概率论与数理统计(第二版-刘建亚)习题解答——第1章
- 格式:doc
- 大小:422.00 KB
- 文档页数:9
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
第 1 章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至 6 个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至 6 个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现 H 则再抛一次;若出现 T,则再抛一颗骰子,观察出现的各种结果。
解:(1)S{ 2,3,4,5,6,7} ;(2)S { 2,3,4, } ;(3)S { H ,TH ,TTH ,TTTH , } ;(4)S { HH , HT ,T1, T2, T3,T 4,T 5,T 6}。
2,设A, B是两个事件,已知P(A) 0.25, P(B) 0.5, P( AB) 0.125, ,求___ ___P( A B), P( AB), P( AB), P[( A B)( AB)] 。
解: P( A B) P( A) P(B) P( AB) 0.625 ,P( AB) P[( S A) B] P( B) P( AB) 0.375 ,___P( AB) 1 P( AB) 0.875 ,___P[( A B)( AB)] P[( A B)(S AB )] P( A B) P[( A B)( AB)] 0.625 P( AB) 0.53,在 100,101,, 999 这 900 个 3 位数中,任取一个 3 位数,求不包含数字 1 个概率。
解:在 100,101,,999 这 900 个 3 位数中不包含数字 1 的 3 位数的个数为 8 9 9648 ,所以所求得概率为6489000.724,在仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于 330 的概率。
解:仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全体三位数的个数有 5 5 4100 个。
各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计(第二版.刘建亚)习题解答——第一章1-1解:(1)C AB ;(2)ABC ;(3)C B A ;(4)C AB C B A BC A ; (5)C B A ;(6)C B A C B A C B A C B A 。
1-2 解:(1)A B ;(2)AB ;(3)ABC ;(4)AB C ()。
1-3解:1+1=2点,…,6+6=12点,共11种; 样本空间的样本点数:n =6×6=12, 和为2,1,1A ,1An ,1()36An P A n , …… 和为6,1,5;2,4;3,3;4,2;5,1A,5An ,5()36A n P A n, 和为(2+12)/2=7,1,6;2,5;3,4;4,3;5,2;6,1A ,6An ,61()366A n P A n , 和为8,2,6;3,5;4,4;5,3;6,2A ,5An ,5()36A n P A n, …… 和为12,6,6A,1An ,1()36A n P A n , ∴ 出现7点的概率最大。
1-4解:只有n =133种取法,设事件A 为取到3张不同的牌,则313A n A ,(1)31333131211132()1313169AA n P A n;(2)37()1()169P A P A 。
1-5解: (1)()()()()()0.450.100.080.030.30P ABC P A P AB P AC P ABC(2)()()()0.100.030.07P ABC P AB P ABC(3)∵ ,,ABC ABC ABC 为互不相容事件,参照(1)有()()()()()()()()()()()()()()()()()()()2[()()()]3()0.450.350.302(0.100.080.05)0.090.73P ABCABCABC P ABC P ABC P ABC P A P AB P AC P ABC P B P AB P BC P ABC P C P AC P BC P ABC P A P B P C P AB P BC P AC P ABC(4)∵ ,,ABC ABC ABC 为互不相容事件,参照(2)有()()()()()()()3()0.100.080.0530.030.14P ABC ABC ABC P ABC P ABC P ABC P AB P AC P BC P ABC(5)()()()()()()()3()0.450.350.300.100.080.0530.030.90P A B C P A P B P C P AB P AC P BC P ABC(6)()1()10.900.10P A B C P A B C 。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生,(2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C )或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A,B ,C 中至少有二个发生.相当于AB ,BC ,AC 中至少有一个发生.故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0。
7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0。
6+0。
7=1.3〉1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0。
概率论与数理统计习题第一章习题1-1(P 7)1.解:(1)}18,4,3{,⋯=Ω(2)}1|),{22<+=Ωy x y x ((3) {=Ωt |t},10N t ∈≥(本题答案由经济1101班童婷婷提供) 2.AB 表示只有一件次品,-A 表示没有次品,-B 表示至少有一件次品。
(本题答案由经济1101班童婷婷提供) 3.解:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”; (3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”; (5)A 3-A 2=“第三次击中但第二次未击中”; (6)A 32A =“第三次击中但第二次未击中”; (7)12A A U =“前两次均未击中”; (8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.(本题答案由陈丽娜同学提供)4.解: (1)ABC(2)ABC(3) ABC (4) A U B U C(5) ABC (6) AB BC AC U U (7) A B C U U (8) (AB)U (AC)U (BC)(本题答案由丁汉同学提供)5.解: (1)A=BC(2)A =B C U(本题答案由房晋同学提供)习题1-2(P 11)6.解:设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C =(本题答案由顾夏玲同学提供)7.解: (1)组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为12337C C ,所以P 1=12337340C C C ⋅ ≈ (2)组成事件(2)所包含的样本点数为33C ,所以P 2=33340C C ≈(3)组成事件(3)所包含的样本点数为337C ,所以P 3=337340C C ≈(4)事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=337340C C ≈(5)组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以 P 5=2133373340+C C C C ⋅ ≈ (本题答案由金向男同学提供)8.解:(1)组成实验的样本点总数为410A ,末位先考虑有五种选择,首位除去0,有8种选择。
习 题 答 案第一章习题一解:样本空间Ω=}{(),()()正,正(正,反),反,正,反,反 解:设A i (i =1,2,3)表示第i 个孩子是男孩,则i A 表示第i 个孩子是女孩。
样本空间Ω=}{123123123123123123123123,,,,,,,A A A A A A A A A A A A A A A A A A A A A A A A3.解:它们分别表示:两个都为合格品,第1个不合格,第2个不合格,两个都不合格,第1个合格而第2个不合格,两个中至少有一个合格,两个至少有一个不合格。
解:(1) A BC(2)ABC (3)A B C(4)A+B+C (5)ABC ABC ABC ++(6) ()A B C +(7)AB BC CA ++(即至少2个事件发生的对立事件)或ABC ABC ABC ABC +++(都不发生或恰有一个发生)(8) AB+BC+CA(9)ABC (3个都发生的对立事件)或A B C ++(10) ABC ABC ABC ++解:(1) 是 (2)是 (3)B A =。
(0件次品的对立事件)或123B A A A =++。
6.解:设(x ,y )表示第1颗的点数为x ,第2颗的点数为y ,则x ,y 都可取1~6中的某 个正整数。
这种样本点(x ,y )共6×6=36(个)其中(5,6),(6,5),(6,6),三个样本点满足点数和大于10,从而所求概率为P =313612=。
7.某种产品共40件,其中有3件次品,现从中任取2件,求其中至少有1件次品的概率。
解:从40件中任取2件的取法数为240C ,取到2件合格品的取法数为2373C C °。
从而 “2件中至少有1件次品”的概率为P =2373240C C 10.146C -≈°8.某人有5把钥匙,但忘记了开门的是哪一把,逐把试开,问(1) 恰好第3次打开房门锁的概率是多少? (2) 3次内打开房门锁的概率是多少?解:(1) 43115435P ⨯⨯==⨯⨯(2) 设A i (i =1,2,3)表示第i 次打开门锁,则3次内打开门锁的概率 p (A 1+A 2+A 3)=P (A 1)+ P (A 2) + P (A 3)=14143135545435⨯⨯⨯++=⨯⨯⨯9.(题略)解:杯中球的最多个数为1要求3个球在4个杯子中的某3个杯中排队。
概率论与数理统计(第二版-刘建亚)习题解答——第1章概率论与数理统计(第二版.刘建亚)习题解答——第一章1-1解:(1)C AB ;(2)ABC ;(3)C B A ;(4)C AB C B A BC A ;(5)C B A ;(6)C B A C B A C B A C B A 。
1-2解:(1)A B Ì;(2)A B É;(3)A BC Ì;(4)A B C É()。
1-3解:1+1=2点,…,6+6=12点,共11种;样本空间的样本点数:n =6×6=12, 和为2,{}1,1A =,1A n =,1()36A n P A n ==, ……和为6,{}1,5;2,4;3,3;4,2;5,1A =,5A n =,5()36A n P A n ==, 和为(2+12)/2=7,{}1,6;2,5;3,4;4,3;5,2;6,1A =,6A n =,61()366A n P A n ===, 和为8,{}2,6;3,5;4,4;5,3;6,2A =,5A n =,5()36A n P A n ==, ……和为12,{}6,6A =,1A n =,1()36A n P A n ==, ∴ 出现7点的概率最大。
1-4解:只有n =133种取法,设事件A 为取到3张不同的牌,则313A n A ,(1)31333131211132()1313169A A n P A n 创====;(2)37()1()169P A P A =-=。
1-5解:(1)()()()()()0.450.100.080.030.30P ABC P A P AB P AC P ABC =--+=--+= (2)()()()0.100.030.07P ABC P AB P ABC =-=-= (3)∵ ,,ABC ABC ABC 为互不相容事件,参照(1)有()()()()()()()()()()()()()()()()()()()2[()()()]3()0.450.350.302(0.100.080.05)0.090.73P ABCABCABC P ABC P ABC P ABC P A P AB P AC P ABC P B P AB P BC P ABC P C P AC P BC P ABC P A P B P C P AB P BC P AC P ABC =++=--++--++--+=++-+++=++-+++= (4)∵ ,,ABC ABC ABC 为互不相容事件,参照(2)有()()()()()()()3()0.100.080.0530.030.14P ABC ABC ABC P ABC P ABC P ABC P AB P AC P BC P ABC =++=++-=++-?=(5)()()()()()()()3()0.450.350.300.100.080.0530.030.90P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+?(6)()1()10.900.10P A B C P A B C =-=-=。
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚均匀的硬币抛两次,事件分别表C,示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C,中的样本点。
A,B解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A(正,正),(正,反)};{=B(正,正),(反,反)} {=C(正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件分别表D,,示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以分别表示C,某城市居民订阅日报、晚报和体育报。
试用表A,B示以C,下事件:BA,(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件分别表321,,A A A 示甲、乙、丙射中。
概率论与数理统计(第二版.刘建亚)习题解答——第一章1-1解:(1)C AB ;(2)ABC ;(3)C B A ;(4)C AB C B A BC A ; (5)C B A ;(6)C B A C B A C B A C B A 。
1-2 解:(1)A B ;(2)A B ;(3)A BC ;(4)A BC ()。
1-3解:1+1=2点,…,6+6=12点,共11种; 样本空间的样本点数:n =6×6=12, 和为2,1,1A ,1An ,1()36An P A n , …… 和为6,1,5;2,4;3,3;4,2;5,1A,5An ,5()36A n P A n, 和为(2+12)/2=7,1,6;2,5;3,4;4,3;5,2;6,1A ,6An ,61()366A n P A n , 和为8,2,6;3,5;4,4;5,3;6,2A ,5An ,5()36A n P A n , …… 和为12,6,6A,1An ,1()36A n P A n , ∴ 出现7点的概率最大。
1-4解:只有n =133种取法,设事件A 为取到3张不同的牌,则313A n A ,(1)31333131211132()1313169AA n P A n;(2)37()1()169P A P A 。
1-5解: (1)()()()()()0.450.100.080.030.30P ABC P A P AB P AC P ABC(2)()()()0.100.030.07P ABC P AB P ABC(3)∵ ,,ABC ABC ABC 为互不相容事件,参照(1)有()()()()()()()()()()()()()()()()()()()2[()()()]3()0.450.350.302(0.100.080.05)0.090.73P ABCABCABC P ABC P ABC P ABC P A P AB P AC P ABC P B P AB P BC P ABC P C P AC P BC P ABC P A P B P C P AB P BC P AC P ABC (4)∵ ,,ABC ABC ABC 为互不相容事件,参照(2)有()()()()()()()3()0.100.080.0530.030.14P ABC ABC ABC P ABC P ABC P ABC P AB P AC P BC P ABC(5)()()()()()()()3()0.450.350.300.100.080.0530.030.90P A B C P A P B P C P AB P AC P BC P ABC(6)()1()10.900.10P A B C P AB C 。
1-6解:设321,,A A A 为(1)、(2)、(3)的事件,由题意知 (1)2513101()12C P A C ;(2)2423101()20C P A C ;(3)114533101()6C C P A C 1-7解:5卷书任意排列的方法有n =5!种,设事件1,2,3,4,5i A i i 第卷书放在两边,。
(1)1114!4!A A n 第卷书放在两边,,124!2()5!5P A ;(2)152!3!1()5!10P A A ; (3)151515217()()()()251010P A A P A P A P A A ;(4)15151519()()1()11010P A A P A A P A A 。
1-8解:这是一个几何概率问题,设折断点为y x ,,(xy )。
由题意及三角形的特点知: (1) 折断点在棍内:0xyL ;(2) 折成三段后,每段小于棍的一半:111,,222x L y x L L y L ; (3) 任两段之和大于棍的一半:111,,222yL L x L L y x L ; 整理条件:0121212x y Ly L x L yx L所包含的区域如图,故22118()142A L m P A mL 。
1-9 解:设 {},{},{}AAA BAa Caa 。
200460012501(1)(),(),()200600501720060050172006005017415(2)()()()()171717P A P B P C P A C P A P C P AC1-10解:设A ={活到20岁};B ={活到25岁},()0.8,()0.4P A P B显然,A B AB A B B ,由题意得 ()()(|)0.5()()P AB P B P B A P A P A1-11解:设i A ={第i 次取到次品},1,2,3i。
由题意得123121321908910()()(|)(|)0.82561009998P A A A P A P A A P A A A1-12解:设i A ={第i 人译出密码},1,2,3i。
由题意得123123123423()1()1()()()10.6534P A A A P A A A P A P A P A1-13解:设i A ={第i 道工序的合格品}(1,2,3,4i),且1234,,,A A A A 相互独立。
由题意得 123412341234()()()()()[1()][1()][1()][1()](10.005)(10.002)(10.001)(10.008)0.984P A A A A P A P A P A P A P A P A P A P A1-14解:这是贝努里概型:()(1),(0,1,,)k k n k n n P k C p p kn ,由题意 (1)1(0)1(1)0.95(1)0.0599nnn n P kP kp p n1-15解:设A 1、A 2、A 3分别为从甲袋取到1个红、白、黑球,设B 1、B 2、B 3分别为从乙袋取到1个红、白、黑球,由题意知112233112233112233()()()()()()()()()()763101590.3312252525252525P A B A B A B P A B P A B P A B P A P B P A P B P A P B1-16解:设321,,A A A 分别表示产品由甲、乙、丙车间生产,B 表示为正品。
321,,A A A 构成一个完备事件组,且有123()0.5,()0.3,()0.2P A P A P A ;123(/)9/10,(/)14/15,(/)19/20P B A P B A P B A 。
(1)由全概率公式91419()()(/)0.50.30.20.92101520i i P B P A P B A(2)由贝叶斯公式111()(/)0.50.945(/)()0.9292P A P B A P A B P B1-17解:设A i ={第一次取到i 个新球},(i =0,1,2,3);B ={第二次取到3个新球}。
则A 0,A 1,A 2,A 3构成完备事件组,其中3122133939390123333312121212(),(),(),()C C C C C C P A P A P A P A C C C C 由全概率公式3312321333339938937963333333301212121212121212()()(/)184275610835842070560.146220220220220220220220220220220k k k C C C C C C C C C C P B P A P B A C C C C C C C C由贝叶斯公式3331680()(/)220220(/)0.2387056()220220P A P B A P A B P B1-18解:设21,A A 分别表示甲、乙击中目标,由题意知12,A A 相互独立。
121212121212121212121212121()()()0.80.90.722()()()()()()()0.80.10.90.20.263()1()1()()10.20.10.984()()()0.20.10.02P A A P A P A P A A A A P A A P A A P A P A P A P A P A A P A A P A P A P A A P A P A ()()()()1-19解:与1-10题类似。
()()0.85(|)0.9239()()0.92P AB P B P B A P A P A1-20解法1:设Ai ={3000小时未坏},(i =1,2,3),A 1,A 2,A 3相互独立,所以31231232123123123123123123123123(1)()()()()0.80.512(2)()3()()()30.80.20.384(3)()0.5120.3840.896P A A A P A P A P A P A A A A A A A A A P A P A P A P A A A A A A A A A A A A解法2:这是n 重贝努里概型,()(1)k kn k n n P k C p p ,n =3,p =3333322323(1)(3)(1)(0.8)(10.8)0.512(2)(2)(1)(0.8)(10.8)0.384(3)(2)(2)(3)0.5120.3840.896k kn k n n k k n kn n n n n P k C p p C P k C p p C P kP k P k1-21解:这是贝努里概型,()(1)k kn k n n P k C p p ,n =12,p =7事件设A ={≥9台同时使用} 129()()0.4925n k P A P k1-22 解:(1)为贝努里概型,设Ai ={第i 个人的血型为O 型},(i =1,2,3,4,5),则恰有2人血型为O 型的概率为22522525(2)(1)(1)100.46(10.46)0.3333k knkn n P kC p p C p p(2)设Bi ={第i 个人的血型为A 型},(i =1,2,3,4,5),因 321234512345()()()()()()0.460.40P A A A B B P A P A P A P B P B而5人中有3人为O 型、2人为A 型的排列有3510C 种,故所求概率为33250.460.400.1557PC(3)设Ci ={第i 个人的血型为AB 型},(i =1,2,3,4,5),则没有AB 型的概率为1234512345123455()()()()()()()(10.03)0.8587P C C C C C P C C C C C P C P C P C P C P C1-23*解:设Ai ={第i 次摸到黑球},(i =1,2,…,a+b ),由题意知1121121212121121323231231231231231211(),()2()(())()()()(/)()(/)1113()()()()()()()()(/)(a b k P A P A aba b kP A P A A A P A A P A A P A P A A P A P A A a a b a a aba b ab a b ab kP A P A A P A A P A A A P A A A P A A A P A A A P A P A A P 312121312121312121312/)()(/)(/)()(/)(/)()(/)(/)1211212111212A A A P A P A A P A A A P A P A A P A A A P A P A A P A A A a a a ba a ab a b a b a b a b a b a b a b b a a a b a b a b a b a b a b ab依此类推可得 (),(1)k a P A kab ab1-24*解:设Ai ={第i 次按对号码},(i =1,2,3),所求概率为112123112123112123()()()()()()()()()()191981310109109810P A A A A A A P A P A A P A A A P A P A P A P A P A P A若已知最后一位数为偶数,则其概率为112123112123112123()()()()()()()()()()14143135545435P A A A A A A P A P A A P A A A P A P A P A P A P A P A1-25*解:设A ={从甲袋中取一白球},B ={从乙袋中取一白球},由已知得(),()N M P A P A MN MN由全概率公式得()()()()(/)()(/)111(1)()(1)P B P AB P AB P A P B A P A P B A N n M nM N m n M N m n Mn N n M N m n1-26* 证明:∵()()()()(|)()(|)()(|)()(|)(|)()()(|)()()P B P AB P AB P A P B A P A P B A P A P B A P A P B A P B A P AB P A P B A P A P B故由定义知,B A ,相互独立。