF 2=BF 2.4、如图,P 是等边三角形ABC 内的一点,连结PA ,PB ,PC ,以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.【答案与解析】解:(1)猜想:AP=CQ证明:在△ABP 与△CBQ 中,∵ AB=CB ,BP=BQ ,∠ABC=∠PBQ=60°222AD AM DM =+22AB AD -=()()22BM DM BM DM BM DM -=+-∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ∴△ABP≌△CBQ∴AP=CQ(2)由PA:PB:PC=3:4:5 可设PA=3a,PB=4a,PC=5a连结PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°∴△PBQ为正三角形∴PQ=4a于是在△PQC中,∵∴△PQC是直角三角形【总结升华】本题的关键在于能够证出△ABP≌△CBQ,从而达到线段转移的目的,再利用勾股定理的逆定理判断三角形的形状.举一反三:【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD =5,求DC的长.【答案】解:在△ABD中,由可知:,又由勾股定理的逆定理知∠ADB=90°.在Rt△ADC中,.5、如果ΔABC的三边分别为,且满足,判断ΔABC的形状.【答案与解析】解:由,得:∴∵∴∵,22212513+=222AD BD AB+=22281,9DC AC AD DC=-==a b c、、222506810a b c a b c+++=++ 222506810a b c a b c+++=++2226981610250a ab bc c-++-++-+=222(3)(4)(5)0a b c-+-+-=222(3)0(4)0(5)0a b c-≥-≥-≥,,3,4, 5.a b c===222345+=∴ .由勾股定理的逆定理得:△ABC 是直角三角形.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?【思路点拨】将长方体表面展开,由于蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种情况. 【答案与解析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度.在图②中,由勾股定理,得. 在图③中,由勾股定理,得.因为130>100,所以图③中的AB 的长度最短,为10,即蚂蚁需要爬行的最短路线长为10. 【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解. 举一反三: 【变式】(2018秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是多少尺?222a b c +=222311130AB =+=22268100AB =+=cm cm【答案】解:如图所示,在如图所示的直角三角形中, ∵BC=20尺,AC=5×3=15尺, ∴AB==25(尺).答:葛藤长为25尺.【巩固练习】 一.选择题1.如图,一棵大树被台风刮断,若树在离地面3处折断,树顶端落在离树底部4处,则树折断之前高( )A .5B .7C .8D .102.如图,从台阶的下端点B 到上端点A 的直线距离为( )A .15B .16C .17D .18 3.(2019春•枣阳市期末)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min ,甲客轮用15min 到达点A ,乙客轮用20min 到达点B ,若A ,B 两点的直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( ) A .北偏西30° B .南偏西30° C .南偏东60° D .南偏西60°mm m m mm。
1.1 勾股定理及逆定理说课稿一、教材分析本节课是《北师大版八年级上册数学》的第一章第一节内容,主要涉及到勾股定理以及其逆定理的引入。
本节课内容新颖有趣,具有一定的难度,对于学生来说是一个重要的数学基础。
本节课以解题为导向,通过引出勾股定理问题,激起学生的思考,培养学生的分析问题和解决问题的能力。
同时,学生能够通过这个定理运用几何知识解答实际问题。
二、教学目标1. 知识与技能目标•掌握勾股定理的含义和计算方法•掌握勾股定理逆定理的含义和计算方法•能够应用勾股定理和逆定理求解实际生活中的问题2. 过程与方法目标•培养学生的观察分析能力,培养学生的数学思维•培养学生的合作学习能力,培养学生的解题思路3. 情感态度价值观目标•培养学生的数学兴趣和学习兴趣•培养学生的合作与交流能力•培养学生的求知欲和创新思维三、教学重难点1. 教学重点•掌握勾股定理的计算方法•熟练掌握勾股定理逆定理的计算方法2. 教学难点•培养学生的数学思维,引导学生进行问题解析和解决问题的能力四、教学准备•教学课件•黑板、白板、彩色笔五、教学过程1. 导入新课首先,引导学生回顾三角形的基本概念,并强调三角形的三个内角和为180度的知识。
然后,通过讲述一道勾股定理的问题,引发学生兴趣和思考。
2. 提出问题通过讲述一个实际问题,如:一块长方形地块,其中两个边长分别测得为3米和4米,我们想知道对角线的长度,该如何计算?引导学生思考这个问题,并激发学生对于勾股定理的兴趣。
3. 引入勾股定理通过让学生自主尝试计算对角线的长度,并引导学生发现并总结对角线的长度与两边的关系,引入勾股定理的概念。
4. 讲解勾股定理在学生总结的基础上,教师进行勾股定理的解释和讲解,包括直角三角形的概念、勾股定理的表达形式(a^2 + b^2 = c^2)以及计算方法。
5. 案例分析通过几个实际问题的案例分析,引导学生应用勾股定理解决生活中的问题,如:求三角形的边长、判断三角形的形状等。
第1讲 勾股定理第一部分 知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a 、 b ,斜边为c ,则a ²+b ²=c ²。
2.勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a ²+b ²=c ²,那么这个三角形是直角三角形。
3.满足a ²+b ²=c ²的三个正整数,称为勾股数。
若a ,b ,c 是一组勾股数,则ak ,bk ,ck (k 为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.勾股定理中的方程思想:勾股定理三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.对于一些几何问题,往往借助于勾股定理,利用代数方法来解决.把一条边的长设为未知数,根据勾股定理列出方程,解方程求出未知数的值,即使有时出现了二次方程,大多可通过抵消而去掉二次项。
7.勾股定理中的转化思想:在利用勾股定理计算时,常先利用转化的数学思想构造出直角三角形,比如立体图形上两点之间的最短距离的求解,解答时先把立体图形转化为平面图形,在平面图形中构造直角三角形求解。
8.拓展:特殊角的直角三角形相关性质定理。
第二部分 精讲点拨考点1. 勾股定理【例1】在Rt △ABC 中,已知两边长为3、4,则第三边的长为 变式1 等腰三角形的两边长为10和12,则周长为______,底边上的高是________,面积是_________。
勾股定理的逆定理(基础)【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n ≥1,n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【典型例题】类型一、勾股定理的逆定理1、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,∴ 222a c b +=.∴ 由线段a b c ,,组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b +是否具有相等关系,再根据结果判断是否为直角三角形.举一反三:【变式】(2015春•安陆市期中)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( )A.1组B.2组C.3组D.4组【答案】C.解:①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C .2、(2016春•丰城市期末)如图,已知四边形ABCD 中,∠B =∠90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.【思路点拨】由AB =3,BC =4,∠B =90°,应想到连接AC ,则在Rt △ABC 中即可求出△ABC 的面积,也可求出线段AC 的长.所以在△ACD 中,已知AC ,AD ,CD 三边长,判断这个三角形的形状,进而求得这个三角形的面积.【答案与解析】解:连接AC ,在△ABC 中,因为∠B =90°,AB =3,BC =4,所以222223491625AC AB BC =+=+=+=,所以AC =5,在△ACD 中,AD =13,DC =12,AC =5,所以2222225122514416913DC AC AD +=+=+===,即222DC AC AD +=.所以△ACD 是直角三角形,且∠ACD =90°. 所以1122ABC ACD ABCD S S S AB BC AC DC =+=+△△四边形113451222=⨯⨯+⨯⨯63036=+=.【总结升华】有关四边形的问题通常转化为三角形的问题来解,本题是勾股定理及逆定理的综合考察.类型二、勾股定理逆定理的应用3、已知:,,a b c 为ABC ∆的三边且满足222338102426a b c a b c +++=++,试判断ABC ∆的形状.【答案与解析】解:∵222338102426a b c a b c +++=++∴0338262410222=+-+-+-c c b b a a0)13()12()5(222=-+-+-c b a∴5,12,13a b c ===,222c b a =+∴△ABC 是直角三角形.【总结升华】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等.举一反三:【变式】请阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:∵a 2c 2﹣b 2c 2=a 4﹣b 4, 第一步∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2), 第二步∴c 2=a 2+b 2, 第三步∴△ABC 为直角三角形. 第四步问:(1)在上述解题过程中,从哪一步开始出现错误: _________ ;(2)错误的原因是: _________ ;(3)本题正确的结论是: _________ .【答案】解:(1)第三步;(2)方程两边同时除以(a 2﹣b 2)时,没有考虑(a 2﹣b 2)的值有可能是0;(3)∵c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2)∴c 2=a 2+b 2或a 2﹣b 2=0∵a 2﹣b 2=0∴a +b =0或a ﹣b =0∵a +b ≠0∴c 2=a 2+b 2或a ﹣b =0∴c 2=a 2+b 2或a =b∴该三角形是直角三角形或等腰三角形.4、(2015•秦皇岛校级模拟)如图,铁路MN 和铁路P Q 在P 点处交汇,点A 处是第九十四中学,AP=160米,点A 到铁路MN 的距离为80米,假使火车行驶时,周围100米以内会受到噪音影响.(1)火车在铁路MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?【思路点拨】(1)过点A作AE⊥MN于点E,由点A到铁路MN的距离为80米可知AE=80m,再由火车行驶时,周围100米以内会受到噪音影响即可直接得出结论;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中利用勾股定理求出BE的长,进而可得出BC的长,根据火车的速度是180千米/时求出火车经过BC是所用的时间即可.【答案与解析】解:(1)会受到影响.过点A作AE⊥MN于点E,∵点A到铁路MN的距离为80米,∴AE=80m,∵周围100米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中,∵AB=100m,AE=80m,∴BE===60m,∴BC=2BE=120m,∵火车的速度是180千米/时=50m/s,∴t===2.4s.答:学校受到影响的时间是2.4秒.【总结升华】题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.【巩固练习】一.选择题1.(2016春•庆云县期末)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=52. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是().A.CD 、EF 、GHB.AB 、EF 、GHC.AB 、CF 、EFD.GH 、AB 、CD 3. 下列说法:(1)在△ABC 中,若a 2+b 2≠c 2,则△ABC 不是直角三角形;(2)若△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2;(3)在△ABC 中,若a 2+b 2=c 2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有( ).A.4个B.3个C.2个D.1个4.(2015春•临沂期末)如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.已知三角形的三边长为1n n m +、、(其中221m n =+),则此三角形( ).A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定 6.三角形的三边长分别为 22a b +、2ab 、22a b -(a b 、都是正整数),则这个三角形是( ).A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定二.填空题7.(2016春•岳池县期末)若三角形的边长分别为6、8、10,则它的最长边上的高为 .8.(2015•本溪模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的点C 有 个.9. 已知0435=-+-+-Z y x ,则由此x y z ,,为边的三角形是 三角形.10.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .11.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .12.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.三.解答题13.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .14.观察下列各式:322345+=,2228610+=,22215817+=,222241026+=,…,你有没有发现其中的规律?请用含n 的代数式表示此规律,再根据规律写出接下来的式子.15.(2015春•石林县校级月考)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,求这块空地的面积?【答案与解析】一.选择题1.【答案】A【解析】∵1.52+22≠32,故构不成直角三角形.2.【答案】B【解析】AB 2=22+22=8,CD 2=42+22=20,EF 2=12+22=5,GH 2=32+22=13,所以AB 2+EF 2=GH 2.3.【答案】B【解析】(1)根据勾股定理的逆定理,若a 2+c 2=b 2,则△ABC 也为直角三角形,故错误;(2)符合勾股定理,故正确;(3)符合勾股定理的逆定理,故正确;(4)首先根据勾股定理计算其斜边是13,再根据面积计算其斜边上的高,该高等于两条直角边的乘积除以斜边,故正确.4.【答案】A.【解析】解:∵正方形小方格边长为1,∴BC==2, AC==, AB==,在△ABC 中,∵BC 2+AC 2=52+13=65,AB 2=65,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选:A .5.【答案】C【解析】()()222221,211n m n n n n +=+++=+,满足勾股定理的逆定理. 6.【答案】A【解析】()2222222()2()a b ab a b -+=+,满足勾股定理的逆定理. 二.填空题7.【答案】4.8;【解析】∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h ,∴6×8=10h ,解得,h=4.8.8.【答案】4;【解析】解:如图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形.故答案为:4.9.【答案】直角;10.【答案】108【解析】△ABC 是直角三角形.11.【答案】120【解析】这个三角形是直角三角形,设三边长为5;12;13x x x ,则512133060x x x x ++==,解得2x =,它的面积为1151260412022x x ⋅=⨯⨯=. 12.【答案】6【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt△.三.解答题13.【解析】解:连结AE ,设正方形的边长为4a ,则DF =CF =2a ,CE =a ,BE =3a , 在Rt △ADF 中,22222216420AF AD DF a a a =+=+=,在Rt △CEF 中,22222245EF CE CF a a a =+=+=,在Rt △ABE 中,22222216925AE AB BE a a a =+=+=,因为222AE AF EF =+,所以三角形AEF 为直角三角形,AF ⊥FE .14.【解析】解:222351237+=, ()()()22222112111n n n ⎡⎤⎡⎤+-++=++⎡⎤⎣⎦⎣⎦⎣⎦.(n ≥1且n 为整数)15.【解析】解:如图,连接AC .在△ACD 中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积﹣△ACD 的面积=×5×12﹣×3×4=24(平方米).。