第九讲-影响化学平衡移动的条件
- 格式:ppt
- 大小:351.00 KB
- 文档页数:28
影响化学反应平衡的条件及其因素说明:1、化学平衡移动的实质是外界因素破坏了原平衡状态时v正= v逆的条件,使正、逆反应速率不再相等,然后在新的条件下使正、逆反应速率重新相等,从而达到新的化学平衡。
也就是说,化学平衡的移动是:平衡状态→不平衡状态→新平衡状态。
2、浓度对化学平衡移动的影响:增大浓度,反应速率加快,降低浓度,反应速率减慢,浓度是通过改变反应速率来影响化学平衡状态的:即增大反应物浓度,降低生成物浓度,平衡正向移动;降低反应物浓度,增大生成物浓度,平衡逆向移动。
3、固体及纯液体的浓度是一定值,不因量的多少而改变,所以增加或减少固体及纯液体的量,不会影响平衡状态。
4、压强对化学平衡移动的影响:对于有气体参加的可逆反应,增大压强,反应速率加快,降低压强,反应速率减慢。
对于反应:mA(g)+nB(g) pC(g)+qD(g),增大或降低压强对平衡的影响:当:①m+n>p+q时②m+n<p+q时③m+n=p+q时④对于有气体参加的可逆反应,增大压强平衡向气体体积缩小的方向移动,降低压强平衡向气体体积增大的方向移动,而对于固体或液体参加的可逆反应,增大或降低压强对平衡没影响。
同样,对于反应前后气体分子总数保持不变的可逆反应,增大或降低压强对平衡没影响,而只能改变反应速率。
⑤增大压强无论平衡移动方向如何,新平衡状态里的速率一定大于原平衡状态的速率;减小压强无论平衡移动方向如何,新平衡状态里的速率一定小于原平衡状态的速率。
⑥压强对平衡状态的影响与浓度对平衡状态的影响的速率-时间图像的区别就在于改变条件时,新平衡状态的反应速率与原平衡状态相比较是否有所变化,浓度是在原有的基础上逐步改变,而压强变化则是整体发生变化。
5、温度对化学平衡的影响:温度升高,反应速率加快,温度降低,反应速率减慢。
对于不同的可逆反应,正反应或逆反应的热效应是不一样的,即若正反应是放热则逆反应一定为吸热,反之亦然。
而温度变化对放热或吸热反应的影响是不一样的。
化学平衡的移动条件化学平衡是指当反应物和生成物在一定条件下达到动态平衡状态时,它们的浓度、压力或其他相关物态参数不再发生变化。
为了使化学反应达到平衡状态,可以通过改变温度、压力、浓度和添加催化剂等手段来移动平衡。
本文将讨论影响化学平衡移动的条件以及它们的作用机理。
一、温度的影响温度是影响化学平衡移动的重要因素之一。
根据利奥·香特列定律,当温度发生变化时,平衡反应的正向和逆向反应速率都会发生变化。
对于吸热反应(放热反应),升高温度会使平衡转向生成物一侧,而降低温度则会偏向反应物一侧。
对于放热反应(吸热反应),情况相反。
以氨的合成反应为例:N2(g) + 3H2(g) ⇌ 2NH3(g) + 92.4 kJ该反应是一个放热反应,因此当温度升高时,反应向生成物一侧移动,生成氨的产率增加。
而当温度降低时,反应向反应物一侧移动,生成氨的产率减少。
二、压力的影响压力是影响化学平衡移动的另一个关键因素。
对于气体反应,改变压力会对平衡产生影响。
根据洪特定律,当体积不变的情况下,提高压力会使平衡转向摩尔数较少的一侧,而减小压力则会偏向摩尔数较多的一侧。
以二氧化碳和一氧化碳反应生成一氧化碳和氧化碳的平衡反应为例:CO2(g) + CO(g) ⇌ 2CO(g)该反应为气体反应,增加压力会使平衡向CO2和CO的生成物一侧移动,生成CO的产率增加。
减小压力则会偏向反应物一侧,生成CO的产率减少。
三、浓度的影响浓度也是影响化学平衡移动的重要因素之一。
对于溶液反应,改变物质的浓度会对平衡产生影响。
根据一般来说,增加浓度会使平衡转向生成物一侧,而降低浓度则会偏向反应物一侧。
以还原铁离子为例:Fe3+(aq) + SCN-(aq) ⇌ Fe(SCN)2+(aq)该反应为溶液反应,增加铁离子或硫氰离子的浓度会使平衡向生成配合物Fe(SCN)2+的一侧移动,生成铁离子配合物的产率增加。
减小浓度则会偏向反应物一侧,生成铁离子配合物的产率减少。
诚西郊市崇武区沿街学校30化学平衡的影响的条件一、化学平衡挪动1、概念:一定条件下,某可逆反响达平衡后,当改变某条件〔浓度、温度、压强〕,平衡混合物各组分的浓度也就随之改变,因此在新的条件下到达新的平衡。
这种由于条件的改变而使旧的平衡破坏和在新的条件下到达新的平衡的过程叫做化学平衡挪动。
2、外界原因:改变了条件3、本质原因:V正≠V逆4、挪动方向判断的根据:勒夏特列原理。
二、影响化学平衡的条件:勒夏特列原理假设改变影响平衡的一个条件(如浓度、压强或者者温度),平衡就向着可以减弱这种改变的方向挪动。
改变影响平衡的一个条件化学平衡挪动方向化学平衡挪动结果增大反响物浓度向正反响方向挪动反响物浓度减小减小反响物浓度向逆反响方向挪动反响物浓度增大增大生成物浓度向逆反响方向挪动生成物浓度减小减小生成物浓度向正反响方向挪动生成物浓度增大增大体系压强向气体体积减小的反响方向挪动体系压强减小减小体系压强向气体体积增大的反响方向挪动体系压强增大升高温度向吸热反响方向挪动体系温度降低降低温度向放热反响方向挪动体系温度升高注意:①、固体、纯液体的浓度当作一个不变的量,所以增加固体或者者纯液体并不能改变浓度。
在实际消费中,往往采用增大易获得的或者者本钱较低的物质的方法,使平衡正向挪动,同时进步本钱较高的原料的利用率〔转化率〕。
②、压强——要有气态物质存在,改变压强(使容器内气体的浓度发生改变),才可能使平衡挪动。
A、充入与反响无关的气体如稀有气体要分析容器是恒容(不移)、还是恒压(向扩体方向移);反响式左右两边气体化学计量数和不变(无论上述那种均不变)B、颜色的改变要注意是一个动态变化的过程,先变?后变?C、平衡不挪动,并不表示颜色不会变,因为颜色深浅决定于有色物质的浓度。
如:2NO2N2O4(红棕色)〔无色〕增大压强,颜色先深后浅;减小压强,颜色先浅后深。
③、温度——所有化学反响均具有能量变化,温度改变,化学平衡一定挪动。
化学平衡的移动与影响因素化学平衡是指在一定条件下,反应物和生成物之间的摩尔浓度保持不变。
然而,通过改变影响化学反应平衡的因素,我们可以移动平衡位置,使得反应偏向于生成物或反应物的方向。
本文将探讨化学平衡的移动和各种影响因素。
一、浓度的影响改变反应物或生成物的浓度是移动平衡的一种方法。
根据勃朗斯特洛传递原理,当浓度增加时,反应的平衡位置将移向生成物的方向。
相反,当浓度减少时,平衡位置会朝着反应物的方向移动。
这是因为更高浓度的物质会增加碰撞的频率,从而推动反应向生成物的方向进行。
例如,考虑下列反应方程式:A +B ⇌C + D如果A或B的浓度增加,平衡位置将移向生成物C和D的方向。
相反,如果C或D的浓度增加,平衡位置会朝着反应物A和B的方向移动。
二、压力的影响对于涉及气体的反应,改变压力也可以移动平衡位置。
根据Le Chatelier原理,当压力增加时,平衡位置会移向分子数更少的一方。
相反,当压力减小时,平衡位置会移向分子数更多的一方。
考虑下列反应方程式:2A + 3B ⇌ C如果压力增加,平衡位置将移向反应物A和B的方向,因为这个方向上的分子数更多。
如果压力减少,平衡位置会向生成物C的方向移动。
三、温度的影响温度是影响平衡位置的另一个重要因素。
根据热力学原理,当温度升高时,平衡位置会移向吸热反应的方向,即吸热反应的平衡位置会随温度升高而移动。
相反,当温度降低时,平衡位置会移向放热反应的方向。
考虑以下反应方程式:2A + B ⇌ C + heat如果温度升高,平衡位置将移向C的方向,因为这是一个吸热反应。
如果温度降低,平衡位置会朝着反应物A和B的方向移动。
四、催化剂的影响催化剂是影响平衡位置的另一个因素。
催化剂可以加速化学反应的速率,但不改变平衡位置。
它通过提供新的反应途径,降低活化能,从而加快反应的前进和后退速率。
因此,催化剂对平衡位置没有直接影响。
综上所述,化学平衡的移动可以通过改变浓度、压力和温度来实现。
化学平衡的移动化学平衡是指在化学反应中,反应物转化为生成物的速率与生成物转化为反应物的速率相等的状态。
在化学反应过程中,因为温度、压力、浓度等条件的变化,平衡位置会发生移动。
本文将介绍化学平衡的移动原理和影响因素,并探讨一些常见化学反应中平衡位置的移动情况。
1. 化学平衡的移动原理化学平衡的移动原理是根据勒夏特列原理提出的。
根据该原理,在一定温度下,反应物和生成物的浓度与平衡常数有关。
平衡常数表示反应物与生成物浓度的比值,它是与温度有关的固定值。
当反应物和生成物浓度发生变化时,反应系统会通过移动平衡位置,使浓度重新达到平衡常数所对应的值。
2. 影响化学平衡移动的因素2.1 温度的影响温度是影响化学反应速率的重要因素,也会影响化学平衡的移动。
一般来说,温度的升高会使反应速率加快,平衡位置向生成物方向移动;而温度的降低则会使反应速率减慢,平衡位置向反应物方向移动。
2.2 压力的影响对于气相反应,压力也会影响化学平衡的移动。
根据反应物和生成物的物质摩尔数关系,压力的升高或降低会导致平衡位置的移动。
例如,在气体反应中,当压力增加时,系统会向摩尔数较小的一方移动,以减少压力;而压力降低则会导致平衡位置向摩尔数较大的一方移动。
2.3 浓度的影响反应物和生成物的浓度变化也是引起化学平衡移动的重要因素。
一般来说,当反应物浓度增加时,平衡位置会向生成物方向移动,以消耗过量的反应物;反之,当反应物浓度减少时,平衡位置会向反应物方向移动,以补充反应物。
3. 常见化学反应中的平衡位置移动情况3.1 酸碱中和反应酸碱中和反应中,平衡位置的移动可以通过加入过量的酸或碱来实现。
例如,在硫酸和氢氧化钠的中和反应中,如果加入过量的硫酸,平衡位置会向反应物一侧移动,生成更多的盐和水。
3.2 氧化还原反应氧化还原反应中,平衡位置的移动可以通过改变氧化态来实现。
例如,在二氧化硫与氧气反应生成三氧化硫的反应中,通过增加氧气浓度或减少二氧化硫浓度,可以使平衡位置向生成三氧化硫的一侧移动。
化学平衡移动的影响因素影响平衡移动的因素只有浓度、压强和温度三个。
1、在其他条件不变时,增大反应物浓度或减小生成物浓度,平衡向正反应方向移动。
2、在有气体参加或生成的反应中,在其他条件不变时,增大压强(指压缩气体体积使压强增大),平衡向气体体积减小方向移动。
3、在其他条件不变时,升高温度平衡向吸热反应方向移动。
1、浓度影响在其他条件维持不变时,减小反应物的浓度或增大生成物的浓度,有助于正反应的展开,均衡向右移动;减少生成物的浓度或增大反应物的浓度,有助于逆反应的展开均衡向左移动。
单一物质的浓度发生改变只是发生改变正反应或逆反应中一个反应的反应速率而引致正逆反应速率不成正比,而引致均衡被超越。
2、压强影响对于气体反应物和气体生成物分子数左右的可逆反应来说,当其它条件维持不变时,减小总应力,均衡向气体分子数增加即为气体体积增大的方向移动;增大总应力,均衡向气体分子数减少即为气体体积减小的方向移动。
若反应前后气体总分子数(总体积)维持不变,则发生改变应力不能导致均衡的移动。
应力发生改变通常可以同时发生改变正,逆反应速率,对于气体总体积很大的方向影响很大,比如,正反应参予的气体为3体积,逆反应参予的气体为2体积,则减小应力时正反应速率提升得更多,从而并使v正\uev逆,即为均衡向正反应方向移动;而增大应力时,则正反应速率增大得更多,均衡向逆反应方向移动。
3、温度影响在其他条件维持不变时,增高反应温度,有助于吸热反应,均衡向吸热反应方向移动;减少反应温度,有助于放热反应,均衡向放热反应方向移动。
与应力相似,温度的发生改变也就是同时发生改变正,逆反应速率,高涨总是并使正,逆反应速率同时提升,降温总是并使正,逆反应速率同时上升。
对于吸热反应来说,高涨时正,反应速率提升得更多,而导致v正\uev逆的结果;降温时放热方向的反应速率上升得也越多。
与应力发生改变相同的就是,每个化学反应都会存有一定的热效应,所以发生改变温度一定会并使均衡移动,不能发生不移动的情况。
化学平衡的移动与影响因素化学平衡是指当反应物生成产物的速率与产物生成反应物的速率相等时,反应处于平衡状态。
在化学平衡中,各种因素可能会对平衡的位置产生影响,导致反应向前或向后移动。
本文将介绍化学平衡移动的几种情况以及影响平衡位置的主要因素。
一、影响化学平衡移动的因素1.浓度的变化:当增加某个物质的浓度时,根据Le Chatelier原理,系统会偏离原来的平衡位置,以减小浓度差。
例如,在以下反应中:A + B ⇌ C,如果A的浓度增加,平衡会向右移动,生成更多的产物C,以减小A的浓度差。
2.压力的变化:当反应涉及气体时,改变压力也会影响平衡的位置。
增加压力会导致系统向压力较小的一方移动,减小压力差。
反之,减小压力会导致系统向压力较大的一方移动。
例如,在以下反应中:2H2(g) + O2(g) ⇌ 2H2O(g),增加压力会使平衡向右移动,生成更多的水蒸气,以减小压力差。
3.温度的变化:温度的变化对平衡的位置也具有显著影响。
一般而言,增加温度会导致平衡位置向反应吸热的一方移动,以吸收多余的热量。
反之,降低温度会导致平衡向反应放热的一方移动。
例如,在以下反应中:N2(g) + 3H2(g) ⇌2NH3(g),增加温度会使平衡向左移动,生成更多的氮气和氢气,以吸收多余的热量。
二、化学平衡移动的情况1.向生成物的方向移动:当增加某个反应物浓度、减小产物浓度、增加压力或增加温度时,平衡会向生成物的方向移动。
这意味着产生更多的产物并减小了原有的浓度差、压力差或温度差。
2.向反应物的方向移动:当增加某个产物浓度、减小反应物浓度、减小压力或降低温度时,平衡会向反应物的方向移动。
这会导致产生更多的反应物,并减小原有的浓度差、压力差或温度差。
三、示例分析让我们以以下反应为例:N2(g) + 3H2(g) ⇌ 2NH3(g)1.当增加氮气或氢气浓度时,平衡将向产生氨气的方向移动,生成更多的氨气以减小浓度差。
2.当增加氨气浓度时,平衡将向生成氮气和氢气的方向移动,减小氨气的浓度差。