振动与波
- 格式:docx
- 大小:575.70 KB
- 文档页数:1
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相页 1 第近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振页2 第动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效页3 第重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.页 4 第②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.页 5 第⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。
受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。
这种现象称为共振。
共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小; 如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1 A2 Ay1 A cos(1t ),y2 A0 cos(2t )2、 合振动y y1 y2 1 2 1 2 y 2 A cos t t cos 2 2 合振动不是简谐振动12当1 、2很大且接近时, 2 1 2 1 令:y A(t )cos t2 1 )t 式中 A(t ) 2 A0 cos( 2 2 1 cos t cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和 2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。
13ψ1 t ψ2 t ψ t拍 拍: 合振动忽强忽弱的现象。
拍频 :单位时间内强弱变化的次数。
1 拍 2 2 2 1 2 2 1 2 1 2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。
产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。
波函数和振动方程的区别
波函数和振动方程都是描述波动现象的数学工具。
然而,它们之间存在一些区别:
1. 定义:波函数是描述量子力学中微观粒子的运动状态的数学函数,而振动方程是描述经典力学中物体振动的数学方程。
2. 适用范围:波函数适用于描述微观领域中粒子的运动状态,如电子、原子等,而振动方程适用于描述宏观领域中物体的振动,如弦、弹簧等。
3. 物理意义:波函数的模平方表示粒子在某个位置出现的概率密度,而振动方程则描述物体振动的幅度、频率、周期等性质。
4. 数学形式:波函数通常是复数形式的,而振动方程则常用正弦或余弦函数表示。
尽管波函数和振动方程具有不同的定义、适用范围、物理意义和数学形式,但它们都是描述波动现象的有效工具。
在物理学、化学、工程学等领域,这两种数学工具都被广泛应用。
- 1 -。
生活中的波与振动及其二者的区别和联系联系:1、振动是波动的原因,波动是振动的结果;2、有波动必然有振动,有振动不一定有波动。
区别:
1、发现历史不同。
波动:17世纪,R.胡克和C.惠更斯创立了光的波动说。
惠更斯曾利用波前概念正确解释了光的反射定律、折射定律和晶体中的双折射现象。
这一时期,还发现了一些与光的波动性有关的光学现象,例如F.M.格里马尔迪首先发现光遇障碍物时将偏离直线传播,把此现象起名为“衍射”。
振动:人类对振动现象的认识有悠久的历史.早在公元前6世纪,Pythagoras发现了较短的弦发出较高的音,将弦长缩短一半可发出高一音阶的音符;战国时期的古人已定量地总结出弦线发音与长度的关系将基音弦长分为三等份,减去或增加一份可确定相隔五度音程的各个音。
2、原理不同。
波动:形成波动的成因是介质中质点受到相邻质点的扰动而随着运动,并将形振动形式由远及近的传播开来,各质点间存在相互作用的弹力。
波动是质点群联合起来表现出的周而复始的运动现象。
振动:不同的原子拥有不同的振动频率,发出不同频率
的光谱,因此可以通过光谱分析仪发现物质含有哪些元素。
在常温下,粒子振动幅度的大小决定了物质的形态(固态、液态和气态)。
不同的物质拥有不同的熔点、凝固点和汽化点也是由粒子不同的振动频率决定的。
3、应用不同。
波动:无线电波、光波、X射线等。
振动:振动原理广泛应用于音乐、建筑、制造、建材、探测、军事等行业,有许多细小的分支,对任何分支的深入研究都能够增进科学的向前发展,推动社会进步。
物理振动和波公式
高中物理中振动和波的公式有很多,其中比较重要的公式包括以下几个:
1、周期公式:周期是振动中一个完整的往复运动所需要的时间,通常使用符号T表示。
周期与频率f之间有如下关系:T = 1/f
2、频率公式:频率是单位时间内完成振动往复运动的次数,通常使用符号f表示。
频率与周期T之间有如下关系:f = 1/T
3、波速公式:波速是指波在单位时间内通过的路程,通常使用符号v表示。
波速的大小和波长λ以及周期T有如下关系:v = λ/T
4、等时线公式:在波的走向上,等时线是指在同一时间内位于相同位相的波峰和波谷所组成的直线。
在直线波传播时,等时线的间距和波长λ以及波速v有如下关系:λ= vT。
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
震动与波动的传播方式的差异震动和波动是物理学中两个重要的概念,它们描述了物质在空间中传播的方式。
虽然它们都是以振动为基础,但它们的传播方式和特性却有着明显的差异。
一、震动的传播方式震动是指物体在一点上的振动,它以机械波的形式传播。
当物体受到外力的作用时,它会发生振动,并将这种振动通过相邻的分子或粒子传递给周围的物质。
这种传递方式是通过分子之间的相互作用来实现的。
在固体中,震动的传播方式是以纵波和横波的形式进行的。
纵波是指物质中的分子沿着波的传播方向进行压缩和稀疏的振动。
横波则是指物质中的分子在垂直于波的传播方向上进行的振动。
这两种波的传播速度取决于物质的性质,如密度、弹性等。
在液体和气体中,震动的传播方式是以纵波的形式进行的。
当物体受到外力作用时,它会在液体或气体中产生压缩和稀疏的振动,这种振动会通过分子之间的碰撞传递给周围的分子,从而实现能量的传播。
二、波动的传播方式波动是指能量在空间中传播的过程,它以电磁波的形式进行。
电磁波是由电场和磁场相互耦合而形成的波动,它可以在真空中传播,也可以在介质中传播。
电磁波的传播方式是通过电场和磁场的相互作用来实现的。
当电场发生变化时,它会引起磁场的变化,而当磁场发生变化时,它又会引起电场的变化。
这种电场和磁场的变化会相互耦合,从而形成电磁波的传播。
电磁波的传播速度是一个常数,即光速。
在真空中,光速是一个恒定的值,约为3.00×10^8米/秒。
而在介质中,光速会受到介质的性质影响,如折射率等。
三、震动和波动的差异从传播方式上来看,震动是通过分子之间的相互作用来实现的,而波动是通过电场和磁场的相互作用来实现的。
这种差异决定了它们的传播速度和传播特性的不同。
首先,震动的传播速度取决于物质的性质,如密度、弹性等。
不同的物质具有不同的传播速度,这也是为什么在不同的介质中声音的传播速度不同的原因。
而波动的传播速度在真空中是一个常数,即光速,不受介质的影响。
其次,震动的传播方式是以纵波和横波的形式进行的,而波动的传播方式是以电磁波的形式进行的。
震动与波的传播的实验一、引言震动与波的传播是物理学中重要的研究对象,它们在许多领域都有广泛的应用。
本实验旨在通过一系列实验操作,观察和探究震动与波的传播特性,并进一步加深对其工作原理的理解。
二、实验目的1. 了解震动和波的定义、性质以及传播方式;2. 通过实验观察和测量,验证波的传播特性,包括波的反射、折射和干涉;3. 学习使用适当的实验仪器和测量工具,提高实验操作能力;4. 掌握实验数据处理与分析的方法。
三、实验材料1. 波箱;2. 波形发生器;3. 信号发生器;4. 反射板;5. 凹透镜;6. 实验计算机软件。
四、实验内容1. 实验一:波的反射1. 将波形发生器连接到波箱,产生一定频率和幅度的波;2. 将波箱放置在平坦的水平面上,并且固定;3. 在波箱前方放置一个反射板,调整反射板的位置,使得波箱发出的波能够正常反射;4. 通过观察波的反射过程,记录并分析反射角度和入射角度之间的关系。
2. 实验二:波的折射1. 将波形发生器连接到波箱,产生一定频率和幅度的波;2. 在波箱中央放置一个凹透镜,并固定在凹透镜上方;3. 调整波形发生器和凹透镜的相对位置,使得波能够通过凹透镜,并且发生折射;4. 通过测量和记录入射角、折射角以及波在折射过程中的频率变化,分析波的折射特性。
3. 实验三:波的干涉1. 将信号发生器连接到波箱,产生两个不同频率的波;2. 将两个波平行地从不同的波源处发出,使它们在某一点相遇;3. 通过调整信号发生器的频率,观察和记录波的干涉现象,如增强干涉、衍射等;4. 分析波的干涉规律,如干涉条纹的间距和颜色变化。
五、实验步骤1. 搭建实验装置并确保各仪器连接正确;2. 调整波形发生器和信号发生器的参数,使其产生合适的波;3. 将实验一、实验二的各步骤进行反复实验,并记录观察到的数据;4. 完成实验三的观察和记录;5. 停止实验并关闭实验仪器。
六、数据处理与分析1. 对实验一和实验二的数据进行整理,绘制相应的散点图和线图;2. 根据实验数据,计算反射角、入射角、折射角等相关参数,并进行比较分析;3. 利用图形软件绘制波的干涉图,定量测量干涉条纹的间距和颜色变化。
振动与波知识要点一、机械振动1、一种振动:简谐振动掌握:简谐振动的特征;一维简谐振动方程;描述简谐振动的基本物理量(振幅、周期、频率、圆频率、相位);简谐振动的能量要点:①一维简谐振动方程)cos(ϕω+=t A x →速度方程)sin(ϕωω+-==t A dtdx v (平衡位置处A v m ω=) →加速度方程x t A dt dv a 22)cos(ωϕωω-=+-== (正负最大位移处 A a m 2ω=) ②基本物理量:﹡振幅)0(>A 常量→由振动初始条件决定﹡圆频率)0(>ω常量→由振动系统本身性质决定 (弹簧振子mk =ω ;单摆l g =ω;摆杆l g 23=ω) ﹡周期、频率、圆频率关系:ωπν21==T ; ﹡相位ϕω+=Φt (反映振动状态): 初相ϕ(0=t )→常量,由振动初始条件决定;相位差=Φ-Φ=∆Φ12)(12t t -ω(用于单个物体不同时刻间状态变化分析)或相位差=Φ-Φ=∆Φ1212ϕϕ-(用于两个同频率振动相关问题分析) ③振动能量:振动总能量2222121kA A m E E E p k −−−→−=+=弹簧振子ω 动能Φ=2sin E E k ;势能Φ=2cos E E p (相位ϕω+=Φt )振动过程中,动能和势能随时间变化,变化周期是振动周期的一半,它们相互转化,总能量保持不变2、一种分析方法:旋转矢量法 (※利用旋转矢量法判断时一定要画出旋转矢量图) 掌握:应用旋转矢量法分析初相问题、相位差问题、振动合成问题 要点:①任一时刻旋转矢量相对于x 轴正向的夹角θ表征简谐运动物体此时的振动相位ϕω+=Φt ;在t =0时刻,与x 轴正向夹角0θ即表征振动初相ϕ;②任一时刻,旋转矢量端点在x 轴上投影点的位置、运动方向表征简谐运动物体此时的振动位置x 及振动方向;③旋转矢量逆时针方向匀速旋转一周,转过角度πθ2=∆,所用时间ωπ/2=∆t ,表征简谐振动物体作一次完全振动,相位变化π2=∆Φ,振动周期为ωπ/2=T ;某段时间t ∆内旋转矢量旋转过的角度θ∆即表征简谐振动物体在这段时间内的相位变化t ∆=∆=∆Φωθ.3、一种合成:两个同方向同频率简谐振动合成掌握:合振动的分析;振动相长、相消条件要点:同相{),2,1,0(2 =±=∆Φk k π}振动相长,合振幅最大21max A A A +=反相{),2,1,0()12( =+±=∆Φk k π}振动相消,合振幅最小21min A A A -=二、机械波1、平面简谐波的波动方程掌握:①波动方程的几种基本形式; ②波动方程中的物理量分析及相互联系;③波形图的分析; ④由质点振动方程推出波动方程或由波动方程推出某处质点方程的方法;⑤波线上任意两点相位差的分析要点: ①波动方程的基本形式:⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=ϕλνπϕωx t A u x t A y 2cos cos 沿x 轴正向传播 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=ϕλνπϕωx t A u x t A y 2cos cos 沿x 轴负向传播 ②基本物理量:﹡波的振幅A 、圆频率ω、周期T (频率ν)与参与波动的各质点振动的振幅A 、圆频率ω、周期T (频率ν)相同,都仅与波源的振动及性质有关﹡波速u →由传播介质的性质决定﹡波长λ=两相邻波峰(或波谷)间距【横波】或两相邻密部(或疏部)间距【纵波】与波速u 、周期T (频率ν)间关系为 νλ/u uT == ,而ωπν21==T ﹡同一波线上坐标为x 1和x 2的两质点的振动相位差)(2)(212112x x x x u -=-=Φ-Φ=∆Φλπω→沿x 轴正向传播)(2)(121212x x x x u -=-=Φ-Φ=∆Φλπω →沿x 轴负向传播 ﹡初相ϕ根据x =0处质点在t =0时刻的振动状态确定③波动方程的物理意义:),(t x y﹡代入坐标x →)(t y 坐标为x 处质点的振动方程(注:初相不可化简)﹡代入时刻t →)(x y t 时刻波形(x y -曲线为波形图,判断质点振动速度方向时要注意在振动曲线图和波形图上判断方法的区别)2、波的干涉掌握:①波的干涉现象分析:a. 波的相干条件 ;b. 从相位差角度,从波程差角度分析空间任意点干涉相长和相消问题 ②驻波分析:a. 形成驻波条件; b. 驻波方程的推导;c. 波腹和波节或任意振幅位置的分析d. 半波损失现象分析,由入射波(或反射波)方程推出反射波(或入射波)方程的方法 要点:①波的相干条件:频率相同,振动方向相同,相位差恒定②波的干涉 ﹡两列相干波在叠加点所引起两分振动相位差﹡相长干涉、相消干涉问题(从相位差角度分析;从波程差角度分析)注:从波程差角度分析相长干涉、相消干涉的规律只适用于两相干波源初相相等即21ϕϕ=的情况 λϕϕϕ1212π2r r ---=∆③驻波问题﹡形成条件:相干条件,振幅相同,传播速度相同,沿同一直线相反方向传播﹡驻波方程 21y y y += (要用到2cos 2cos 2cos cos βαβαβα-+=+)各质点振动频率相同,振幅不同(波腹振幅最大为2A ,波节振幅最小为0,其余质点振幅介于0~2A 之间),相位分布遵循段内同相、邻段反相规律。
振动与波专题1.[2024·安徽卷] 某仪器发射甲、乙两列横波,在同一均匀介质中相向传播,波速v大小相等.某时刻的波形图如图所示,则这两列横波()A.在x=9.0 m处开始相遇B.在x=10.0 m处开始相遇C.波峰在x=10.5 m处相遇D.波峰在x=11.5 m处相遇1.C[解析] 由题意可知两列波的波速相同,所以相同时间内传播的距离相同,故两列横波在x=11.0 m处开始相遇,故A、B错误;甲波峰的坐标为x1=5 m,乙波峰的坐标为x2=16 m,m=10.5 m处相遇,故C正确,D错误.由于两列波的波速相同,所以波峰在x'=5 m+16-522.[2024·北京卷] 图甲为用手机和轻弹簧制作的一个振动装置.手机加速度传感器记录了手机在竖直方向的振动情况,以向上为正方向,得到手机振动过程中加速度a随时间t变化的曲线为正弦曲线,如图乙所示.下列说法正确的是()A.t=0时,弹簧弹力为0B.t=0.2 s时,手机位于平衡位置上方C.从t=0至t=0.2 s,手机的动能增大D.a随t变化的关系式为a=4sin (2.5πt) m/s22.D[解析] 由题图乙知,t=0时,手机加速度为0,由牛顿第二定律得弹簧弹力大小为F=mg,A错误;由题图乙知,t=0.2 s时,手机的加速度为正,则手机位于平衡位置下方,B错误;由题图乙知,从t=0至t=0.2 s,手机的加速度增大,手机从平衡位置向最大位移处运动,速度=2.5π rad/s,则a随t变化的关系减小,动能减小,C错误;由题图乙知T=0.8 s,则圆频率ω=2πT式为a=4sin (2.5πt) m/s2,D正确.3.[2024·福建卷] 某简谐运动的y -t 图像如图所示,则以下说法正确的是( )A .振幅为2 cmB .频率为2.5 HzC .0.1 s 时速度为0D .0.2 s 时加速度方向竖直向下3.B [解析] 根据图像可知,振幅为1 cm,周期为T =0.4 s,则频率为f =1T =10.4 Hz=2.5 Hz,故A 错误,B 正确;根据图像可知,0.1 s 时质点处于平衡位置,此时速度最大,故C 错误;根据图像可知,0.2 s 时质点处于负向最大位置处,此时加速度方向竖直向上,故D 错误.4.[2024·甘肃卷] 如图为某单摆的振动图像,重力加速度g 取10 m/s 2,下列说法正确的是 ( ) A .摆长为1.6 m,起始时刻速度最大 B .摆长为2.5 m,起始时刻速度为零 C .摆长为1.6 m,A 、C 点的速度相同 D .摆长为2.5 m,A 、B 点的速度相同4.C [解析] 由单摆的振动图像可知振动周期为T =0.8π s,由单摆的周期公式T =2π√lg 得摆长为l =gT 24π2=1.6 m,A 、C 点的速度相同,A 、B 点的速度大小相同,方向不同;综上所述,可知C 正确.5.[2024·广东卷] 一列简谐横波沿x 轴正方向传播,波速为1 m/s,t =0时的波形如图所示.t =1 s 时,x =1.5 m 处的质点相对平衡位置的位移为 ( )A .0B .0.1 mC .-0.1 mD .0.2 m5.B [解析] 由图像可知,波长λ=2 m,周期T =λv =2 s,由于1 s-0=T2,故t =1 s 时,x =1.5 m 处的质点运动到波峰,相对平衡位置的位移为0.1 m,B 正确.6.[2024·河北卷] 如图所示,一电动机带动轻杆在竖直框架平面内匀速转动,轻杆一端固定在电动机的转轴上,另一端悬挂一紫外光笔,转动时紫外光始终竖直投射至水平铺开的感光纸上,沿垂直于框架的方向匀速拖动感光纸,感光纸上就画出了描述光点振动的x -t 图像.已知轻杆在竖直面内长0.1 m,电动机转速为12 r/min .该振动的圆频率和光点在12.5 s 内通过的路程分别为 ( )A .0.2 rad/s,1.0 mB .0.2 rad/s,1.25 mC .1.26 rad/s,1.0 mD .1.26 rad/s,1.25 m6.C [解析] 根据题意可知,紫外光笔的光点在纸面上沿x 轴方向做简谐运动,光点的振动为受迫振动,其振动周期等于电动机转动周期,故该振动的圆频率ω=2πT =2πn =0.4π rad/s≈1.26 rad/s,A 、B 错误;该振动的周期T =1n =5 s,由于轻杆长0.1 m,故振幅A =0.1 m,因12.5 s=(2+12)T ,故12.5 s 内光点通过的路程s =(2+12)×4A =1.0 m,C 正确,D 错误.7.[2024·湖南卷] 如图所示,健身者在公园以每分钟60次的频率上下抖动长绳的一端,长绳自右向左呈现波浪状起伏,可近似为单向传播的简谐横波.长绳上A 、B 两点平衡位置相距6 m,t 0时刻A 点位于波谷,B 点位于波峰,两者之间还有一个波谷.下列说法正确的是 ( )A .波长为3 mB .波速为12 m/sC .t 0+0.25 s 时刻,B 点速度为0D .t 0+0.50 s 时刻,A 点速度为07.D [解析] 由题意知A 、B 的平衡位置之间的距离x =32λ=6 m,解得λ=4 m,A 错误;波源的振动频率为f =6060 Hz=1 Hz,则波速v =λf =4 m/s,B 错误;质点的振动周期T =1f =1 s,由于0.25 s=T 4,故B 点在t 0+0.25 s 时刻即14周期后由波峰运动至平衡位置,速度最大,C 错误;由于0.50 s=T2,故A 点在t 0+0.50 s 时刻即12周期后由波谷运动至波峰,速度为0,D 正确.8.[2024·江西卷] 如图甲所示,利用超声波可以检测飞机机翼内部缺陷.在某次检测实验中,入射波为连续的正弦信号,探头先后探测到机翼表面和缺陷表面的反射信号,分别如图乙、丙所示.已知超声波在机翼材料中的波速为6300 m/s.关于这两个反射信号在探头处的叠加效果和缺陷深度d,下列选项正确的是 ()A.振动减弱;d=4.725 mmB.振动加强;d=4.725 mmC.振动减弱;d=9.45 mmD.振动加强;d=9.45 mm8.A[解析] 根据题图乙可知,超声波的传播周期T=2×10-7 s,又波速v=6300 m/s,则超声波在机翼材料中的波长λ=vT=1.26×10-3 m,结合题图乙和题图丙可知,两个反射信号传播到λ,解探头处的时间差为Δt=1.5×10-6 s,故两个反射信号的路程差为2d=vΔt=9.45×10-3 m=152得d=4.725×10-3 m;由题图乙和题图丙可知,这两个反射信号的起振方向相同,振动周期相同,传播到探头处的路程差为半波长的奇数倍,则这两个反射信号发生干涉且在探头处振动方向相反,故这两个反射信号在探头处振动减弱,A正确.9.(多选)[2024·山东卷] 甲、乙两列简谐横波在同一均匀介质中沿x轴相向传播,波速均为2 m/s.t=0时刻二者在x=2 m处相遇,波形图如图所示.关于平衡位置在x=2 m处的质点P,下列说法正确的是()A.t=0.5 s时,P偏离平衡位置的位移为0B.t=0.5 s时,P偏离平衡位置的位移为-2 cmC.t=1.0 s时,P向y轴正方向运动D.t=1.0 s时,P向y轴负方向运动9.BC [解析] 由于两波的波速均为2 m/s,故t =0.5 s 时,两波均传播了Δx =v Δt =2×0.5 m=1 m,题图所示平衡位置在x =1 m 处和x =3 m 处两质点的振动形式传到P 点处,由波的叠加原理可知,t =0.5 s 时,P 偏离平衡位置的位移为-2 cm,A 错误,B 正确;同理,t =1 s 时,题图所示平衡位置在x =0处和x =4 m 处两质点的振动形式(均向y 轴正方向运动)传到P 点处,根据波的叠加原理可知,t =1 s 时,P 向y 轴正方向运动,C 正确,D 错误.10.(多选)[2024·新课标卷] 位于坐标原点O 的波源在t =0时开始振动,振动图像如图所示,所形成的简谐横波沿x 轴正方向传播.平衡位置在x =3.5 m 处的质点P 开始振动时,波源恰好第2次处于波谷位置,则 ( )A .波的周期是0.1 sB .波的振幅是0.2 mC .波的传播速度是10 m/sD .平衡位置在x =4.5 m 处的质点Q 开始振动时,质点P 处于波峰位置10.BC [解析] 波的周期和振幅与波源振动的周期和振幅一致,可知波的周期为T =0.2 s,振幅为A =0.2 m,故A 错误,B 正确;质点P 开始振动时,波源第2次到达波谷,可知波从波源传到质点P 所用的时间为t =34T +T =0.35 s,则波速为v =x OP t=3.5-00.35 m/s=10 m/s,故C 正确;质点Q 的平衡位置在x =4.5 m 处,波从质点P 传到质点Q 需要的时间为t'=x PQ v=4.5-3.510 s=0.1 s=12T ,所以质点Q 开始振动时,质点P 处于平衡位置,故D 错误.11.[2024·浙江6月选考] 如图所示,不可伸长的光滑细线穿过质量为0.1 kg 的小铁球,两端A 、B 悬挂在倾角为30°的固定斜杆上,间距为 1.5 m .小球平衡时,A 端细线与杆垂直;当小球受到垂直纸面方向的扰动做微小摆动时,等效于悬挂点位于小球重垂线与AB 交点的单摆,重力加速度g 取10 m/s 2,则 ( )A .摆角变小时,周期变大B .小球摆动周期约为2 sC .小球平衡时,A 端拉力为√32 ND.小球平衡时,A端拉力小于B端拉力11.B[解析] 单摆的周期T=2π√Lg,与摆角无关,故A错误.光滑细线穿过小铁球,则小铁球两侧细线上拉力大小相等,所以A端拉力与B端拉力大小相等,平衡时对小球受力分析如图所示,根据数学关系可知F A=F B=mg2cos30°=√33N,故C、D错误.根据几何关系可知,细线与竖直方向夹角为30°,两侧细线夹角为60°,等效摆长为L=d AB cot60°cos30°=1 m,则小球摆动周期T=2π√Lg≈2 s,故B正确.12.[2024·浙江6月选考] 频率相同的简谐波源S1、S2和接收点M位于同一平面内,S1、S2到M的距离之差为6 m.t=0时,S1、S2同时垂直平面开始振动,M点的振动图像如图所示,则()A.两列波的波长为2 mB.两列波的起振方向均沿x正方向C.S1和S2在平面内不能产生干涉现象D.两列波的振幅分别为3 cm和1 cm12.B[解析] 由图像知,t=4 s时一列波传到M点且使M点沿x正方向振动,振幅A1=3 cm,t=7 s时这列波使M点沿x负方向振动且振幅变小为A=1 cm,说明此时另一列波也传到M点且其使M点沿x正方向振动,这列波的振幅A2=A1-A=2 cm,所以两列波刚传到M 时均使M点沿x正方向振动,即两列波的起振方向均沿x正方向,B正确,D错误;S1、S2到M的距离之差为Δx=6 m,由图像可知两列波传到M的时间之差为Δt=7 s-4 s=3 s,则波速v=ΔxΔt=2 m/s,由图像可知振动周期T=2 s,则波长λ=vT=4 m,A错误;S1、S2频率相等,所以在平面内能产生干涉现象,C错误.。
高中物理公式:振动和波(机械振动与机械振动的传播)发生共振条件:f驱动力=f固,A=max,共振的防止和应用机械波、横波、纵波注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;温度是分子平均动能的标志;分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU >0;吸收热量,Q>0物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;r0为分子处于平衡状态时,分子间的距离;其它相关内容:能的转化和定恒定律能源的开发与利用.环保物体的内能.分子的动能.分子势能。
质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。
自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。
匀变速直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V02=2as3.中间时刻速度Vt/2=V平=(Vt+V0)/2(分析纸带常用)末速度Vt=V0+at;5.中间位置速度Vs/2=[(V02+Vt2)/2]1/26.位移s=V平t=V0t+at2/2加速度a=(Vt-V0)/t{以V0为正方向,a与V0同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}(分析纸带常用逐差法求加速度)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
震动和波的传播在我们的日常生活中,我们经常会遇到各种震动和波的传播现象。
无论是地震的发生、声音的传播还是光的折射,都与震动和波的传播有着密切的关系。
本文将探讨震动和波的传播的基本原理以及其在不同领域的应用。
一、震动的传播震动是物体在受到外力作用后发生的振动现象。
当一个物体受到外力作用时,它会发生位移,从而引起周围分子或粒子的振动。
这种振动会通过相邻分子或粒子之间的相互作用传递下去,形成一种连锁反应,最终导致震动的传播。
震动的传播速度与介质的性质有关。
在固体中,分子或粒子之间的相互作用力较大,因此震动的传播速度较快;而在液体和气体中,分子或粒子之间的相互作用力较小,震动的传播速度较慢。
这也是为什么地震波在地壳中传播速度较快,而声音在空气中传播速度较慢的原因。
二、波的传播波是一种能量传播的方式,它将能量从一个地方传递到另一个地方,而不传递物质本身。
波的传播可以分为机械波和电磁波两种。
1. 机械波的传播机械波是通过介质的振动传播的波动。
常见的机械波有水波、声波等。
机械波的传播需要介质的支持,介质的分子或粒子会随着波的传播而发生振动。
机械波的传播速度与介质的性质有关,例如水波在深水中的传播速度比在浅水中的传播速度快。
2. 电磁波的传播电磁波是由电场和磁场交替变化而产生的波动。
电磁波可以在真空中传播,也可以在介质中传播。
电磁波的传播速度是一个恒定值,即光速。
光速是自然界中最快的速度,它在真空中的数值约为每秒299,792,458米。
三、震动和波的应用震动和波的传播在各个领域都有重要的应用。
1. 地震监测与预警地震是地球内部能量释放的结果,地震波的传播可以提供地球内部结构的信息。
通过监测地震波的传播速度和振幅,科学家可以预测地震的发生时间和强度,为地震灾害的预防和减轻提供重要依据。
2. 声音的传播与通信声音是一种机械波,它通过空气的震动传播。
声音的传播可以实现人与人之间的交流,也是音乐、电影等艺术形式的基础。
振 动 学 基 础内容提要一、振动的基本概念1、振动 某物理量随时间变化,如果其数值总在一有限范围内变动,就说该物理量在振动;2、周期振动 如果物理量在振动时,每隔一定的时间间隔其数值就重复一次,称为周期振动;3、机械振动 物体在一定的位置附近作往复运动称为机械振动;4、简谐振动 如果物体振动的位移随时间按余(正)弦函数规律变化,即:()0cos ϕω+=t A x这样振动称为简谐振动;5、周期T 物体进行一次完全振动所需的时间称为周期,单位:秒。
一次完全振动指物体由某一位置出发连续两次经过平衡位置又回到原来的状态。
6、振动频率ν 单位时间内振动的次数,单位:次/秒,称为赫兹〔Hz 〕;7、振动圆频率ω 振动频率的π2倍,单位是弧度/秒〔rad /s 〕,即Tππνω22== 8、振幅A 物体离开平衡位置〔0=x 〕的最大位移的绝对值; 9、相位ϕ0ϕωϕ+=t 称为相位或相,单位:弧()rad 。
它是时间的单值增函数,每经历一个周期T ,相位增加π2,完成一次振动; 10、初相位0ϕ 开始计时时刻的相位;11、振动速度v 表示振动物体位移快慢的物理量,即:()⎪⎭⎫ ⎝⎛++=+-==2cos sin 00πϕωωϕωωt A t A dt dx v 说明速度的相位比位移的相位超前2π; 12、振动加速度a 表示振动物体速度变化快慢的物理量,即:()()πϕωωϕωω++=+-===020222cos cos t A t A dtx d dt dv a加速度的相位比速度的相位超前2π,比位移的相位超前π; 13、初始条件 在0=t 时刻的运动状态〔位移和速度〕称为初始条件,它决定振动的振幅和初位相,即:⎪⎩⎪⎨⎧-======000000sin cos ϕωϕA v v A x x t t 则可求得: ⎪⎪⎩⎪⎪⎨⎧-=+=00022020x v tg v x A ωϕω二、旋转矢量法简谐振动可以用一旋转矢量在x 轴上的投影来表示。
1.机械振动:(1):机械振动即物体或物体的一部分在某一中心位置两侧所做的往返的运动(2):回复力F 回:指向“平衡”位置的合力叫回复力(3):振动位移x :都以“平衡”位置为位移的起点(4):振幅A :振动物体离开“平衡”位置的最大距离,振幅越大,振动的能量就越大(5):振动的周期T :指完成一次全振动的时间;周期表示振动的快慢,周期小表示振动的快(6):振动的频率f :指单位时间内完成振动的次数;频率大,表示振动的快;单位为:赫兹Hz(7):T=f 1;振动的周期T 的大小与振幅的大小无关:对于同一个振动系统,当振动的振幅变大时,其周期将保持不变,所以物体振动的周期又叫固有周期(8):平衡位置:振动的中心位置,是假冒的“平衡”,F 合不一定为0,如:单摆的“平衡”位置的加速度为:022≠==⇒==m F R v R v a m F F 指向圆心的合力向心向心指向圆心的合力2:简谐振动: 1:回复力F 回和位移x 成正比,但它们的方向相反;F 回=-kxx 为物体离开“平衡”位置的位移负号表示回复力F 回和位移x 的方向相反回复力就是一个指向“平衡”位置的合力(2):对于同一个振动系统,当振动的振幅变大时,其周期仍保持不变(3):简谐振动的x-t 图像:是一条正弦或余弦曲线(4):振动的周期T 的大小与振幅的大小无关所以把它叫国有周期;弹簧振子的T 与小球的质量、弹簧的劲度序数有关;单摆的T 与摆长、重力加速度g 有关3.单摆(1):当单摆的摆角小于80时,单摆的振动可以看做简谐振动(2):单摆振动时,也可以把它看做圆周运动R m R m m F F T R v 2222)(向心指向圆心的合力πω====多多从不同的角度分析问题(3):单摆的回复力由重力在切线方向的分力提供;当摆角小于80时,L x≈θsin ,mg F L x -=回复力如右图(3):当单摆的摆角小于80时,g LT π2=L 为物体摆动时的圆心悬点到物体重心的距离g 为当地的重力加速度g =2R GM;g ´=222)()(H R gR H R GM ++= g ´为离天体表面H 高处的重力加速度;g为天体表面的重力加速度;R 为天体的半经;M 为中心天体的质量;H 为离天体表面的高公式说明T 与振幅A 无关(4):单摆振动时,由于拉力始终与速度垂直,所以拉力不做功,如无阻力,则物体的机械能守恒(5):单摆振动时,如有阻力,则在短时间内,仍可把它看做简谐振动4、任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A 了多多用位移时间图像帮助分析问题5、受迫振动:(1):物体在周期性外力的作用下的振动叫受迫振动(2):物体做受迫振动时,它的频率等于驱动力的频率,而跟物体的固有频率无关,如图:假如L=g,则单摆的固有周期g L T π2==2π秒,如果每隔八秒推一下小球,则单摆的周期就为8秒,而不是2π秒(3):波在传播时,各质点都在做受迫振动各质点都在模仿波源的振动,所以波由一种介质传到另一介质时,波的频率不变等于波源的振动频率(4):物体在做受迫振动时,驱动力的频率跟物体的固有频率相等的时侯,物体的振幅最大,这种现象叫共振;驱动力的频率跟物体的固有频率越接近,物体的振幅也越大,如图为共振曲线(5):当f 驱动力=f 固时物体会发生共振,共振时的振幅比不共振时的振幅大(6):利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……6:简谐振动的图像如右图为水平振动的弹簧振子的振动图像:由图像可知:(1):振动图像表示的是某一质点在各个时刻的位移(2):振幅A 为15cm(3): 周期T 为8s(4):a 点对应的时刻,速度在增大,速度的方向向负方向;加速度在减小,加速度的方向负方向和位移的方向相反,此时位移为正10cm回复力在减小,回复力的方向向负方向和位移的方向相反动能在增大,弹性势能在减小机械能守恒b 点对应的时刻,速度在减小,速度的方向向负方向;加速度在增大,加速度的方向向正方向和位移的方向相反,此时位移为-5cm回复力在增大,回复力的方向向正方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒d 点对应的时刻,速度在减小,速度的方向向正方向;加速度在增大,加速度的方向向负方向和位移的方向相反,此时位移为正5cm回复力在增大,回复力的方向向负方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒(5):V a < V b = V d7:解振动问题的方法:(1):振动问题都是变力问题,一般选用动能定理、能量守恒定律解题;注意应用弹簧的弹性势能不变、了解:弹性势能221kx E P ,k 弹簧的劲度系数,x 为弹簧的形变量、弹力做的功= - 弹性势能的变化量等条件 (2):充分利用振动的对称性,如在两个对称点的加速度a 、速度v 、位移、动能E k 、弹性势能相等等条件(3):充分利用振动的图像解题画出振动的图像帮助解决问题(4):注意应用临界点的条件:如弹力为0、加速度a 、速度v 、位移相等等等(5):两物体的加速度a 1、a 2相等时,两物体可能将要分开物体分开的瞬间,物体间的弹力为零(6):弹簧的形变量或两次的形变量之差可能等于物体的位移:S=X 2-X 18:机械波:机械振动在介质中的传播过程所形成的波叫做机械波(1):有振源和传播介质时就会产生机械波(2):波是传播能量的一种方式,即传递某种信息(3):波信息向前传播时,各介质只在自己的平衡位置附近振动,并不会随波信息向前传播(4):波信息向前传播时,波形波形代表信息的内容不会发生变化;如下图,波信息向右传播过后,A 、B 、C 、D 各质点仍然回到各自原来的位置;当波信息传递到E 点时,它就开始振动,并按后面的波形振动即开始模仿振源的所有动作,所以质点起到了传递信息的作用;要判断E 如何振动,就看和它相邻的前一质点的运动情况即可解波动问题,就是逻辑推理的过程,由A 质点的情况推及到D 质点的情况,由9秒的情况推及到8秒的情况……(5):每经过一个周期,波就向前传播一个波长的距离;每经过41个周期,波就向前传播41个波长的距离 (6):波的频率就等于波源的振动频率,介质的振动频率也等于波源的振动频率受迫振动9:波速V :(1):T V λ=;t SV f V ==;λ(2):波速V 只与介质有关,与波长、频率无关;当介质相同时,波速就相同(3):当波由一种介质传播到另一介质时,频率不变各质点都在做受迫振动,波速、波长会发生改变 10:波长:(1):两个相邻的,在振动过程中对平衡位置的位移总是相等的质点间的距离,叫波长9秒末(2):在一个周期里,波向前传播的距离,叫波长(3):两个相邻的波峰之间的距离,叫波长;两个相邻的波谷之间的距离,叫波长11:波的周期、频率:波的频率就等于波源的振动频率,它们与速度、介质无关12:波的图像:由图像可知(1):波的图像表示的是某一时刻各个质点的位移的图像(2):振幅A 为15cm(3):波长为8cn(4):在9秒末,a 质点向下运动它模仿的前一质点在它的右下方(5):在9秒末,a 质点的速度在变大,加速度在变小,加速度的方向向下各质点的运动规律仍然遵循振动的规律13:波的衍射:(1): 波在传播中遇到障碍物时能绕过障碍物的现象,叫波的衍射(2):一切波均能发生衍射,即任何条件下波均能发生衍射,只是有的衍射我们觉擦不到,但是仍然存在(3):发生明显的衍射的条件是:障碍物或孔的直径比波长小或相差不多(4):楼上房间的人能听到楼底下人的声音,单缝衍射、眯眼看灯、隔并齐笔缝看灯、隔羽毛纱布缝看灯等呈彩色看到彩色的光,这些都是衍射14:波的干涉:(1):频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫波的干涉(2):两个波源的振动方向相同,频率相同的同类波干涉时,就能得到稳定的干涉图样(3):围绕正在发声的音叉走一圈,听到声音忽强忽弱,双缝干涉、肥皂泡膜、蝉翼、雨天公路上汽油等呈彩色,这些都是干涉(4):波的干涉加强区是波峰和波峰相遇处或波谷和波谷相遇处,加强区仍在振动,其位移有可能小于减弱区的,但它的振幅一定大于减弱区的;波的干涉减弱区则是波峰和波谷相遇处(5):当两个波源的振动方向相同,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的加强点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的减弱点;当两个波源的振动方向相反,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的减弱点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的加强点; 15:多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同波源与观测者相互接近时,接收频率变大;反之,变小16:波的分类:波分为横波和纵波;声波为纵波17:波的反射:遵循反射定律如:反射角等于入射角等等18:解波动问题的方法:(1):一定要画出波动图像(2):注意应用波形不变把整个波形拿来平移,一般不要把波形延长,各质点都在模仿波源的振动,通过逻辑推理导出答案由“现在”推导出“将来”,由“现在”推导出“过去”(3):还应考虑到波的周期性、重复性,质点振动的周期性、重复性。