分子生物学笔记
- 格式:doc
- 大小:41.50 KB
- 文档页数:11
第一章绪论分子生物学分子生物学的基本含义 (p8分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。
它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。
生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。
传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。
分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。
细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。
探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。
分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。
第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。
指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。
达尔文第一个认识到生物世界的不连续性。
意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。
细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。
1.原核DNA复制特点1)复制起始在拓扑异构酶I的作用下解开DNA负超螺旋后,与解链酶共同作用,在复制起点处解开双链,解链过程中SSB蛋白稳定被解开的单链保证局部不恢复回双链。
解链过程中需要ATP提供能量。
解链后,由引发酶直接在DNA前导链模板上合成引物;由蛋白n、n`、n``、DnaB、C、I共同组成引发体在后随链上合成引物RNA。
2)复制延伸延伸过程中,前导链连续延伸;后随链上,引发体延5`→3`方向前进并合成RNA引物,再由DNA聚合酶Ⅲ断断续续合成小的DNA片段。
小片段上RNA引物被RNase H降解,DNA片段被DNA聚合酶I连接成完整DNA链。
3)复制终止当复制叉遇到由22个碱基组成的Ter序列时,Ter-Tus复合物使DnaB停止DNA解链,阻挡复制叉前移。
在反方向复制叉到达后,停止复制,其间50-100bp 未被复制的片段由DNA修复机制补齐。
然后两条链分开,并在拓扑异构酶Ⅳ作用下使复制叉解体,释放子链。
2.原核RNA转录1)模板识别原核RNA聚合酶可直接与启动子区结合,完成转录起始2)转录起始RNA聚合酶先与启动子可逆结合,形成封闭复合物。
之后DNA双链构象发生变化,封闭复合物转为开放复合物,使RNA聚合酶结合的DNA序列中有一小段双链被解开。
解链后,开放复合物与最初两个NTP 结合形成磷酸二酯键并转变为RNA 聚合酶-DNA- 新生RNA 链三元复合物。
之后,转录起始后直到形成 9个核苷酸短链是通过启动子阶段,此时RNA聚合酶一直处于启动子区,新生的 RNA链与 DNA模板链的结合不够牢固,很容易从DNA链上掉下来并导致转录重新开始。
一旦RNA聚合酶成功地合成 9个以上核苷酸并离开启动子区,转录就进入正常的延伸阶段。
3)转录延伸当RNA聚合酶催化新生RNA链长度超过9-10个核苷酸时,σ因子脱离转录复合物,RNA聚合酶离开启动子,核心酶延模板移动使新生RNA链不断延伸。
4)转录终止RNA聚合酶碰到终止信号后,与模板脱离并释放新生RNA。
现代分子生物学复习提纲第一章绪论第一节分子生物学的基本含义及主要研究内容1 分子生物学Molecular Biology的基本含义⏹广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,从分子水平阐明生命现象和生物学规律。
⏹狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。
1.1 分子生物学的三大原则1) 构成生物大分子的单体是相同的2) 生物遗传信息表达的中心法则相同3) 生物大分子单体的排列(核苷酸、氨基酸)的不同1.3 分子生物学的研究内容●DNA重组技术(基因工程)●基因的表达调控●生物大分子的结构和功能研究(结构分子生物学)●基因组、功能基因组与生物信息学研究第二节分子生物学发展简史1 准备和酝酿阶段⏹时间:19世纪后期到20世纪50年代初。
确定了生物遗传的物质基础是DNA。
DNA是遗传物质的证明实验一:肺炎双球菌转化实验DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程2 建立和发展阶段⏹1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。
⏹主要进展包括:遗传信息传递中心法则的建立3 发展阶段⏹基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。
⏹第三节分子生物学与其他学科的关系思考⏹证明DNA是遗传物质的实验有哪些?⏹分子生物学的主要研究内容。
⏹列举5~10位获诺贝尔奖的科学家,简要说明其贡献。
第二章染色体与DNA第一节染色体1.作为遗传物质的染色体特征:⏹分子结构相对稳定⏹能够自我复制⏹能够指导蛋白质的合成,从而控制整个生命过程;⏹能够产生遗传的变异。
2 真核细胞染色体组成(1) DNA(2) 蛋白质(包括组蛋白和非组蛋白)(3) 少量的RNA组蛋白:呈碱性,结构稳定;与DNA结合形成、维持染色质结构,与DNA含量呈一定的比例非组蛋白:呈酸性,种类和含量不稳定;作用还不完全清楚3.染色质和核小体染色质是一种纤维状结构,由最基本的单位—核小体(nucleosome)成串排列而成的。
第2章基因、基因组和基因组学基因(gene):携带有遗传信息的DNA或RNA序列,也称为遗传因子。
基因是合成有功能的蛋白质或RNA所必需的全部DNA,包括编码蛋白质或RNA的核酸序列,也包括为保证转录所必需的调控序列。
基因的功能:传递遗传信息,控制个体性状表现。
结构基因(structural genes):可被转录形成mRNA,并转译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。
调节基因(regulatory genes) :某些可调节控制结构基因表达的基因。
其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。
eg. miRNA, siRNA, piRNA核糖体RNA 基因(ribosomal RNA genes) 与转运RNA 基因(transfer RNA genes):只转录产生相应的RNA而不翻译成多肽链。
真核生物的RNA聚合酶( 3种):RNA 聚Array合酶I, II, III.开放阅读框架(open reading frame,ORF):在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码序列。
断裂基(split gene):真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质。
基因组(genome):一个细胞内的全部遗传信息,包括染色体基因组和染色体外基因组。
基因组中的DNA包括编码序列和非编码序列。
部分病毒基因组--RNA。
C值(C-value):一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。
通常,进化程度越高的生物其基因组越大,但从总体上说,生物基因组的大小同生物在进化上所处地位的高低无关。
存在C-value paradox (C值悖理)。
生物复杂性越高,其基因的密度越低。
病毒基因组的大小: 与细菌或真核细胞相比,病毒的基因组很小。
分⼦⽣物学考试整理笔记第⼀章1.请定义DNA重组技术和基因⼯程技术。
DNA重组技术:是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表的,产⽣影响受体细胞的新的遗传性状。
基因⼯程技术:是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表的,产⽣影响受体细胞的新的遗传性状。
还包括其他可能使⽣物细胞基因组结构得到改造的体系。
第⼆章2.什么是核⼩体?简述其形成过程。
由DNA和组蛋⽩组成的染⾊质纤维细丝是许多核⼩体连成的念珠状结构。
核⼩体是由H2A,H2B,H3,H4各两个分⼦⽣成的⼋聚体和由⼤约200bp的DNA组成的。
⼋聚体在中间,DNA分⼦盘绕在外,⽽H1则在核⼩体外⾯。
每个核⼩体只有⼀个H1。
所以,核⼩体中组蛋⽩和DNA的⽐例是每200bpDNA有H2A,H2B,H3,H4各两个,H1⼀个。
⽤核酸酶⽔解核⼩体后产⽣只含146bp核⼼颗粒,包括组蛋⽩⼋聚体及与其结合的146bpDNA,该序列绕在核⼼外⾯形成1.75圈,每圈约80bp。
由许多核⼩体构成了连续的染⾊质DNA细丝。
核⼩体的形成是染⾊体中DNA压缩的第⼀阶段。
在核⼩体中DNA盘绕组蛋⽩⼋聚体核⼼,从⽽使分⼦收缩⾄原尺⼨的1/7。
200bpDNA完全舒展时长约68nm,却被压缩在10nm的核⼩体中。
核⼩体只是DNA压缩的第⼀步。
核⼩体长链200bp→核酸酶初步处理→核⼩体单体200bp→核酸酶继续处理→核⼼颗粒146bp3. 简述DNA的⼀,⼆,三级结构的特征DNA⼀级结构:4种核苷酸的的连接及排列顺序,表⽰了该DNA分⼦的化学结构DNA⼆级结构:指两条多核苷酸链反向平⾏盘绕所⽣成的双螺旋结构DNA三级结构:指DNA双螺旋进⼀步扭曲盘绕所形成的特定空间结构4.原核⽣物DNA具有哪些不同于真核⽣物DNA的特征?(1)结构简练:原核DNA分⼦的绝⼤部分是⽤来编码蛋⽩质,只有⾮常⼩的⼀部分不转录,这与真核DNA的冗余现象不同。
分子生物学笔记中心法则(Central dogma)DNA的组成DNA的融解温度Tm,高GC含量使得DNA的Tm升高,以及GC的体积较小,使得测得密度较大DNA变性的条件:有机化合物,高pH,低盐浓度探针和DNA杂交基因组是一个生物体的所有遗传信息的集合。
染色体的组成:DNA、蛋白质、RNA组蛋白Histones:五种H1、H2A、H2B、H3、H4核小体核心由8个组蛋白组成H2A、H2B、H3、H4各两个(组蛋白八聚体)146bpDNA核小体核心+H1+linkerDNA组成了染色体组蛋白的修饰乙酰化:转录激活,结构变松散DNA复制半保留复制DNA聚合酶只能从5‘到3’合成DNA(前导链)2. 3‘到5’的DNA聚合酶移动是半不连续复制(后随链,也是从5’-3‘合成)冈崎片段(DNA+RNA引物),后随链绕DNA聚合酶一圈,使得两者的复制方向相同细菌的后随链片段约1000nt,真核细胞中约200nt3. 引物和模板依赖DNA聚合酶不能从头合成DNA,必须前面由10-12nt的RNA引物提供3’羟基引物酶在合成DNA前加上一小段RNA引物复制叉两条母链解开时形成复制叉(replication fork)拓扑异构酶(DNA旋转酶,gyrases):去除DNA的超螺旋结构DNA解旋酶(DNA helicase):DnaB作用以及DnaA、DnaC等其他蛋白质SSBP:单链结合蛋白,稳定解旋后的单链引物酶:合成RNA引物,需要引发体DNA聚合酶Ⅲ(原核):同时合成两条链,链伸长DNA聚合酶Ⅲ:从5‘-3’合成DNA片段,然后删去RNA引物(具有核酸外切酶5‘-3’活性),发生缺口平移(缺口出现在引物和冈崎片段之间)DNA连接酶:去除引物后,连接冈崎片段和之前合成的片段滑动夹:保持DNA聚合酶不从DNA上掉下来端粒酶(telomerase):DNA复制酶只能5‘-3’合成DNA片段,因此DNA两端5’的RNA引物去除后不能让DNA聚合酶Ⅲ生成替换RNA引物的DNA片段(末端隐缩)。
分子生物学分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
第一章绪论一、引言1.创世说与进化论:1859年达尔文发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。
指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。
达尔文第一个认识到生物世界的不连续性。
2.细胞学说:德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。
3.经典遗传学两条基本规律:①统一律:当两种不同植物杂交时,它们的下一代可能与亲本之一完全相同。
②分离规律:将不同植物品种杂交后的F1代种子再进行杂交或自交时,下一代就会按照一定的比例分离,因而具有不同的形式。
1865年发表《植物杂交试验》,1900年被人们重新发现。
孟德尔被公认为经典遗传学的奠基人。
4.现代遗传学:Morgan指出:种质必须由某些独立的要素组成,这些要素称为遗传因子或基因。
二、分子生物学发展简史1.准备和酝酿阶段(19世纪后期到20世纪50年代初)对生命本质的认识上的两点重大突破:①确定了蛋白质是生命的主要基础物质②确定了生物遗传的物质基础是DNA。
2.现代分子生物学的建立和发展阶段(20世纪50年代初到70年代初)以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑,主要进展包括:①遗传信息传递中心法则的建立②对蛋白质结构与功能的进一步认识。
DNA双螺旋发现的意义:①确立了核酸作为信息分子的结构基础。
②提出了碱基配对是核酸复制、遗传信息传递的基本方式。
③从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。
Crick于1954年所提出遗传信息传递的中心法则(Central Dogma )3.初步认识生命本质并开始改造生命的深入发展阶段(20世纪70年代后至今)基因工程技术的出现作为标志,重大成就包括:①重组DNA技术的建立和发展②基因组研究的发展③单克隆抗体及基因工程抗体的建立和发展④基因表达调控机理⑤细胞信号转导机理研究成为新的前沿领域。
分子生物学真核生物的基因1.真核生物基因组的一般特点真核生物的基因组一般比较庞大,远大于原核生物的基因组。
真核生物的DNA与蛋白质结合形成染色体,储存于细胞核内。
真核基因组存在着许多重复序列,重复次数可达几百万以上。
绝大多数真核生物编码蛋白质的基因为断裂基因,即结构基因是不连续排列的,中间由插入序列隔开。
真核生物基因组中不编码的区域多于编码区域。
真核生物不仅含有核内染色体DNA,还有核外细胞器DNA、核外细胞器有线立体DNA和叶绿体DNA。
`2.断裂基因(不连续基因)interrupted or discontinuous genesSV40A蛋白基因含有一段346NT的间隔区。
每个活性珠蛋白基因含有两个间隔区。
卵清蛋白基因含有7个插入序列被分成八段。
`3.基因家族与基因簇gene family & gene cluster定义:真核生物基因组中许多来源相同,结构相似,功能相关的基因在染色体上成串存在,这样的一组基因称为基因家族。
多基因家族是真核生物基因组织的一个重要特征。
多基因家族在基因组中的分布情况不同,有些基因成串排列集中在一条染色体上,集中成簇的一组基因形成基因簇。
也称串联重复基因(见后)。
如组蛋白基因, rRNA基因, tRNA基因等。
而有些基因家族成员不集中排列,而是分散在基因组的不同部位。
如干扰素,珠蛋白,生长激素,SOX 基因家族。
在多基因家族中,有些成员不具有任何功能,这类基因叫假基因(pseudogene)。
4.串联重复基因`特征:A. 各成员间有高度的序列一致性或完全相同。
B. 拷贝数高,几十个至几百个。
因其在细胞中的需要量很大。
C. 非转录的间隔区短而一致。
`组蛋白基因五种组蛋白基因彼此靠近构成一个重复单位。
许多这样的重复单位串联在一起,构成组蛋白基因簇。
`rRNA基因原核生物有三种rRNA:5S,16S,23S真核生物有四种rRNA:5.8S,18S,28S, 5S主体rRNA:三种主体rRNA基因组成重复单位,转录出一个45SrRNA,经转录后处理切除间隔区成为18S,5.8S,28S 三种rRNA。
1、分子生物学(狭义):即在核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机制。
2、分子生物学(广义):即在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。
3、克里克认为分子生物学基于两个基本原理:①序列假说:是指核酸片段的特异性完全由其碱基序列决定,而且这种序列是某一蛋白质氨基酸的密码。
②中心法则:是指DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。
4、分子生物学作为所有生命物质的共性学科所遵循的三大原则:①构成生物大分子的单体是相同的。
共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G;共同的蛋白质语言,构成蛋白质大分子的单体均是20种基本氨基酸。
②生物大分子单体的排列(核苷酸,氨基酸)决定了生物性状的差异和个性特征。
③生物遗传信息的表达的中心法则相同。
5、生物学的三大发现:DNA 双螺旋结构的揭示、遗传密码子的破译、信使RNA的发现。
奠定了DNA-RNA-蛋白质三者之间关系的基础。
第二章:基因概念的演变与发展1、遗传学家摩尔根根据对果蝇的遗传试验提出了基因是:基因像念珠(bead)一样孤立地呈线状一样排列在染色体上,是具有特定功能、能独立发生突变和遗传交换的、“三位一体”的、最小的遗传单位。
2、等位基因:是指野生型基因(A)发生突变后形成的突变基因(a),它与野生型基因位于相同染色体的同一基因座位上。
当野生型基因(A)向不同方向发生突变形成不同状态的等位基因,又总称为复等位基因。
3、拟等位基因:将紧密连锁、控制同一性状的非等位基因定义为拟等位基因。
4、科学家们通过对噬菌体突变体与表型之间的关系的研究,提出了顺反子理论:顺反子是基因的同义词,认为基因是一个具有特定功能的、完整的、不可分割的最小遗传单位。
在一个基因内可以发生突变、重组(交换)。
该理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位称为交换子;在一个顺反子中有若干个突变单位,最小的突变单位被称为突变子。
一、名词解释1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。
2、基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。
3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。
该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。
4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。
5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。
包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。
6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。
7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。
8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。
它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。
9、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。
10、信息分子:调节细胞生命活动的化学物质。
其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。
11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。
12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝。
13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。
14、蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。
第一章基因的结构第一节基因和基因组一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR)④调控序列(可位于上述三种序列中)绝大多数真核基因是断裂基因(split-gene),外显子不连续。
二、基因组(genome)一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。
人基因组3X1 09(30亿bp),共编码约10万个基因。
每种真核生物的单倍体基因组中的全部DNA 量称为C值,与进化的复杂性并不一致(C-value Paradox)。
人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。
蛋白质组(proteome)和蛋白质组学(proteomics)第二节真核生物基因组一、真核生物基因组的特点:①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),二、真核基因组中DNA序列的分类??(一)高度重复序列(重复次数>lO5)卫星DNA(Satellite DNA) (二)中度重复序列1.中度重复序列的特点①重复单位序列相似,但不完全一样,②散在分布于基因组中.③序列的长度和拷贝数非常不均一,④中度重复序列一般具有种属特异性,可作为DNA标记.⑤中度重复序列可能是转座元件(返座子),2.中度重复序列的分类①长散在重复序列(long interspersed repeated segments.)?LINES②短散在重复序列(Short interspersed repeated segments)?SINESSINES:长度<500bp,拷贝数>105.如人Alu序列LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl(三)单拷贝序列(Unique Sequence)包括大多数编码蛋白质的结构基因和基因间间隔序列,三、基因家族(gene family)一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。
基因家族的特点:①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因 (Pseudogene).Ψa1表示与a1相似的假基因.假基因分类。
加工过的假基因(processed pseudogene)。
典型的基因家族1.tRNA基因?单倍体人基因组中1300个tRNA基因,tRNA基因簇.2.rRNA基因>l00copy.rRNA基因簇(重复单元28S、18S、5.8s-rRNA)3.组蛋白基因30-40copy.定位:7q32-q36组蛋白基因簇(重复单位:H1,H2A,H2B,H3、H4)特点:无intron,Poly(A)- RNA.?4.珠蛋白基因α类:16p13,基因簇(24Kb):5’—δ—Ψδ—Ψα1—α2—α1—3’β类:11p15,基因簇(60Kb):5’—δ—Gr—Ar—Ψβ—δ—β—3’四、超基因家族(Supergene family ,Superfamily)由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同.五、人类基因组中的重复序列标记1、A1u序列单倍体人基因组50万-100万拷贝,平均每隔3-6Kb就有一个Alu序列,人A1u序列长300bp:2X130bp重复序列;?+31bp间隔序列(中间);两侧7-21bp正向重复(direct repeats),返座子?Alu序列广泛散布于人基因组,约90%巳克隆的人基因合有Alu序列Alu序列标志。
2、可变数串联重复???,??Variable number tamdem repeat, VNTR.又称小卫星DNA(minisatellite DNA)由短重复单位(6-40bp)串联重复(6-100次以上)而成,多位于基因的非编码区,广泛分布。
VNTR多态性—分子标记—DNA指纹图(fingerprint).小卫星DNA突变与肿瘤,H-Ras。
3、短串联重复(short tandem repeat,STR)又称微卫星DNA(microstallite DNA)2-6个核苷酸组成的重复单位串联重复(10-60次),两侧为特异的单拷贝序列,人基因组中每l0kb DNA序列至少一个STR序列。
{CA)n,50,000-100,000拷贝.新一代遗传标记,人类基因组研究,肿瘤,遗传病.第三节线粒体基因组人线粒体基因组的特点:1、人线粒体基因组为16,569bp的双链闭环分子,一条链为重链(H链),一条链为轻链(L链),两条链均有编码功能,每个mtDNA分于编码13种蛋白质和24种结构RNA(22rRNA,2tRNA).2、线粒体DNA为母系遗传.3、结构基因不含内含子,部分区域有基因重叠,因此病理性mtDNA突变更易发生.4、mtDNA突变频率更高.5、线粒体DNA突变的表型表达与核DNA不同。
第四节细菌和病毒基因组一、细菌基因组的特点。
1.功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。
3.细菌DNA大部分为编码序列。
二、病毒基因组的特点1.每种病毒只有一种核酸,或者DNA,或者RNA;2.病毒核酸大小差别很大,3X103一3X106bp;3.除逆病毒外,所有病毒基因都是单拷贝的。
4.大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成.? 5.真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子.6.有重叠基因.第五节染色质和染色体细胞分裂间期—染色质(chromatin)分裂期—染色体(chromosome)一、染色质的基本单位—核小体(一)核小体(nucleosome)结构DNA绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外1.8周(146bp),形成核小体核心颗粒。
两个核小体核心颗粒之间有Linker DNA(0-80bp),核小体核心颗粒+Linker=核小体(长180-210bp)核小体DNA Ladder.(二)组蛋白(histone):一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力.组蛋白分类:1.核小体核心组蛋白,H2A,H2B,H3,H4。
分子量较小(102-135aa)作用:盘绕DNA形成核小体。
2.H1组蛋白:较大(220aa),作用:与Linker DNA结合后利于核小体稳定和更高级结构的形成??。
二、染色质的高级结构1、30nm染色质纤丝?,2、袢环结构(looped domain)?。
3、细胞分裂期染色体分裂期染色体=一对姐妹染色单体(Chromatid)有丝分裂中期46条染色体按大小和形状排列的的光学显微镜图像称为人的染色体核型(Karyotype)三、染色体的结构要素?。
(一).着丝粒(centromere):细胞分裂时染色体与仿锤丝相连结的部位,为染色体的正常分离所必需。
?(二).端粒(telomere):真核生物线状染色体分子末端的DNA区域端粒DNA的特点:1、由富含G的简单串联重复序列组成(长达数kb).人的端粒DNA重复序列:TTAGGC。
2、端粒的末端都有一条12-16碱基的单链3’端突出。
端粒的作用:防止DNA末端降解,保证染色体的稳定性和功能(三)、复制原点.第三节 DNA双螺旋的呼吸作用甲醛的变性实验呼吸作用的定义碱基对的稳定性生物学作用第四节 DNA的变性复性和分子杂交一、变性(溶解)在某些物理化学因子的作用下,DNA 双链间的氢键断裂,双链解离形成单链。
㈠性质变化增色效应;黏度降低;沉降速度增加。
㈡因素⑴温度:温度升高引起的DNA 变性称热变性。
加热使氢键断裂。
可用热变性曲线描述热变性过程。
见下图融点Tm:50%DNA 分子解链时的温度。
融点与DNA 分子中的GC 有关,随(G+C)%的含量呈线性增加⑵化学:甲酰胺破坏氢键二、复性去除变性条件后,单链DNA 在适当条件下重新形成双链,回复到原有的物理和生物学特性。
㈠复性动力学复性过程是两条单链DNA 碰撞形成双链DNA 的过程,是双分子反应。
服从二级反应动力学规律。
控制复性反应的两个参数是C0 和tRate of reactionThe reaction follows the second order equationC is the concerntration of DNA that is single-stranded at time tk is a reassociation rate constant.Progress of reactionIntegrate the rate equation between the limits;Initial concerntration of DNA=C0 at time t=0;Concentration remaining single stranded=C after time tCritical parameter is C0t1/2When the reaction is half complete at the time t=1/2Therefore C0t1/2=1/k.复性反应进行到50% 时的C0 .t 为C0 t1/2C0t 曲线:用已经复性的DNA 浓度,即1-C/C0对C0t 的对数作图。
如右图所示.C0t 值的意义:C0 t1/2 值可以用来表示反应体系中DNA 的总长度(单拷贝)。
这种总长度称为DNA 的复杂性。
通过测定复性动力学可以预测基因组的大小。
真核基因组DNA 的复性动力学:第1 是快复性动力学组分,高度重复序列。
第2 是中复性动力学组分,中度重复序列。
第3 是慢复性动力学组分,单拷贝序列。
X:DNA 的复杂性C0t 曲线特征:⑴原核生物每种图形的现状大致相同;⑵重复序列多,复性快。
曲线意义:求DNA 的复杂度。