10-14振动与波
- 格式:doc
- 大小:234.50 KB
- 文档页数:5
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相页 1 第近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振页2 第动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效页3 第重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.页 4 第②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.页 5 第⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,为角频率,(t+)称为谐振动的相位,t =0时的相位称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力· 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
振动图象和波的图象振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象.简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表:振动图象波动图象研究对象一振动质点沿波传播方向所有质点研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律图线物理意义表示一质点在各时刻的位移表示某时刻各质点的位移图线变化随时间推移图延续,但已有形状不变随时间推移,图象沿传播方向平移一完整曲线占横坐标距离表示一个周期表示一个波长2012届高考二轮复习专题 :振动图像与波的图像及多解问题【例1】如图6—27所示,甲为某一波动在t=1.0s 时的图象,乙为参与该波动的P 质点的振动图象(1)说出两图中AA /的意义?(2)说出甲图中OA /B 图线的意义?(3)求该波速v=?(4)在甲图中画出再经3.5s 时的波形图(5)求再经过3.5s 时p 质点的路程S 和位移解析:(1)甲图中AA /表示A 质点的振幅或1.0s 时A 质点的位移大小为0.2m ,方向为负.乙图中AA /’表示P 质点的振幅,也是 P 质点在 0.25s 的位移大小为0.2m ,方向为负.(2)甲图中OA /B 段图线表示O 到B 之间所有质点在1.0s 时的位移、方向均为负.由乙图看出P 质点在1.0s 时向一y 方向振动,由带动法可知甲图中波向左传播,则OA /间各质点正向远离平衡位置方向振动,A /B 间各质点正向靠近平衡位置方向振动.(3)甲图得波长λ=4 m ,乙图得周期 T =1s 所以波速v=λ/T=4m/s(4)用平移法:Δx =v ·Δt =14 m =(3十½)λ所以只需将波形向x 轴负向平移½λ=2m 即可,如图所示(5)求路程:因为n=2/T t =7,所以路程S=2An=2×0·2×7=2。
o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。
受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。
这种现象称为共振。
共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小; 如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1 A2 Ay1 A cos(1t ),y2 A0 cos(2t )2、 合振动y y1 y2 1 2 1 2 y 2 A cos t t cos 2 2 合振动不是简谐振动12当1 、2很大且接近时, 2 1 2 1 令:y A(t )cos t2 1 )t 式中 A(t ) 2 A0 cos( 2 2 1 cos t cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和 2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。
13ψ1 t ψ2 t ψ t拍 拍: 合振动忽强忽弱的现象。
拍频 :单位时间内强弱变化的次数。
1 拍 2 2 2 1 2 2 1 2 1 2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。
产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
第五讲 振动与波一、竞赛中涉及的问题 (一)简谐运动1.任何机械运动都可用数学方法分解成一系列简谐运动,简谐运动是最基本的机械振动,简谐运动的动力学特点:物体所受回复力与位移反向,大小与位移成正比,即:F=-kx 。
运动学特点;位移可用时间的正弦函数或余弦函数表示。
例1.判断下列各物体的振动是否简谐运动其中,(3)是质量均匀的地球通道中的小球,(4)为浮于水面上的木块,(5)为两端开口U 型管中的液面A 。
2.运动规律和参考圆用初等数学方法,不能得出简谐运动物体的V 、a 变化规律,采用参考圆却能有效解决此问题,任何一个简谐振动,都可看作 某一个作匀速圆周运动的参考点在某一直径上的投影的运动,这 种想象中的参考点的运动轨迹—参考圆,参考圆半径为A ,即为 简谐运动物体的振幅,如图,O 为振体m 的平衡位置,t=0时,x =x 0,V x =V 0,相应物在A 点,参考圆位置的P 0点,t 时刻,在P t 点(B 点),由图得(1)位移x=Acos(ωt +φ0),(2)速度V x )sin(0ϕωω+-=t A (3)加速度)cos(02ϕωω+-=t A a x x a x 2ω-=,其中,0ϕ是初相角,回复力x m ma F x 2ω-==(4)振幅A —振体离开平衡位置的最大距离,由初始条件t =0时,00,v v x x ==代入x 、v x 表达式中,得0000sin ,cos ϕωϕA v A x -==,解之得A=)(,)(00102020ωϕωx v tg v x -=+-位相)(0ϕω+t ,决定振体运动的状态的变量,0ϕ 是t =0时的初相角N ·B !上述方程的 原点均取在振体的静平衡位置。
例2:试求下图所示系统的振幅A 及初位相0ϕ,(a )中C 与B 中吊绳静止时断开,(b )中将(1)(2)(4)(a)xo (b)(3)(5)物B 无初速地放在物C 上。
3.简谐运动的圆频率,频率与周期(1)圆频率 即x 、v x 、a x 表达式中的ω ,由F=-kx =m k x m =∴-ωω,2(2)周期T ,T=k m πωπ2/2=。
第十章 波函数一、填空题(每空3分)10-1 A,B 是简谐波同一波线上两点,已知B 点的相位比A 点超前2π,且波长4m λ=,波速2u m s =,则两点相距 ,频率为 。
(1,12m Hz )10-2 A,B 是简谐波同一波线上两点,已知B 点的相位比A 点超前2π,且波长4m λ=,波速2u m s =,则两点相距 。
(1m )10-3 一列横波沿X 正向传播,波速u=1m/s,波长λ=2m,已知在X=0.5m 处振动表达式为Y=2cos πt(SI),则其波函数为_______.( y=2cos(πt-πx+2π) (SI )) 10-4波源位于x 轴的坐标原点,运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t的单位为s ,它所形成的波形以 1s m 30-⋅ 的速度沿x 轴正向传播,则其波动方程为___ _____。
())(8240cos(100.43m x t y ππ-⨯=-)10-5机械波的表达式为()()0.05cos 60.06y t x m ππ=+,则该波的周期为 。
(13s ) 10-6一平面简谐波的波动方程为)2 4cos(08.0x t y ππ-=,式中单位为SI 制 。
则:(1)对于某一平衡位置,2=t s 与1.2=t s 时的相位差为 ;(2)对于同一时刻,离波源0.80 m 及0.30 m 两处的相位差为 。
(0.4π;π)10-7 一列横波在x 轴线上沿正向传播,在t 1=0和t 2=0.5s 时波形如图所示,设周期12t t T ->,波动方程为 。
()42cos(2.0xt y πππ-+=)10-8 某波线上有相距2.5cm 的A 、B 两点,已知振动周期为2.0s ,B 点的振动落后于A 点的相位为π/6,则波长λ = ,波速u = 。
(λ=0.3m ,u=0.15m/s ) 10-9一横波沿x 轴正向传播,波速u = 1m/s, ,已知在 x = 0.5m 处振动表达式为t yπcos 5=(SI) ,o242.0m y /mx /01=t s 5.02=t则其波函数为___ 。
振动1. 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T (B )1T (C )1T /2 (D )1T /2 (E )1T /4(C )弹簧的弹性系数问题:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。
为什么?因为我们知道胡克定律为:f kx =(力的大小),即 f k x=。
下面两根弹簧,本来材料、长度、弹性系数都是完全一样的,但是把其中的一根截短,加上相等的拉力f ,截短以后的弹簧伸长量要小于原来长度的弹簧的伸长量,弹性系数k 增大了。
f12T = 22k k =,下端挂一质量为12m的物体,则系统振动周期2T 为:2T 1112222T π⎛=== ⎝2. 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线。
(B )曲线2、1、3分别表示x 、v 、a 曲线。
(C )曲线1、3、2分别表示x 、v 、a 曲线。
(D )曲线2、3、1分别表示x 、v 、a 曲线。
(E )曲线1、2、3分别表示x 、v 、a 曲线。
(E )位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线; 曲线2比1超前了2π,1是位移曲线。
3. 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) 。
关键是写出初位相,用旋转矢量法最方便:0v (a)(b)t(a )φ= -π/2(b )φ= π/2(c )φ= π所以: (1)Y=Acos (t T π2-2π) (2)Y=Acos (t T π2+2π) (3)Y=Acos (t Tπ2+π)4.一系统作谐振动,周期为T ,以余弦函数表达振动时,初位相为零,在0≤t ≤T /2范围内,系统在t = 、 时刻动能和势能相等。
14高三必修物理知识振动和波公式
高中是重要的一年,大家一定要好好把握高中,查字典物理网小编为大家整理了14高三必修物理知识,希望大家喜欢。
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:
332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提高大家的分数。
查字典物理网为大家整理了14高三必修物理知识,供大家参考。
1.机械振动:(1):机械振动即物体或物体的一部分在某一中心位置两侧所做的往返的运动(2):回复力F 回:指向“平衡”位置的合力叫回复力(3):振动位移x :都以“平衡”位置为位移的起点(4):振幅A :振动物体离开“平衡”位置的最大距离,振幅越大,振动的能量就越大(5):振动的周期T :指完成一次全振动的时间;周期表示振动的快慢,周期小表示振动的快(6):振动的频率f :指单位时间内完成振动的次数;频率大,表示振动的快;单位为:赫兹Hz(7):T=f 1;振动的周期T 的大小与振幅的大小无关:对于同一个振动系统,当振动的振幅变大时,其周期将保持不变,所以物体振动的周期又叫固有周期(8):平衡位置:振动的中心位置,是假冒的“平衡”,F 合不一定为0,如:单摆的“平衡”位置的加速度为:022≠==⇒==m F R v R v a m F F 指向圆心的合力向心向心指向圆心的合力2:简谐振动: 1:回复力F 回和位移x 成正比,但它们的方向相反;F 回=-kxx 为物体离开“平衡”位置的位移负号表示回复力F 回和位移x 的方向相反回复力就是一个指向“平衡”位置的合力(2):对于同一个振动系统,当振动的振幅变大时,其周期仍保持不变(3):简谐振动的x-t 图像:是一条正弦或余弦曲线(4):振动的周期T 的大小与振幅的大小无关所以把它叫国有周期;弹簧振子的T 与小球的质量、弹簧的劲度序数有关;单摆的T 与摆长、重力加速度g 有关3.单摆(1):当单摆的摆角小于80时,单摆的振动可以看做简谐振动(2):单摆振动时,也可以把它看做圆周运动R m R m m F F T R v 2222)(向心指向圆心的合力πω====多多从不同的角度分析问题(3):单摆的回复力由重力在切线方向的分力提供;当摆角小于80时,L x≈θsin ,mg F L x -=回复力如右图(3):当单摆的摆角小于80时,g LT π2=L 为物体摆动时的圆心悬点到物体重心的距离g 为当地的重力加速度g =2R GM;g ´=222)()(H R gR H R GM ++= g ´为离天体表面H 高处的重力加速度;g为天体表面的重力加速度;R 为天体的半经;M 为中心天体的质量;H 为离天体表面的高公式说明T 与振幅A 无关(4):单摆振动时,由于拉力始终与速度垂直,所以拉力不做功,如无阻力,则物体的机械能守恒(5):单摆振动时,如有阻力,则在短时间内,仍可把它看做简谐振动4、任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A 了多多用位移时间图像帮助分析问题5、受迫振动:(1):物体在周期性外力的作用下的振动叫受迫振动(2):物体做受迫振动时,它的频率等于驱动力的频率,而跟物体的固有频率无关,如图:假如L=g,则单摆的固有周期g L T π2==2π秒,如果每隔八秒推一下小球,则单摆的周期就为8秒,而不是2π秒(3):波在传播时,各质点都在做受迫振动各质点都在模仿波源的振动,所以波由一种介质传到另一介质时,波的频率不变等于波源的振动频率(4):物体在做受迫振动时,驱动力的频率跟物体的固有频率相等的时侯,物体的振幅最大,这种现象叫共振;驱动力的频率跟物体的固有频率越接近,物体的振幅也越大,如图为共振曲线(5):当f 驱动力=f 固时物体会发生共振,共振时的振幅比不共振时的振幅大(6):利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……6:简谐振动的图像如右图为水平振动的弹簧振子的振动图像:由图像可知:(1):振动图像表示的是某一质点在各个时刻的位移(2):振幅A 为15cm(3): 周期T 为8s(4):a 点对应的时刻,速度在增大,速度的方向向负方向;加速度在减小,加速度的方向负方向和位移的方向相反,此时位移为正10cm回复力在减小,回复力的方向向负方向和位移的方向相反动能在增大,弹性势能在减小机械能守恒b 点对应的时刻,速度在减小,速度的方向向负方向;加速度在增大,加速度的方向向正方向和位移的方向相反,此时位移为-5cm回复力在增大,回复力的方向向正方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒d 点对应的时刻,速度在减小,速度的方向向正方向;加速度在增大,加速度的方向向负方向和位移的方向相反,此时位移为正5cm回复力在增大,回复力的方向向负方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒(5):V a < V b = V d7:解振动问题的方法:(1):振动问题都是变力问题,一般选用动能定理、能量守恒定律解题;注意应用弹簧的弹性势能不变、了解:弹性势能221kx E P ,k 弹簧的劲度系数,x 为弹簧的形变量、弹力做的功= - 弹性势能的变化量等条件 (2):充分利用振动的对称性,如在两个对称点的加速度a 、速度v 、位移、动能E k 、弹性势能相等等条件(3):充分利用振动的图像解题画出振动的图像帮助解决问题(4):注意应用临界点的条件:如弹力为0、加速度a 、速度v 、位移相等等等(5):两物体的加速度a 1、a 2相等时,两物体可能将要分开物体分开的瞬间,物体间的弹力为零(6):弹簧的形变量或两次的形变量之差可能等于物体的位移:S=X 2-X 18:机械波:机械振动在介质中的传播过程所形成的波叫做机械波(1):有振源和传播介质时就会产生机械波(2):波是传播能量的一种方式,即传递某种信息(3):波信息向前传播时,各介质只在自己的平衡位置附近振动,并不会随波信息向前传播(4):波信息向前传播时,波形波形代表信息的内容不会发生变化;如下图,波信息向右传播过后,A 、B 、C 、D 各质点仍然回到各自原来的位置;当波信息传递到E 点时,它就开始振动,并按后面的波形振动即开始模仿振源的所有动作,所以质点起到了传递信息的作用;要判断E 如何振动,就看和它相邻的前一质点的运动情况即可解波动问题,就是逻辑推理的过程,由A 质点的情况推及到D 质点的情况,由9秒的情况推及到8秒的情况……(5):每经过一个周期,波就向前传播一个波长的距离;每经过41个周期,波就向前传播41个波长的距离 (6):波的频率就等于波源的振动频率,介质的振动频率也等于波源的振动频率受迫振动9:波速V :(1):T V λ=;t SV f V ==;λ(2):波速V 只与介质有关,与波长、频率无关;当介质相同时,波速就相同(3):当波由一种介质传播到另一介质时,频率不变各质点都在做受迫振动,波速、波长会发生改变 10:波长:(1):两个相邻的,在振动过程中对平衡位置的位移总是相等的质点间的距离,叫波长9秒末(2):在一个周期里,波向前传播的距离,叫波长(3):两个相邻的波峰之间的距离,叫波长;两个相邻的波谷之间的距离,叫波长11:波的周期、频率:波的频率就等于波源的振动频率,它们与速度、介质无关12:波的图像:由图像可知(1):波的图像表示的是某一时刻各个质点的位移的图像(2):振幅A 为15cm(3):波长为8cn(4):在9秒末,a 质点向下运动它模仿的前一质点在它的右下方(5):在9秒末,a 质点的速度在变大,加速度在变小,加速度的方向向下各质点的运动规律仍然遵循振动的规律13:波的衍射:(1): 波在传播中遇到障碍物时能绕过障碍物的现象,叫波的衍射(2):一切波均能发生衍射,即任何条件下波均能发生衍射,只是有的衍射我们觉擦不到,但是仍然存在(3):发生明显的衍射的条件是:障碍物或孔的直径比波长小或相差不多(4):楼上房间的人能听到楼底下人的声音,单缝衍射、眯眼看灯、隔并齐笔缝看灯、隔羽毛纱布缝看灯等呈彩色看到彩色的光,这些都是衍射14:波的干涉:(1):频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫波的干涉(2):两个波源的振动方向相同,频率相同的同类波干涉时,就能得到稳定的干涉图样(3):围绕正在发声的音叉走一圈,听到声音忽强忽弱,双缝干涉、肥皂泡膜、蝉翼、雨天公路上汽油等呈彩色,这些都是干涉(4):波的干涉加强区是波峰和波峰相遇处或波谷和波谷相遇处,加强区仍在振动,其位移有可能小于减弱区的,但它的振幅一定大于减弱区的;波的干涉减弱区则是波峰和波谷相遇处(5):当两个波源的振动方向相同,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的加强点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的减弱点;当两个波源的振动方向相反,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的减弱点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的加强点; 15:多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同波源与观测者相互接近时,接收频率变大;反之,变小16:波的分类:波分为横波和纵波;声波为纵波17:波的反射:遵循反射定律如:反射角等于入射角等等18:解波动问题的方法:(1):一定要画出波动图像(2):注意应用波形不变把整个波形拿来平移,一般不要把波形延长,各质点都在模仿波源的振动,通过逻辑推理导出答案由“现在”推导出“将来”,由“现在”推导出“过去”(3):还应考虑到波的周期性、重复性,质点振动的周期性、重复性。
例题5.一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的可能值为多大?解析:将物理过程模型化,画出具体的图景如下图7-1-8所示.设质点从平衡位置O向右运动到M点,那么质点从O到M运动时间为0.13 s,再由M经最右端A返回M经历时间为0.1 s;如图7-1-9所示.另有一种可能就是M点在O点左方,如图7-1-10所示,质点由O点经最右方A点后向左经过O 点到达M点历时0.13 s,再由M向左经最左端A’点返回M历时0.1 s.根据以上分析,质点振动周期共存在两种可能性.如图7-1-9所示,可以看出O→M→A历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s.另一种可能如图7-1-10所示,由O→A→M历时t1=0.13 s,由M→A’历时t2=0.05s.设M→O 历时t,则4(t+t2)=t1+2t2+t,解得t=0.01 s,则T2=4(t+ t2)=0.24s所以周期的可能值为0.72 s和0.24 s.点评:(1)本题涉及的知识有:简谐运动周期、简谐运动的对称性.(2)本题的关健是:分析周期性,弄清物理图景,判断各种可能性.(3)解题方法:将物理过程模型化、分段分析、讨论.例题6.一列简谐横波在t1= 0时刻波形如下图所示,传播方向向左;当t2=0.7 s时,P点第二次出现波峰,Q点坐标是(-7,0),则以下判断中正确的是()A. t3=1.26 s末,Q点第一次出现波峰B. t4=0.9 s末, Q点第一次出现波峰C.质点Q位于波峰时,质点P处于波谷D. P,Q两质点运动方向始终相反解析:由波形图的物理意义知,t=0时,质点P正经平衡位置向波谷方向运动,经周期恰好第一次运动至波峰处,经周期恰好第二次出现波峰,所以=0.7 s,T=0.4 s.又由图知波长λ=4m,所以.离Q点最近的波峰距Q9 m,所以波峰第一次传至Q点历时,可见选项A错B对.又P、Q两点相距s PQ=10 m=2.5λ,为半波长的5倍,故P,Q两质点振动步调恰好相反,所以选项CD正确.点评:在波动过程中,在波的传播方向上,相距波长整数倍的质点的振动步调相同,相距半波长奇数倍的质点振动步调相反.这是一个重要的结论,必须熟记.另外,将质点振动的非匀速运动(变加速运动)问题转化为波形图的匀速运动问题,是本题解法中的一个突出技巧,也应理解并掌握.。
高中物理振动和波练习及详解一、单项选择题1.一个单摆从甲地到乙地,发现振动变快了,为了调整到原来的快慢,下述说法正确的是( ) A. 因 g 甲>g 乙,故应缩短摆长 B. 因为g 甲>g 乙,故应加长摆长 C. 因为g 甲<g 乙,故应缩短摆长 D. 因为g 甲<g 乙,故应加长摆长 【答案】D【详解】一单摆因从甲地移到乙地,振动变快了,即周期减小了,根据2T =,得到g增大,T 才会减小,所以甲地的重力加速度小于乙地的重力加速度,即g 甲<g 乙;要使T 还要恢复,只要增大T ,故只能将摆长适当增长,故D 正确,ABC 错误.2.如图所示,弹簧左端固定,右端系一物块,物块可以在粗糙水平桌面上滑动,物块与水平面各处动摩擦因数相同,弹簧原长时物块位于O 点.当先后分别把物块拉到P1和P2点由静止释放后,物块都能运动到O 点左方,设两次运动过程中物块速度最大时的位置分别为Q1和Q2点,则这两点( )A. 都在O 点右方,且Q1离O 点较近B. 都在O 点右方,且Q2离O 点较近C. 都在O 点右方,且Q1、Q2为同一位置D. 都正好与O 点重合 【答案】C【详解】先后分别把物块拉到P1和P2点由静止释放,开始弹簧的弹力大于摩擦力的大小,物体做加速运动,加速度逐渐减小,当加速度减小到零时,即F=kx=f 时,速度最大,此时弹簧的形变量f x k=,知Q1和Q2点都在O 点右方,且Q1、Q2在同一位置,故C 正确,ABD错误.3.在相同的时间内单摆甲作了10次全振动,单摆乙作了6次全振动,两个单摆的摆长相差16cm ,则甲摆的摆长为( ) A. 25cm B. 9cm C. 18cm D. 12cm 【答案】B【详解】在相同时间内单摆甲做了n1=10次全振动,单摆乙做了n2=6次全振动,知甲乙单摆的周期比为3:5,根据2T =224gT L π=,则有:211222925L T L T ==,又L2-L1=16cm .所以L1=9cm ,L2=25cm ,故B 正确,ACD 错误.4.一个质量分布均匀的空心小球,用一根长线把它悬挂起来,球中充满水,然后让球小角度摆动起来,摆动过程中水在小孔中缓慢均匀漏出,那么,它的摆动周期将( ) A. 变大 B. 变小C. 先变大后变小D. 先变小后变大 【答案】C【详解】单摆在摆角小于5°时的振动是简谐运动,其周期是2T =球,重心在球心,当水从底部的小孔流出,直到流完的过程,金属球(包括水)的重心先下降,水流完后,重心升高,回到球心,则摆长先增大,后减小,最后恢复到原来的长度,所以单摆的周期先变大后变小,最终恢复到原来的大小,故C 正确,ABD 错误. 5.一弹簧振子做简谐运动,周期为T( )A. 若t 时刻和(t+△t)时刻振子位移相同,则△t 一定等于T 的整数倍B. 若t 时刻和(t+△t)时刻振子运动速度大小相等、方向相反,则△t 一定等于T/2的整数倍C. 若△t=T/2,则在t 时刻和(t+△t)时刻弹簧的长度一定相等D. 若△t=T/2,则在t 时刻和(t+△t)时刻振子运动的加速度大小一定相等 【答案】D【详解】在t 时刻和(t+△t )时刻振子的位移相同,所以这两时刻振子通过同一个位置,而每一个周期内,振子两次出现在同一个位置上.所以当速度方向相同时,则△t 可以等于T 的整数;当速度方向相反时,则△t 不等于T 的整数,故A 错误;若t 时刻和(t+△t )时刻振子运动速度大小相等,方向相反,则△t可能等于2T的整数倍,也可能大于2T的整数倍,也可能小于 的整数倍,故B 错误;若△t=2T ,则在t 时刻和(t+△t )时刻振子的位置关于平衡位置对称或经过平衡位置,所以这两时刻位移的大小一定相等,由kxa m =-知加速度大小一定相等.但弹簧的状态不一定相同,则长度不一定相等,故D 正确,C 错误.所以D 正确,ABC 错误.6.关于机械振动和机械波,下列说法中正确的是( )A. 物体作机械振动时,一定产生机械波B. 没有机械振动,也可能形成机械波C. 有机械波,一定有质点作机械振动D. 机械振动和机械波的产生无关 【答案】C【详解】机械振动在介质中的传播称为机械波,所以有机械波必有机械振动,而有机械振动若没介质不会形成机械波,故C 正确,ABD 错误. 7.关于波长,下列说法中正确的是( )A. 横波的两个波峰之间的距离等于一个波长B. 一个周期内介质质点通过的路程是一个波长C. 横波上相邻的波峰和波谷间的距离等于一个波长D. 波源开始振动后,在振动的一个周期里波传播的距离等于一个波长 【答案】D 【详解】横波的两个波峰之间的距离等于若干个波长,只有相邻两个波峰之间的距离等于一个波长,故A 错误;质点只在自由的平衡位置附近做简谐运动,通过一个周期内介质质点通过的路程是四个振幅,与波长没有关系,故B 错误;横波上相邻的波峰和波谷间的距离等于半个波长,故C 错误;波源开始振动后,在振动的一个周期里波传播的距离等于一个波长,故D 正确.所以D 正确,ABC 错误.8.关于波的叠加和干涉,下列说法中正确的是( )A. 两列频率不相同的波相遇时,因为没有稳定的干涉图样,所以波没有叠加B. 两列频率相同的波相遇时,振动加强的点只是波峰与波峰相遇的点C. 两列频率相同的波相遇时,如果介质中的某点振动是加强的,某时刻该质点的位移可能是零D. 两列频率相同的波相遇时,振动加强点的位移总是比振动减弱点的位移大 【答案】C【解析】根据波的叠加原理,只要两列波相遇就会叠加,所以选项A 错误.两列频率相同的波相遇时,振动加强的点是波峰与波峰、波谷与波谷相遇,所以B 选项错.振动加强的点仅是振幅加大,但仍在平衡位置附近振动,也一定有位移为零的时刻,所以选项C 正确,D 错误.故选C.二、多项选择题9.关于简谐运动的位移、速度、加速度的关系,下列说法正确的是( ) A. 加速度增大时,速度必减小 B. 速度、加速度方向始终相反C. 通过平衡位置时,v 、a 均改变方向D. 远离平衡位置时,v 、a 方向相反 【答案】AD 【详解】加速度满足kx a m =-,所以加速度增大时,位移也增大,所以速度必减小,故A 正确;向平衡位置运动时,速度、加速度方向相同,故B 错误;通过平衡位置时,速度方向不改变,故C 错误;远离平衡位置时,加速度方向指向平衡位置,速度方向背离平衡位置,即v 、a 方向相反,故D 正确.所以D 正确,BC 错误.10.如图所示,在O 点悬一根细长直杆,杆上串有一个小球A,用长为l 的细线系着另一个小球B,上端也固定在O 点,将B 拉开,使细线偏离竖直方向一个小角度,将A 停在距O 点L/2处,同时释放,若B 第一次回到平衡位置时与A 正好相碰(g 取10m/s2,π2取10),则( ) A. A 球与细杆之间不应有摩擦力 B. A 球的加速度必须等于4m/s2C. A 球受到的摩擦力等于其重力的0.6倍D. 只有知道细线偏离竖直方向的角度大小才能求出A 球受到的摩擦力【答案】BC【详解】球B 是单摆,根据单摆的周期公式2T =B 第一次回到平衡位置过程的时间:4T t =,球A匀加速下降,根据位移时间关系公式,有2122L at=,解得:2244/ga m s π=≈ ,故B 正确;球A 匀加速下降,根据牛顿第二定律,有:mg-f=ma ,解得:f=m (g-a )=0.6mg ,A 球受到的摩擦力等于其重力的0.6倍,故AD 错误,C 正确.所以BC 正确,AD 错误. 11.一弹簧振子做简谐振动,t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻一定相同的物理量有( ) A. 速度 B. 加速度 C. 位移 D. 机械能 【答案】AD【详解】t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻质点位置关于平衡位置对称,此时速度和机械能相同,加速度和位移方向相反,故AD 正确,BC 错误.12.细长轻绳下端拴一小球构成单摆,在悬挂点正下方1/2摆长处有一个能挡住摆线的钉子A ,如图所示.现将单摆向左拉开一个小角度,无初速度释放.对于以后的运动,下列说法正确的是( )A. 摆球往返一次的时间比无钉子时短B. 摆球往左右两侧上升的最大高度相同C. 摆球往在平衡位置左右两侧走过的最大弧长相等D. 摆球往在平衡位置右侧的最大摆角是左侧最大摆角的两倍. 【答案】AB【详解】无钉子时,单摆的周期2T =,有钉子后,在半个周期内绕悬挂点摆动,半个周期内绕钉子摆动,周期T '=A 正确;根据机械能守恒定律,左右两侧上升的高度相同.有钉子子时走过的弧长小于无钉子走过的弧长.摆角不是2倍关系,故B 正确,CD 错误.所以AB 正确,CD 错误.13.关于机械波,下列说法不正确的是( ) A. 在传播过程中能传递能量 B. 频率由波源决定C. 能产生干涉、衍射现象D. 能在真空中传播 【答案】D【详解】A .波传播振动这种运动形式的同时传递能量,故A 正确,不符合题意; B .波的频率是由波源决定的,故B 正确,不符合题意; C .干涉、衍射是波的特有现象,机械波在一定条件下也能发生干涉和衍射现象,故C 正确,不符合题意;D .机械波传播要借助于介质,真空中不能传播,故D 错误,符合题意。
震动和波长的计算震动和波长是物理学中重要的概念,用来描述波动的特性。
波动是物质或能量在空间中传播的方式,可以是机械波或电磁波。
在许多领域中,如声波、光波等,计算震动和波长是必不可少的。
一、震动和周期在讨论波长计算之前,我们首先要了解震动和周期的概念。
震动是指物体在单位时间内的振动次数,通常用频率来表示,单位为赫兹(Hz)。
而周期是指一个完整的振动所经历的时间,它是震动的倒数。
频率和周期之间满足如下关系:频率 = 1 / 周期二、波长的定义波长是在单位时间内波浪传播的距离,通常用λ表示,单位可以是米(m)、厘米(cm)等。
波长与频率和传播速度之间有以下关系:波长 = 传播速度 / 频率三、机械波的波长计算1. 声波的波长计算声波是一种机械波,它是由震动的物体通过分子间的碰撞传播的。
声波的波长与频率和声速有关。
声速一般为343m/s,根据公式可以计算出声波的波长:波长 = 传播速度 / 频率例如,如果声波的频率为100Hz,则其波长为343m/s / 100Hz =3.43m。
2. 弹性波的波长计算弹性波是指沿着固体或液体传播的机械波。
它的波长计算与频率、传播速度有关。
假设弹性波的频率为120Hz,传播速度为220m/s,那么它的波长为:波长 = 传播速度 / 频率波长= 220m/s / 120Hz ≈ 1.83m。
四、电磁波的波长计算电磁波包括可见光、无线电波、微波等,它们的特点是能够在真空中传播。
电磁波的波长与频率和光速之间有关系。
光速一般为3×10^8m/s,根据公式可以计算出电磁波的波长:波长 = 光速 / 频率例如,如果电磁波的频率为2×10^14Hz,则其波长为 3×10^8m/s /2×10^14Hz = 1.5×10^-6m。
五、总结波动是物质或能量在空间中传播的方式,在物理学中,我们常常需要计算震动和波长。
震动用频率表示,而波长与频率和传播速度有关。
班级 学号 姓名 成绩
1.质量为0.01千克的小球与轻弹簧组成的系统的振动规律为)3
1(2cos 1.0+=t x π米,t 以秒计。
则该振动的周期为__________,初位相为
t=__________.
2.在图1中画出振动方程为=x t=0.25、0.5、1.0
3.
下列几种运动哪些是简谐振动: (1) (2) (3) (4)
4.设质点沿x 轴作简谐运动,用余弦函数表示,振幅为A。
当t =0时,质点过2/0A x -=处且向X轴正向运动,则其初周相为:
(1)4
π ; (2)45π ; (3)4
5π- ; (4) 3π- . [ ]
5.质量为0.04千克的质点做简谐振动,其运动方程为)2/5sin(4.0π-=t x 米,式中t 以秒计,求:
(1) 初始位移、初始速度;
(2) t =4π/3秒时的位移、速度和加速度;
(3) 质点的位移大小为振幅的一半处且向x
6.已知一简谐振动的周期为1秒,振动曲线如图2(1) 谐振动的余弦表达式;
(2) a 、b 、c 各点的周相φ
班级学号姓名成绩
1.两个相同的弹簧各悬一物体a和b,其质量之比为m a:m b=4:1.如果它们都在竖直方向作简谐振动,其振幅之比为A a:A b=1:
2.则两者周期之比T a : T b=__________,振动能量之比E a : E b=__________.
2.如图1所示(1)和(2)表示两个同方向、同频率的简谐振动的振动曲线。
则(1)和(2)合成振动的振幅为
3.
4.水平面上有一轻弹簧振子,当它作无阻尼自由振动时,一块橡胶泥正好竖直落在该振动物体上,设此时刻:①振动物体正好通过平衡位置,②振动物体正好在最大位移处。
则:
(1)①情况周期变、振幅变,②情况周期变、振幅不变;
(2)①情况周期变、振幅不变,②情况周期变、振幅变;
(3)两种情况周期都变,振幅都不变;
(4)两种情况周期都不变,振幅都变。
[]
5.有一轻弹簧,当下端挂一质量m1=10g的物体而平衡时,伸长量为4.9cm. 用这个弹簧和质量m2=16g 的物体连成一弹簧振子。
若取平衡位置为原点,向上为x轴的正方向。
将m2从平衡位置向下拉2cm后,给予向上的初速度v0=5cm/s并开始计时,试求m2的振动周期和振动的数学表达式.
6.一物体质量为0.25kg,在弹性力作用下作简谐振动,弹簧的倔强系数k=25N·m-1,如果起始振动时具有势能0.06J和动能0.02J,求:
(1)振幅;
(2)动能恰等于势能时的位移;
(3)经过平衡位置时物体的速度。
班级 学号 姓名 成绩
1.以下关于波速的说法哪些是正确的?
(1)振动状态传播的速度等于波速;
(2)质点振动的速度等于波速;
(3)相位传播的速度等于波速。
[ ]
2.一机械波的波速为C、频率为ν,沿着x 轴的负方向传播,在x 轴上有两点x 1和x 2,如果x 2>x 1>0,那么x 2和x 1处的位相差Δφ=φ2-φ1为:
(1) 0 ; (2) π ;
(3) 2πν(x 1-x 2)/C ; (4) 2πν(x 2-x 1)/C . [ ]
3.图1所示为一沿x 轴正向传播的平面简谐波在
振动初相取 -π到π之间的值,则:
(A)1点的初位相为Φ1=0
; (B)0(C)2点的初位相为Φ2=0 ; (D)3
4.图2所示,一平面简谐波沿ox 动方程为)2cos(1φπν+=t A y ,则P 2点_________________________;与P 1__________________________.
5.有一沿x 轴正方向传播的平面简谐波,其波速为c=400m/s ,频率ν=500Hz.
(1)某时刻t ,波线上x 1处的位相为Φ1,x 2处的位相为Φ2,试写出x 2-x 1与Φ2-Φ1的关系式,并计算出x 2-x 1=0.12m 时Φ2-Φ1的值;
(2)波线上某定点x 在t 1时刻的位相Φ1’并计算出t 2-t 1=10-3s 时Φ2’-Φ1’的值.
6.一平面简谐波沿x 轴正向传播,3所示。
(1)写出此波的波动方程。
(2)求距0点分别为λ/8和3λ/8(3)求距0点分别为λ/8和3λ/8
班级 学号 姓名 成绩
1.平面简谐波方程)/(cos c x t A y -=ω表示____ ________________________,式中固定x 时)(t f y =表示____________________ ___________ ;式中固定t 时,)(x f y =表示____________________________________.
2.有一波在媒质中传播,其波速C=105m/s ,振幅A=10-4m ,频率ν=103Hz ,若媒质的密度ρ=800kg/m 3,该波的能流密度为________________,在一分钟内垂直通过一面积为4×10-4m 2的平面的能量为________________.
3.假定汽笛发出的声音频率由400Hz 增加到1200Hz
的强度比为:
(1) 9:1 ; (2) 1:3 ; 4.如图1所示,一余弦横波沿x 此波的波动方程为:
(1)m x t y ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=42cos 2.0π ; (2) y =0(3)m x t y ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2422cos 2.0ππ; (4) y =.0
5.已知平面余弦波波源的振动周期T=0.5s (1)此波的波动方程;
(2)t=T/4时刻的波形方程并画出波形曲线;
(3)t=T/4时刻与波源相距λ/2处质点的位移及速度。
6.一平面简谐波在媒质中以速度C=20m/s 沿+x 轴方向传播,已知在传播的路径上某点A的振动方程为t y π4cos 3=(cm):
(1)试以A点为坐标原点写出波动方程;
(2)试以距A点5cm 处的B点(在A的左边)为坐标原点写出波动方程。
(3)若传播方向为-x 方向,请重做(1)与(2)的计算。
班级 学号 姓名 成绩
1.相干波源是指_______________________________________________________________;两个相干波源发出的波在空间相遇时出现
2.如图1所示,s 1、s 2为两个)22cos(
3.01ππ+=t y cm 和cos(
4.02=y 图中r 1=40cm,r 2=45cm 。
后的合振幅为____________。
3.已知空气中声速为330(1) 30m/s ; (3) 66m/s ;
4.一简谐波沿Ox 轴正方向传播,图2沿Ox 简谐波t 时刻的波形图。
5.如图3所示,两相干波源S 1和S 2坐标轴上,S 1位于坐标原点O,设由S 1播时,强度保持不变。
x 1=9m 和x 2
6.两波在很长的弦线上传播,其波动方程式分别为:
)244(3
1cos 1000.421t x y -⨯=-π (SI ) )244(3
1cos 1000.422t x y +⨯=-π (SI ) 求: (1)两波的频率、波长、波速;
(2)两波迭加后的节点位置;
(3)迭加后振幅最大的那些点的位置。