1_实验箱_晶体管共射极单管放大器
- 格式:doc
- 大小:165.00 KB
- 文档页数:4
晶体管共射极单管放大器实验报告一、实验目的:1.掌握晶体管共射极单管放大器的工作原理;2.通过实验验证晶体管共射极单管放大器的放大特性。
二、实验仪器与器件:1.功能发生器;2.直流稳压电源;3.2N3904NPN型晶体管;4.脉冲发生电路;5.负载电阻;6.示波器等。
三、实验原理:四、实验步骤与过程:1.搭建晶体管共射极单管放大器电路,根据实验原理连接好各个器件与仪器;2.将直流稳压电源的正极接入收集端,负极接入基极,并合理调节稳压电源的电压和电流;3.通过功能发生器向基极注入正弦信号,调节发生器频率和幅值;4.同时连接示波器,观察输入信号与输出信号的波形;5.改变输入信号的频率和幅值,记录输出信号的变化;6.对比输入信号与输出信号,确定放大倍数。
五、实验数据记录与分析:1.在不同频率下,记录输入信号与输出信号的幅值,并计算放大倍数;2.提取数据,绘制频率与放大倍数的关系曲线;3.分析曲线特点,讨论晶体管放大器的工作频率范围;4.对比不同输入信号幅值下的输出信号,分析并解释放大器的失真情况。
六、实验结果与结论:1.经过实验数据的分析和计算,可以得出晶体管共射极单管放大器在一定频率范围内具有较好的放大效果;2.放大倍数随频率的增加而下降,且存在失真现象;3.实验结果与理论相符,验证了晶体管共射极单管放大器的放大特性。
七、实验心得与体会:通过本次实验,我深入了解了晶体管共射极单管放大器的工作原理和特性,并且掌握了实验操作技巧。
实验中遇到了一些问题,如输出信号失真、调节电源电压等,但通过耐心地调试和思考,最终取得了满意的实验结果。
通过这次实验,我不仅提高了对电路放大器的理解,还锻炼了实验操作和数据分析能力。
实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。
2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。
3.熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。
偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。
三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。
然后测量U B 、U C ,记入表1中。
表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。
5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。
2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。
实验一 晶体管共射极单管放大器一、实验原理图+12V二、实验内容及注意要点1、按照原理图连接电路 注意R W 的接法,连接1、3端,或者2、3端2、静态工作点的测量 输入端接地,静态工作点指标包括I b 、I C 、V CE 。
其中,V CE 用万用表测量V C 、V E 对地电压后计算得出;Ib 、Ic 转为测量V B 、V E ,E C E E V I I R ≈=;在使用万用表测量R B2时关闭直流电源,并将其从电路中断开。
注意实验中选取I C =0.2mA ,即V E =2.4V 。
3、测量电压放大倍数 输入信号1KHz 、峰峰值50mV 正弦信号(注意使用信号发生器获得该信号的方法),记录不同Rc 、R L 下的输出Uo ,计算A V 输入、输出信号波形。
计算过程中注意有 效值=峰峰值输入输出统一采用峰峰值或有效值。
4、输入、输出电阻 如下图连接电路,R=2K ,Rc=2.4K ,R L =2.4K ,I C =0.2mA+12V测量输入电阻时,在放大电路的电容C 1前串接电阻R ,测量U S ,U i ,计算ii S iU R R U U =-;测量输出电阻,去除R ,保持U S ,测量接有R L 时电压U L 及不接负载RL 时输出电压Uo ,计算输出电阻1O O L L U R R U ⎛⎫=-⎪⎝⎭。
5、测量幅频特性曲线 采用三点法测量,即选取中频、高频、低频点测量,具体方法为Rc=2.4K ,R L =2.4K ,I C =0.2mA ,选取中频1KHz ,调节信号发生器使输入信号为1KHz ,逐渐加大幅度使U Opp =1V ;幅度固定,调节信号发生器减小输入信号频率,当U Opp =0.707V 时停止,记录此刻输入信号频率即为低频点;同理增大信号频率记录高频点。
A V=U O /U i ,绘制出幅频特性曲线。
三、实验结果1、静态工作点Q2、电压放大倍数 IC=2.0 mA Ui=50mV(峰峰值)3、输入输出电阻32 3.65032i i S i U mV R R K U U mV mV ==≈Ω--; 3.111 2.4 2.51.5O O L L U V R R K K U V ⎛⎫⎛⎫=-=-⨯Ω≈Ω ⎪ ⎪⎝⎭⎝⎭4、幅频特性曲线1V219Hz 2.2MHzUo四、思考题1、电路中C1、C2和C E 有什么作用?C1、C2分别为输入、输出电容,通交流隔直流,C2使得直流电源在集电极回路形成的直流量不影响负载,C1使信号顺利加大放大电路中;C1对电路带宽下限有影响,1μF 左右为宜。
实验二、晶体管共射极单管放大器I实验目的:了解晶体管共射极单管放大器电路原理及性能指标的测量方法。
实验器材:晶体管(2SC1815),直流电源,信号源,示波器,万用表等。
实验原理:晶体管是一种电子器件,在电路中可以使用其放大、开关等功能。
共射极单管放大器是晶体管放大器中应用最广泛的一种电路。
共射极单管放大器具有放大倍数大、频带宽度宽的特点。
其电路原理图如下所示。
当输入信号Vin加至共射极电路中时,基极中将出现一个与Vin同相的交流电压信号,进而影响晶体管的发射极电流Ie,使其随之发生周期性变化。
这样,晶体管的发射极将会出现一随输入信号而改变的电流信号Ie,从而对负载RL产生一随输入变化而改变的电压信号Vout,即输出信号。
根据输出信号的瞬时幅值与输入信号的瞬时幅值比值的大小,可以初步测定这个电路的放大倍数,即:Av = ΔVout / ΔVin式中,ΔVout表示输出信号的峰值与零点处的幅值之差,ΔVin表示输入信号的峰值与零点处的幅值之差。
为了进一步衡量这个电路的放大能力,需要定义一些性能指标,分别如下所示。
增益:A = Vout / Vin,它表示输出信号与输入信号的幅值比值。
最大输出电压:Vomax,它与输出电路的直流工作点有关,其大小可通过计算静态工作点的位置来确定。
Vomax是输出信号中某一瞬间的最大电压值。
最大输出功率:Pomax,它是输出信号的最大功率,同时也是输出电路在一定工作条件下所能输出的最大功率。
最大幅度稳定范围:Am,它是指在该范围内,输出信号的变化幅度始终不大于输入信号变化幅度的一定百分比,以保证输出信号的稳定性。
实验步骤:1. 按照电路原理图搭建共射极单管放大器电路,并接入信号源、示波器和万用表等。
2. 调节信号源输出电压幅值和频率,使其分别在两个电压档和两个频率档位内逐步变化,同时观察和记录示波器上输入信号和输出信号的波形,以了解电路的动态特性。
共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。
本实验的目的是通过实验验证共射极单管放大电路的放大特性。
一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。
晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。
在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。
输出信号由电容C2耦合到负载电阻RL上。
二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。
2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。
3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。
4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。
5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。
6. 测量电容:用万用表测量输入输出电容。
四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。
五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。
六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。
七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。
晶体管共射极单管放大器实验报告实验报告:晶体管共射极单管放大器摘要:本实验通过搭建晶体管共射极单管放大器电路,研究其放大特性和工作原理。
通过测量输入输出特性曲线和计算放大倍数,得出合适的工作点、负载电阻和偏置电压,以实现较大的放大倍数和线性放大的目标。
【关键词】晶体管、共射极、放大特性、工作点、负载电阻、偏置电压、放大倍数、线性放大一、引言晶体管是一种重要的电子器件,在电子电路中广泛应用于放大、开关等功能。
共射极单管放大器是一种常见的放大器电路,具有简单、灵活及放大效果较好等特点。
本实验旨在通过搭建共射极单管放大器电路,研究其放大特性和工作原理,并通过实际测量及计算,确定合适的工作参数,实现最佳的放大效果。
二、实验原理共射极单管放大器由晶体管、负载电阻、输入电阻、偏置电阻和耦合电容等组成。
输入信号经耦合电容C1传递到基极,与偏置电阻R1和R2形成偏置电压,控制晶体管的工作状态。
负载电阻RL连接于集电极,输出信号从集电极提取。
三、实验步骤2.给定直流电源VCC和VE,通过调节R1和R2,使得基极电压为合适的偏置电压。
3.连接信号发生器,设置正确的输入信号频率和信号幅度。
4.连接示波器,分别测量输入和输出信号波形,并记录幅度。
5.逐步调节负载电阻RL,测量不同负载情况下的输出信号波形和幅度。
6.分析实验数据,计算放大倍数。
四、实验结果3. 放大倍数:利用实验数据计算放大倍数Av=Vout/Vin。
五、讨论与总结通过实验搭建晶体管共射极单管放大器电路,并测量了输入输出特性曲线。
根据实验结果,我们可以得出以下结论:1.在合适的工作点和偏置电压下,共射极单管放大器可以实现较大的放大倍数。
当输出信号达到晶体管的饱和区时,放大倍数会有所下降。
2.负载电阻的选择对放大倍数和线性放大效果有较大影响。
较大的负载电阻可以得到较大的放大倍数,但也会降低线性放大效果。
3.输入特性曲线的斜率代表输入电阻,输出特性曲线的斜率代表输出电阻,可以通过斜率计算电阻值。
实验二晶体管共射极单管放大器预习部分一、实验目的L学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2.掌握放大器主要性能指标及其测试方法。
3.熟悉示波器、函数发生器、交流亳伏表、直流稳压电源及模拟实验箱的使用。
二、实验原理1.静态工作点对放大器性能的影响及调试1)静态工作点当放大电路未加输入信号(为=0)时,在直流电源作用下,晶体管基极和集电极回路的直流电流和电压用/BQ、UBEQ、I CQ、UCEQ表示,它们在晶体管输入和输出特性上各自对应一个点,称为静态工作点。
放大器静态工作点Q的位置对放大器的性能和输出波形有很大影响。
以NPN型三极管为例,如工作点偏高(如图2-2・1中的Ql点),放大器在加入交流信号以后易产生饱和失真, 此时儿的负半周将被削底;如工作点偏低(如图2-2-1中的Qz点)则易产生截止失真,即〃”的正半周被缩顶(一般截止失真不如饱和失真明显这些情况都不符合不失真放大的要求。
所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的加,检查输出电压〃〃的大小和波形是否满足要求。
如不满足,则应调节静态工作点的位置。
图2-2-1静态工作点不合适产生波形失真最后还要申明电笔上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
若要获得最大的不失真输出电压,静态工作点最好尽量靠近交流负载线的中点,如图2-2-2中的Q点。
图2・2-3共射极单管放大器2)静态工作点的调试和测量方法静态工作点由偏置电路设置。
放大电路常用的偏置电路有固定和分压式偏置电路。
固定偏置电路仅由一个基极电阻构成,要求电阻在兆欧数量级上,Q点易受晶体管参数变化和基极电阻值误差的影响。
图2-2-3所示是分压式偏置的共射极放大电路。
偏置电路由两个千欧数量级的基极电阻RBl和R B2构成,并添加射极电阻,也称射极偏置。
晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。
而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。
2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。
3.低成本:CE放大器成本低,是很多电路应用的实用设计。
二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。
2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。
3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。
4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。
5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。
三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。
2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。
3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。
四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。
晶体管共射极单管放大电路的实验报告实验名称:晶体管共射极单管放大电路实验报告一、实验目的:1.了解晶体管共射极单管放大电路的基本原理和工作特性;2.学会使用实验仪器测量晶体管共射极单管放大电路的电压放大倍数和频率响应特性;3.分析晶体管共射极单管放大电路的放大性能和实际应用。
二、实验器材和仪器:1. BenchVue软件及相应的计算机;2.直流电源;3.双踪示波器及相应探头;4.功率放大三极管型号:2N3904;5.电阻、电容等电子元器件;6.实验电路板和连接线。
三、实验过程及结果:1.实验电路搭建:根据实验原理,搭建晶体管共射极单管放大电路,连接电源和示波器等仪器,并通过BenchVue软件实现电路参数采集和分析。
2.测试电路的静电工作点:先断开输入信号源,调节控制电位器使电路的电流、电压等参数处于恰当的工作范围,并记录此时的电压和电流值。
3.测试电路的电压放大倍数:连接输入信号源,输入一个特定频率和特定电压的正弦信号,并通过示波器观察输入信号和输出信号的波形。
利用示波器测量并记录输入信号和输出信号的幅度值,计算电压放大倍数。
4.测试电路的频率响应特性:通过BenchVue软件实现交流扫频实验,从低频到高频扫频,并观察输出电压的响应。
测量并记录不同频率下的输出电压值,并绘制频率特性曲线。
5.数据处理和分析:根据实验数据计算电压放大倍数和频率响应特性,并进行相关的数据处理和分析。
四、结果分析:根据实验数据和计算结果,对晶体管共射极单管放大电路的放大性能进行分析和比较。
可以比较不同频率下的输出电压值、电压放大倍数,并分析电路的频率响应特性。
五、实验总结:通过此次实验,我们对晶体管共射极单管放大电路的工作原理和特性有了更深入的了解。
我们学会了如何使用实验仪器测量电路的电压放大倍数和频率响应特性,并对实际应用进行了分析。
此实验对于加深我们对电子电路放大器的认识和理解具有重要意义。
六、存在问题及改进措施:在进行实验过程中,可能会遇到电路连接错误、仪器操作不当等问题。
晶体管共射极单管放大器修改实验报告实验目的:1. 理解共射极单管放大器的原理和主要性能指标。
2. 掌握共射极单管放大器的电路组成和参数的测量方法。
3. 能够正确地进行共射极单管放大器的改进实验,提高其性能。
实验仪器:1. 双踪示波器2. 函数信号发生器3. 直流稳压电源4. 万用表实验原理:共射极单管放大器是一种放大器,由晶体管、电容和电阻等组成。
其输出信号与输入信号的相关系数大小由其侧面负载电阻的大小决定。
共射极单管放大器的电压增益高,输出电阻低,适合驱动低阻负载,因此在实际应用中得到广泛使用。
为了更好的理解共射极单管放大器的特性,需要测量其一些关键参数,包括:(1) 电压增益电压增益是输出电压与输入电压的比值。
可以通过向输入加上低频正弦信号并记录输出信号的峰峰值和输入信号峰峰值来计算出该放大器的电压增益。
(2) 输出电阻输出电阻是指在某一频率下输出电压变化时输入电源的输出电阻,可以通过测量在这个频率下负载电阻的变化和输出电压的变化来计算输出电阻。
在共射极单管放大器中输入电阻等于晶体管的射极电阻和输入电容的并联。
可以通过输入信号加上一个不同电阻值的电阻来计算输入电阻。
(4) 截止频率截止频率是指输出信号的幅度下降到输入信号的幅度的一半时的频率。
可以通过测量输出电压随频率变化的情况来计算截止频率。
实验步骤:1. 搭建共射极单管放大器原始电路,然后将其连接到设备上。
2. 将设备接入电路中。
3. 使用函数信号发生器来激发共射极单管放大器,并使用双踪示波器观察输出信号。
4. 使用万用表测量电路中各个电阻的阻值,并计算出输入电阻和输出电阻。
6. 调整射极电压,以改变电路的工作点。
7. 重复步骤3-6来测量电路的性能,并通过改变电路元器件来提高电路性能。
实验结果:通过完成实验并测量电路参数,可以得到以下结果:1. 输入电阻:500Ω3. 电压增益:28.6dB4. 截止频率:89kHz该实验旨在让我们了解共射极单管放大器的原理和性能,并通过对电路进行改进来提高其性能。
实验箱部分 晶体管共射极单管放大器
一、实验目的
1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2.掌握放大器电压放大倍数。
二、实验原理
图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1
和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号
u 0,从而实现了电压放大。
图2-1 共射极单管放大器实验电路
在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点、交流等效特性可用下式估算
不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的
依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
1.放大器静态工作点的测量与调试 1) 静态工作点的测量
测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。
一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用
E E E C R U I I =
≈算出I C (也可根据C
C
CC C R U U I -=,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。
为了减小误差,提高测量精度,应选用内阻较高的直流电压表。
2) 静态工作点的调试
放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。
静态工作点是否合适,对放大器的性能和输出波形都有很大影响。
如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。
这些情况都不符合不失真放大的要求。
所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。
如不满足,则应调节静态工作点的位置。
(a) (b)
图2-2 静态工作点对u O 波形失真的影响
通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。
最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。
2.放大器动态指标测试
放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。
1) 电压放大倍数A V 的测量
调整放大器到合适的静态工作点,然后加入输入电压u i ,在输出电压u O 不失真的情况下,用交流毫伏表测出u i 和u o 的有效值U i 和U O ,则 i
V U U A =
三、实验设备与器件
1. 函数信号发生器
2. 双踪示波器
3. 万用电表
4.实验箱
四、实验内容
实验电路如图2-1所示。
为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。
1.调试静态工作点
接通直流电源前,先将R W 调至最大, 函数信号发生器输出旋钮旋至零。
接通+12V 电源、调节R W ,使I C =2.0mA (即U E =2.0V ), 用直流电压表测量U B 、U E 、U C 及用万用电表测量R B2值。
记入表2-1。
表2-1 记录静态工作点(IC =2mA )
在放大器输入端加入频率为1KHz 的正弦信号u S ,调节函数信号发生器的输出旋钮使放大器输入电压U i 50mV ,同时用示波器观察放大器输出电压u O 波形,在波形不失真的条件下用万用电表测量下述三种情况下的U O 值,并用双踪示波器观察u O 和
u i 的相位关系,记入表2-2。
表2-2 测量电压放大倍数 (Ic =2.0mA Ui =50mV )
3.观察静态工作点对电压放大倍数的影响
置R C =2.4K Ω,R L =∞,U i 适量,调节
R W ,用示波器监视输出电压波形,在u O 不失真的条件下,测量数组I C *(测量Rc 上电压/Rc )和U O 值,记入表2-3。
测量I C 时,要先将信号源输出旋钮旋至零(即使U i =0)。
表2-3 静态工作点对电压放大倍数的影响 (R C =2.4K Ω RL =∞ Ui =50mV )
4.观察静态工作点对输出波形失真的影响
置R C =2.4K Ω,R L =2.4K Ω, u i =0,调节R W 使I C =2.0mA ,测出U CE 值,再逐步加大输入信号,使输出电压u 0 足够大但不失真。
然后保持输入信号不变,分别增大和减小R W ,使波形出现失真,绘出u 0的波形,并测出失真情况下的I C 和U CE 值,记入表2-4中。
每次测I C 和U CE 值时都要将信号源的输出旋钮旋至零。
表2-4 静态工作点对输出波形失真的影响 (R C =2.4K Ω R L =∞ U i =50mV )
五、实验总结
1.列表整理测量结果,并把实测的静态工作点、电压放大倍数与理论计算值比较(取一组数据进行比较),分析产生误差原因。
2.总结R C ,R L 及静态工作点对放大器电压放大倍数的影响。
3.讨论静态工作点变化对放大器输出波形的影响。
4.分析讨论在调试过程中出现的问题。
六、预习要求
1.阅读教材中有关单管放大电路的内容并估算实验电路的性能指标。
假设:9013 的β=100,R B1=20K Ω,R B2=60K Ω,R C =2.4K Ω,R L =2.4K Ω。
估算放大器的静态工作点,电压放大倍数A V ,输入电阻R i 和输出电阻R O
3.能否用直流电压表直接测量晶体管的U BE ? 为什么实验中要采用测U B 、U E ,再间接算出U BE 的方法?
4.怎样测量R B2阻值?
5.当调节偏置电阻R B2,使放大器输出波形出现饱和或截止失真时,晶体管的管压降U CE 怎样变化?
6.改变静态工作点对放大器的输入电阻R i 有否影响?改变外接电阻R L 对输出电阻R O 有否影响?
7.在测试A V ,R i 和R O 时怎样选择输入信号的大小和频率? 为什么信号频率一般选1KHz ,而不选100KHz 或更高?
8.测试中,如果将函数信号发生器、交流毫伏表、示波器中任一仪器的二个测试端子接线换位(即各仪器的接地端不再连在一起),将会出现什么问题?
说明:
1. 用万用电表的蜂鸣档测量9013(NPN )好坏,注意要红表笔接到基极,黑表笔分别接到射极
和集电极。
如果阻值在500Ω~1500Ω之间,说明9013是可以使用的,否则更换9013。
2. 实验器件在实验箱正中间位置选择。