数据分析练习题
- 格式:doc
- 大小:87.00 KB
- 文档页数:1
数据的分析专题训练1.算术平均数、2.加权平均数 3.求平均数的三种方法平均数反映了一组数据的集中趋势,它是一组数据的“重心”,是度量一组数据波动大小的最重要的因素.如果要了解一组数据的平均水平,就需要计算这组数据的平均数,常用的方法有以下三种:(1)定义法:当所给数据x 1,x 2,x 3,…,x n 比较分散时,一般选用定义公式:x =1n(x 1+x 2+x 3+…+x n )计算平均数.(2)新数据法:当所给的数据都在某一常数a 的上下波动时,一般选用简化公式:x =x ′+a (x i =x ′i +a ,其中i =1,2,…,n ),其中,常数a 通常取接近这组数据的平均数的较“整”的数.(3)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式x =1n(x 1f 1+x 2f 2+…+x k f k ),其中f 1+f 2+…+f k =n .【例1】 在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:捐款(元)5 10 15 20 25 30 人数11 9 6 2 1 1 (1)这个班级捐款总数是多少元?(2)求出这30名同学捐款的平均数.4.平均数的应用(1)由一组数据的平均数,求另一组数据的平均数. (2)利用加权平均数进行决策.各项成绩的权不同,说明各项成绩的重要程度不同.(3)用平均数进行估算.统计中常用样本来估计总体的方法获得对总体的认识,在实际生活中也常用样本平均数来估计总体平均数.【例2】 某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6∶3∶1.对应聘的王丽、张瑛两人的打分如下:王丽 张瑛专业知识14 18 工作经验16 16 仪表形象18 12 如果两人中只录取一人,若你是人事主管,你会录用__________.可以看出,三项成绩中________的成绩对学期成绩的影响最大练习:1.一组数据中有3个7,4个11和3个9,那么它们的平均数是________.2.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为________次,在平均成绩之上的有________人.3.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是________分.4.如果10名学生的平均身高为1.65米,其中2位学生的平均身高为1.75米,那么余下8名学生的平均身高是_____米.5.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x ,其平均数为x ,那么x =________. 6.如果一组数据x 1、x 2、x 3、x 4、x 5的平均数是x ,那么另一组数据x 1、x 2+1、x 3+2、x 4+3、x 5+4的平均数是 .n x 1+3、n x 2+3、…、n x 5+3的平均数是 . 二、选择题:7.如果数据2、3、x 、4的平均数是3,那么x 等于( ).(A)2 (B)3 (C)3.5 (D)48.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).(A)41度 (B)42度 (C)45.5度 (D)46度9.m 个x 1、n 个x 2和r 个x 3,由这些数据组成一组数据的平均数是( ).(A)3321x x x ++(B)3rn m ++(C)3321rx nx mx ++(D)r n m rx nx mx ++++32110.一次考试后,某学习小组组长算出全组5位同学数学的平均分为M ,如果把M 当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均数为N ,那么M ∶N 为( ).(A)5∶6 (B)1∶1 (C)6∶5 (D)2∶1 11.某辆汽车从甲地以速度v 1匀速行驶至乙地后,又从乙地以速度v 2匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).(A)2121vvv v +(B)2121v v v v + (C)221vv +(D)21212v v v v +12.某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ).(A)3 (B)-3 (C)3.5 (D)-3.5 三、解答题:13.通过对某地区2003至2005年快餐公司的发展情况调查,制成了该地区快餐公司个数情况的条形统计图和快餐公司盒饭年销售量的平均数情况条形图.利用两图共同提供的信息,解答下列问题: (1)2003年该地区销售盒饭共________万盒;(2)该地区盒饭销量最大的年份是________年,这一年的销售量是________万盒;(3)这三年中该地区每年平均销售盒饭多少万盒?14、 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( ).1.中位数求中位数时,一定要先按大小顺序将数据排列,再找中位数,当数据的个数是偶数时,中位数是中间两个数的平均数;当数据的个数是奇数时,正中间的数是中位数. 2.众数、众数是一组数据中出现次数最多的数,而不是该数据出现的次数.3.从统计图分析数据的集中趋势 (1)统计图的特点:.(2)反映一组数据集中趋势的量主要有平均数、众数、中位数.(3)我们可以根据条形统计图、折线统计图所显示的数据的中位数与众数估测其平均数. (4)在扇形统计图中,表示的数据的众数为所占比例最大的数,数据的平均数往往利用加权平均数进行求解. 4.平均数、中位数和众数的关系【例1】 某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数: 每人加工件数540450300240210120人数1 12 63 2 (1)写出这15人该月加工零件数的平均数、中位数和众数; (2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?【例5】 三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你会选购哪个厂家的产品?请说明理由. 一、填空题:1.在一组数据中,受最大的一个数据值影响最大的数据代表是____. 2.数据2、2、1、5、-1、1的众数和中位数之和是____.7.已知a <b <c <d ,则数据a 、a 、b 、c 、d 、b 、c 、c 的众数为______,中位数为______,平均数为_______.8.一组数据的中位数是m ,众数是n ,则将这组数据中每个数都减去a 后,新数据的中位数是_____,众数_____. 9.在一次中学生田径运动会上,参加男子跳高的17名运动员成绩如下:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数 2 3 2 3 4 1 1 1那么运动员成绩的众数是___,中位数是___,平均数是__。
数据分析练习题 第 小组 姓名:练习一:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%x 小关 = . x 小兵= .2、结果如下表:(单位:小时)求这些灯泡的平均使用寿命? .x = .小时3、在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .4、某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环。
5、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表 (1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间答:(1)组中值为: .(2)解:6、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表该公司每人所创年利润的平均数是多少万元?7、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
8、某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
练习二:1. 数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是 ,众数是2. 一组数据23、27、20、18、X 、12,它的中位数是21,则X 的值是 .3. 数据92、96、98、100、X 的众数是96,则其中位数和平均数分别是( )A.97、96B.96、96.4C.96、97D.98、974. 如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25请你根据上述数据回答问题: (1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?60 噪音/分贝 80 70 50 40 90。
数据的分析练习题(一)姓名日期2014-4-281.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10, 12.5C. 11. 12.5D. 11,102.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,53.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的().A.众数B.方差C.平均数D.中位数※4.一组数据1,3,2,5,2,a的众数仅是a,这组数据的中位数是 .5.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:6.甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):10.3 10.8经计算,x甲=10,x乙=10,试根据这组数据估计__________种水稻品种的产量比较稳定.7.如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD= .8.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.9.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.数据的分析练习题(二)一.平均数1. 有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是( )A. 11.6B. 232C. 23.2D. 11.52.某中学规定学期总评成绩评定标准为:平时30%,期中30%,期末40%,小明平时成绩为95分,期中成绩为85分,期末成绩为95分,则小明的学期总评成绩为 分。
数据分析练习题一、选择题1. 数据分析中,数据清洗的目的是什么?A. 提高数据的准确性B. 降低数据的存储成本C. 增加数据的复杂性D. 减少数据的可读性2. 在进行数据可视化时,以下哪种图表不适合展示时间序列数据?A. 折线图B. 柱状图C. 饼图D. 散点图3. 以下哪项不是数据分析的基本步骤?A. 数据收集B. 数据处理C. 数据解释D. 数据存储4. 描述性统计分析的目的是:A. 预测未来趋势B. 描述数据的基本特征C. 确定数据的异常值D. 进行因果关系分析5. 以下哪个工具不是用于数据挖掘的?A. ExcelB. R语言C. PythonD. Photoshop二、判断题1. 数据分析中的异常值总是需要被删除。
(对/错)2. 使用箱型图可以直观地展示数据的分布情况。
(对/错)3. 数据分析不需要考虑数据的隐私和安全性。
(对/错)4. 相关性分析可以确定变量之间的因果关系。
(对/错)5. 数据清洗是数据分析过程中的第一步。
(对/错)三、简答题1. 描述数据分析中数据预处理的一般步骤。
2. 解释什么是数据挖掘,并简述其与数据分析的区别。
3. 说明在数据分析中使用描述性统计分析的目的和重要性。
四、计算题1. 给定一组数据:20, 22, 21, 23, 22, 24, 23, 22, 21, 20。
计算这组数据的平均值、中位数、众数和标准差。
2. 假设有两组数据,第一组数据的均值为50,标准差为10;第二组数据的均值为60,标准差为15。
计算两组数据的方差。
五、案例分析题1. 假设你是一家电子商务公司的数据分析员,你的任务是分析用户购买行为。
请描述你将如何使用数据分析来识别潜在的购买趋势,并提出相应的营销策略。
2. 你被要求分析一个社交媒体平台的用户活跃度。
请说明你会如何收集数据、处理数据,并使用哪些指标来衡量用户活跃度。
六、实践题1. 利用Excel或R语言,对以下数据集进行分析:年龄、性别、收入、购买频次。
数据分析考试题一、选择题1. 数据分析的目的是什么?A. 发现数据中的模式和趋势B. 验证假设和推断数据之间的关系C. 帮助管理决策和业务优化D. 所有选项都是正确的2. 哪种图表最适合用于展示时间序列数据?A. 饼图B. 条形图C. 散点图D. 折线图3. 以下哪个指标可以用于衡量数值型数据的集中趋势?A. 方差B. 标准差C. 中位数D. 相关系数4. 以下哪个指标可以用于衡量分类变量之间的关联性?A. 方差分析B. 卡方检验C. 盖尔回归D. 多元回归5. 如果数据集中有缺失值,下面哪个方法可以用来处理缺失值?A. 删除包含缺失值的观测B. 用平均值或中位数填充缺失值C. 使用回归模型预测缺失值D. 所有选项都是正确的二、简答题1. 请说明数据清洗的步骤或过程。
数据清洗的步骤包括以下几个方面:1) 检查数据的完整性,确保数据集没有缺失值或错误的数据项。
2) 处理数据中的异常值,通常采用删除或替换的方法对异常值进行处理。
3) 对缺失值进行处理,可以选择删除包含缺失值的观测,或者用平均值、中位数等填充缺失值。
4) 标准化数据,将数据统一按照一定规则进行转换,以提高数据的比较性和可解释性。
5) 去除重复值,确保数据集中不含有重复的数据项。
6) 对数据进行转换和处理,如对时间数据进行格式化、对分类数据进行编码等。
2. 请说明相关系数的作用和计算方法。
相关系数用于衡量两个数值型变量之间的线性关系强度,其取值范围为-1到1。
相关系数越接近于1或-1,表示两个变量之间的线性关系越强;相关系数接近于0则表示两个变量之间无线性关系。
计算相关系数的方法常用的有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量之间的关系,并假设数据呈正态分布;斯皮尔曼相关系数适用于两个有序变量或者两个非连续变量之间的关系。
3. 请简述回归分析的原理及其在数据分析中的应用。
回归分析用于研究一个或多个自变量对一个因变量的影响程度。
数据分析练习题数据分析作为一项重要的技能在现代社会中扮演着至关重要的角色。
通过对数据的收集、整理、分析和解释,我们能够从中获取有价值的信息,为决策提供支持。
本文将提供一些数据分析练习题,帮助读者加强数据分析技能。
1. 销售数据分析假设你是某企业的销售经理,你获得了最近一年的销售数据,包括产品名称、销售额、销售日期等信息。
请回答以下问题:- 产品销售额的总体趋势如何?- 哪个产品的销售额最高?哪个产品的销售额最低?- 在销售额最高的产品中,哪个月份的销售额最高?- 有哪些因素可能影响销售额的变动?2. 用户行为分析假设你是某互联网公司的数据分析师,你获得了用户的行为数据,包括用户ID、访问时间、页面浏览量等信息。
请回答以下问题:- 用户的平均访问时长是多少?- 哪个页面的浏览量最高?哪个页面的浏览量最低?- 每天的页面浏览量有什么规律?- 有哪些因素可能影响用户的访问时长和页面浏览量?3. 市场调研分析假设你是某市场调研公司的数据分析师,你获得了一份关于消费者购买意向的数据,包括消费者年龄、性别、收入、购买意向等信息。
请回答以下问题:- 不同年龄段的消费者对不同产品的购买意向如何?- 男性和女性对同一产品的购买意向有何差异?- 收入对购买意向的影响如何?- 有哪些因素可能影响消费者的购买意向?4. 财务数据分析假设你是某公司的财务分析师,你获得了该公司最近几年的财务数据,包括营业额、净利润、资产负债表等信息。
请回答以下问题:- 公司的营业额和净利润的趋势如何?- 资产负债表中最大的资产类别是什么?- 资产负债表中最大的负债类别是什么?- 有哪些因素可能影响公司的财务状况?通过以上练习题的分析,读者可以深入了解数据分析的实际应用场景,并提升自己的数据分析技能。
数据分析在各行各业中都有着广泛的应用,帮助人们做出更明智的决策。
希望读者能够不断学习和掌握数据分析的方法和技巧,为未来的工作和生活打下坚实的基础。
1、某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有120中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度如果有2500名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?2、为了了解某区八年级7000名学生的身高情况,从中抽查了500名学生的身高,就这个问题来说,下面说法正确的是()A. 7000名学生是总体B. 每个学生是个体C. 500名学生是所抽取的一个样本D. 样本容量为5003、某市青少年宫准备在七月一日组织市区部分学校的中小学生到本市A,B,C,D,E五个红色旅游景区“一日游”,每名学生只能在五个景区中任选一个.为估算到各景区旅游的人数,青少年宫随机抽取这些学校的部分学生,进行了“五个红色景区,你最想去哪里”的问卷调查,在统计了所有的调查问卷后将结果绘制成如图所示的统计图.(1)求参加问卷调查的学生数,并将条形统计图补充完整;(2)若参加“一日游”的学生为1000人,请估计到C景区旅游的人数4、国家环保局统一规定,空气质量分为5级:当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为 °;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)5、某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?6、在“走基层,树新风”活动中,青年记者石剑深入边远山区,随机走访农户,调查农村儿童生活教育现状。
一、单选题1、某射击运动员在一次射击练习中,5次射击成绩(单位:环)记录如下:8,9,x,7,1 0,因记录员不小心,有一个数字被污染了,但记录员记得这组数据的众数为8,则这组数据的中位数是()A. 7B. 8C. 9D. 10参考答案: B【思路分析】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.先根据众数求出被污染了的数字,再根据中位数的定义即可求解。
【解题过程】解:∵记录员记得数据8,9,x,7,10的众数为8,∴x=8,从小到大排列为7,8,8,9,10,∴这组数据的中位数是8。
故选B。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、数据5、7、5、8、6、13、5 的中位数是()。
A. 5B. 6C. 7D. 8参考答案: B【思路分析】本题主要考查中位数。
仔细读题,获取题中已知条件,结合中位数的相关知识,即可解答此题。
【解题过程】解:当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。
这组数据按从小到大排列为:5、5、5、6、7、8、13,则中位数是6,故B项正确。
故本题正确答案为B。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、某中学足球队的18名队员的年龄情况如表,这些队员年龄的众数和中位数分别是()。
数据的分析知识点:1.平均数:把一组数据的总和除以这组数据的所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
2.众数:在一组数据中,出现次数的数(有时不止一个),叫做这组数据的众数3.中位数:将一组数据按大小顺序排列,把处在最中间的 (或两个数的 )叫做这组数据的中位数.4.极差:是指一组数据中最大数据与最小数据的。
5.方差:各个数据与平均数之差的平方的平均数,记作s2 .巧计方法:方差是偏差的平方的平均数公式s2=6.一组数据中的每一个数都增加(或减小)a时,平均数,方差一组数据中的每一个数都扩大相同的倍数k时,平均数,方差练习题:1.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.52.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元 B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元 D.一定有一半员工的月工资高于1500元3.将20个数据各减去30后,得到的一组新数据的平均数是6,则这20个数据的平均数是()A.35 B.36 C.37 D.384.已知一组数据2,x,4,6的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6 5、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.936.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()A.平均数B.加权平均数C.中位数D.众数从平均价格看,谁买得比较划算?()A.一样划算 B.小菲划算 C.小琳划算 D.无法比较8、某商贩去批发市场买了10千克奶糖和20千克果糖,已知奶糖的价格为每千克18元,果糖的价格为每千克12元,他将两种糖混合在一起后以每千克x元的价格出售,要想不赔钱,x至少应为()A.13 B.14 C.15 D.169、数据10,10,x,8的众数与平均数相同,那么这组数的中位数是()A.10 B.8 C.12 D.410、某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数和中位数分别是()A.12元、12元 B.12元、11元 C.11.6元、12元 D.11.6元、11元11、数据-1、0、3、2.5、2的中位数是则在这次活动中,该班同学捐款金额的中位数是众数是13.一组数据:-1,1,3,4,a,若它们的平均数为2,则这组数据的众数为14、已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 . 15、在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是( ) A .众数是90分 B .中位数是90分 C .平均数是90分 D .极差是15分14题图 15题图 16、在方差的计算公式s2=101 [(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义是 ( )A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数 17、某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:则这6个区域降雨量的众数和平均数分别为18、数据0,1,1,3,3,4的平均数和方差分别是( )A .2和1.6B .2和2C .2.4和1.6D .2.4和219、已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个的2倍,则A ,B 两个样本的方差关系是( )A .B 是A 的2倍 B .B 是A 的2倍C .B 是A 的4倍D .一样大20、已知样本x 1,x 2,x 3…x n 的方差为5,则样本3x 1+2,3x 2+2,3x 3+2…3x n +2的方差为__ . 21、某区计划从甲、乙、丙、丁四支代表队中推选一支参加市级汉字听写,为此,该区组织了五轮选拔赛,在这五轮选拔赛中,甲、乙、丙、丁四支代表队的平均分都是95分,而方差依次为s 2甲=0.2,s 2乙=0.8, s 2丙=1.6,s 2丁=1.2.根据以上数据,这四支代表队中成绩最稳定的是( ) A .甲代表队 B .乙代表队 C .丙代表队 D .丁代表队22、某单位要从内部招聘管理人员一名,对甲、乙、丙三名候选人进行笔试和面试两项测试,三人的测试成绩如下表表示:根据录用程序,单位组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(每位职工只能推荐一人,没有弃权票),甲得25%,乙得40%,丙得35%,每得一票记一分. (1)如果根据三项测试的平均成绩录用人选,那么谁将被录用?(精确到0.1),为什么?(2)根据实际需要,单位将笔式、面试和民主评议三项测试按4:3:3的比例确定个人成绩,那么谁被录用?为什么?23.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他们的成绩分别如下表:根据上表解答下列问题:(1)完成下表:(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.24、通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.下图是学生注意力指标数y随时间x(分钟)变化的函数的近似图象.(y越大表示学生注意力越集中,且图象中的三部分都是线段)(1)注意力最集中那段时间持续了几分钟?(2)当0≤x≤10时,求注意力指标数y与时间x之间的函数关系式;(3)一道数学竞赛题,需要讲解23分钟,问老师能否经过适当安排使学生在听这道题时注意力的指标数都在34以上?附加题.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A _________ ,C _________ ;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果)我市某校根据规划设计,修建一条1200米长的校园道路。
数据分析练习题
1.某校把学生的纸笔测试、实践能力、成长记录三项成绩
分别按5 0%20 0%、30%的比例计人学期总评成绩,9 0
分以上为优秀,甲、乙、丙三人的各项成绩如下表(单位:
分),学期总评成绩优秀的是()A.甲 B.乙.丙 C.甲.乙 D.甲.丙
2.下列说法中,错误的有()
①一组数据的标准差是它的差的平方;②数据8,9,10,11,1l的众数是2;③如果数
据x
1,x
2
,…,x
n
的平均数为x,那么(x
1
-x)+(x
2
-x)+…(x
n
-x)=0;④数据0,
-1,l,-2,1的中位数是l. A.4个 B.3个 C.2个 D.l个
3.已知甲、乙两组数据的平均数相等,若甲组数据的方差2
S
甲
=0.055,乙组数据的方差2
S=
乙
0.105,则()A.甲组数据比乙组数据波动大 B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大 D.甲、乙两组数据的波动大小不能比较
4.刘翔在出征雅典奥运会前刻苦进行110米跨栏训练,教练对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的()
A.众数 B.方差 C.平均数 D.频数
5.下表是一文具店6~12月份某种铅笔销售情况统计表:观察
表中数据可知:平均数为中位数为和众数为.
6.已知数据a,c,b,c,d,b,c,a且a<b <c<d,则这
组数据的众数为________,中位数为________,平均数为__________.
7.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁)
甲群:13,13,14,15,15,15,15,16,17,17;
乙群:3,4,4,5,5,6,6,6,54,57.
⑴甲群游客的平均年龄是多少?中位数、众数呢?其中能较好反映甲群游客年龄特征的是什么?
⑵乙群游客的平均年龄是多少?中位数、众数呢?其中能较好反映乙群游客年龄特征的是什么?
8.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资:王某3000元,厨师甲450元,厨师乙 400元,杂1320元,招待甲 350元,招待乙 320元,会计410元.
⑴计算工作人员的平均工资;
⑵计算出的平均工资能否反映帮工人员这个月收人的一般水平?
⑶去掉王某的工资后,再计算平均工资;
⑷后一个平均工资能代表一般帮工人员的收人吗?
⑸根据以上计算,从统计的观点看,你对(3)、(4)的结果有什么看法?
9.
中,他俩的成绩分别如表:根据右表解答下列问题:
(1)完成下表:
(2)在这五次测试中,成绩比较稳定的同学是谁?
若将80分以上(含80分)的成绩视为优秀,则小
王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)
就很有可能获奖,成绩达到90分以上(含90分)就
很有可能获得一等奖,那你认为应选谁参加比赛比较
合适?说明理由
10.如图是连续十周测试甲、乙两名运动员体能训练情况的
折线统计图.教练组规定:体能测试成绩70分以上(包
括70分)为合格.
(1)请根据图中所提供的信息填写下表:
(2)请从下面两个不同的角度对运动员体能测试结果进行
判断:①依据平均数与成绩合格的次数比较甲和乙的体能测
试成绩较好;②依据平均数与中位数比较甲和乙的体能测试成绩较好.
(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果好.
11.在某旅游景区上山的一条小路
上,有一些断断续续的台阶.图
11是其中的甲、乙路段台阶的示
意图.请你用所学过的有关统计
知识(平均数、中位数、方差和
极差)回答下列问题:
(1)两段台阶路有哪些相同点和不
同点?
(
2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.。