计算方法7
- 格式:ppt
- 大小:1.23 MB
- 文档页数:72
巧算面积的七种方法
《巧算面积的七种方法》
1、古典梯形法
众所周知,梯形是以一条垂线为分界,两个直角边在一边,二个钝角边在另一边的四边形,面积的计算方法是将梯形分成两个三角形,用三角形的公式即可,即A = 1/2 (a + b) * h,其中a、b分别为梯形的底边长度,h为梯形的高。
2、测量法
测量法是最简单有效的面积计算方法,只要将物体边缘分别测量出来,然后将测量出来的尺寸记录下来,最后求和就可以得出物体的面积。
3、尺规法
尺规法也是一种常用的面积计算方法,其具体操作为:使用尺规将物体边界轮廓放大或缩小到尺规上,根据尺规刻度记录出轮廓的长度就可以计算出面积了。
4、数学方法
如果地面的图形符合一定的数学方程,例如椭圆、抛物线等,那么可以通过数学方法,借助积分的方式计算出面积。
例如,用积分计算椭圆面积的公式为A = 3/2 * pi * a * b,其中a、b分别为椭圆的短半轴和长半轴长度。
5、立体几何法
立体几何法是一种非常神奇、有效的面积计算方法。
它依据立体几何的几何关系建立模型,根据立体几何的有关定律解出问题的求解方法,这种方法十分的有效。
6、计算机技术法
随着科技的发展,计算机技术也发展得很快,许多计算机软件已经可以非常方便地计算出地面物体的面积了,主要是根据空间几何关系来计算,所以很精确,而且快速。
7、三点定标法
三点定标法是一种利用GPS技术测量工程地物面积的方法,其原理是将地物内部三点定向,并记下该三点之间的距离,最后将距离相乘即可得出地物的面积。
总结
以上就是常用的七种面积计算方法,不仅效率高,而且精确度也非常高,它们可以满足各种不同的地物测量需求,获得更准确更有效的结果。
架空走廊指专门设置在建筑物的二层或二层以上,作为不同建筑物之间水平交通的空间。
无围护结构的架空走廊见图,有围护结构的架空走廊不计算建筑面积;仓库中的立体货架、书库中的立体书架都不算结构层,故该局部分层不计算建筑面积。
立体书库如下图。
落地橱窗是指突出外墙面且根基落地的橱窗,可以分为在建筑物主体下图。
凸窗〔飘窗〕是指凸出建筑物外墙面的窗户。
凸<飘〕窗需同时满足两个条件方能计算建筑面积:一是结构高差在以下,二是结构净高在及以上。
如图中,窗台与室内楼地面高差为,超出了,并且结构净高<,两个条件均不满足,故该凸〔飘〕窗不计算建筑面积。
如图中,窗台与室内楼地面高差为,小于,并且结构净高>,两个条件同时满足,故该凸〔飘〕窗计算建筑面积。
【例】计算如下图飘窗的建筑面积〔该飘窗同时满足计算建筑面积的两个条件〕。
解:S=×1/2=²〔14〕有围护设施的室外走廊〔挑廊〕,应按其结构底板水平投影面积计算1/2面积;有围护设施〔或柱〕的檐廊,应按其围护设施〔或柱〕外围水平面积计算1/2面积。
室外走廊〔挑廊〕、檐廊都是室外水平交通空间。
挑廊是悬挑的水平交通空间;檐廊是底层的水平交通空间,由屋檐或挑檐作为顶盖,且一般有柱或栏杆、栏板等。
底层无围护设施但有柱的室外走廊可参照檐廊的规那么计算建筑面积。
无论哪一种廊,除了必须有地面结构外,还必须有栏杆、栏板等围护设施或柱,这两个条件缺一不可,缺少任何一个条件都不计算建筑面积〔见图〕。
在图中,3部位没有围护设施,所以不计算建筑面积,4部位有围护设施,按围设施所围成面积的1/2计算。
室外走廊〔挑廊〕、檐廊虽然都算1/2面积,但取定的计算部位不同:室外走廊〔挑廊〕按结构底板计算,檐廊按护设施〔或柱〕外围计算。
门斗是建筑物出入口两道门之间的空间,它是有顶盖和围护结构的全围合空间。
门斗是全围合的,门廊、雨篷至少有一面不围合。
门斗见图。
i0’门廊是指在建筑物出入口,无门、三面或两面有墙,上部有板〔或借用上部楼板〕围护的部位。
小学数学速算技巧顺口溜简便计算三字经做简算,是享受。
细观察,找特点。
连续加,结对子。
连续乘,找朋友。
连续减,减去和。
连续除,除以积。
减去和,可连减。
除以积,可连除。
乘和差,分别乘。
积加减,莫慌张,同因数,提出来,异因数,括号放。
同级算,可交换。
特殊数,巧拆分。
合理算,我能行。
常用的七种简便运算方法1方法一:带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+ba+b -c =a -c +ba-b +c=a+c -ba-b-c=a-c-ba×b ×c=a ×c ×ba÷b ÷c=a ÷c ÷ba×b ÷c=a ÷c ×ba÷b ×c=a ×c ÷b)2方法二:结合律法(一)加括号法1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。
)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
)3方法三:乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配例: 8 ×(3+7)=8 ×3+8 ×7=24+56=802.提取公因式注意相同因数的提取。
例: 9×8+ 9×2= 9 ×(8+2 )=9 ×10=903.注意构造,让算式满足乘法分配律的条件。
功的7种计算方法方法1:利用定义式计算恒力做的功(1)恒力做的功:(2)合力做的功方法一:先求合力F合,再用W合=F合l cos α求功。
方法二:先求各个力做的功W1、W2、W3、…,再应用W合=W1+W2+W3+…求合力做的功。
【典例1】(多选)如图所示,水平路面上有一辆质量为M的汽车,车厢中有一个质量为m的人正用恒力F向前推车厢,在车以加速度a向前加速行驶距离L的过程中,下列说法正确的是()A.人对车的推力F做的功为FLB.人对车做的功为maLC.车对人的作用力大小为maD.车对人的摩擦力做的功为(F+ma)L【答案】AD方法2:利用动能定理求变力做的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功。
因使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选。
W=12mv22-12mv21【典例2】如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g。
质点自P滑到Q 的过程中,克服摩擦力所做的功为()A.14mgR B.13mgR C.12mgR D.π4mgR 【答案】 C方法3:化变力为恒力求变力做的功变力做功一般难以直接求解,但若通过转换研究的对象,有时可化为恒力做功,用W =Fl cos α求解。
此法常常应用于轻绳通过定滑轮拉物体的问题中。
当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程(不是位移)的乘积。
如滑动摩擦力做功、空气阻力做功等。
【典例3】如图所示,在光滑的水平面上,物块在恒力F =100 N 作用下从A 点运动到B 点,不计滑轮的大小,不计绳、滑轮的质量及绳与滑轮间的摩擦,H =2.4 m ,α=37°,β=53°.求拉力F 所做的功.【解析】在物块从A 点运动到B 点过程中,由于绳不能伸缩.故力F 的作用点的位移大小l 等于滑轮左侧绳子长度的减小量,即l =H sinα-H sinβ,又因力F 与力的作用点的位移l 方向相同,夹角为0.故拉力F所做的功W =Fl =F (H sinα-H sinβ)=100×(2.40.6-2.40.8)J =100 J.【典例4】如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉轻绳,使滑块从A 点起由静止开始上升。
常用的七种简便运算方法在日常生活和学习中,人们经常需要进行各种运算。
为了提高计算速度和准确性,人们发展了一些简便运算方法。
下面介绍七种常见的简便运算方法。
一、乘法运算乘法是一种常见的运算,我们可以通过快速的心算来简化乘法运算。
以下是常见的三种乘法运算方法:1.整数乘法当两个整数相乘时,我们可以使用分配律和结合律来简化运算。
例如,计算48×5:首先,我们可以将5分解成2和3的和:48×5=48×(2+3)。
然后,应用分配律,得到:48×(2+3)=48×2+48×3最后,进行心算得出:48×2=96,48×3=144将结果相加,得到:96+144=240。
所以,48×5=240。
2.十位数乘法当一个数以0结尾,另一个数是两位数时,我们可以使用十位数乘法来简化运算。
例如,计算40×32:首先,将32分解成30和2的和:40×32=40×(30+2)。
然后,应用分配律,得到:40×(30+2)=40×30+40×2最后,进行心算得出:40×30=1200,40×2=80。
将结果相加,得到:1200+80=1280。
所以,40×32=1280。
3.另一个乘法快速计算方法是经过适当分解,再通过相应的加减法操作,运算速度更快且容易进行。
例如,计算98×7:首先,将98分解成90和8的和:98×7=(90+8)×7然后,应用分配律,得到:(90+8)×7=90×7+8×7最后,进行心算得出:90×7=630,8×7=56将结果相加,得到:630+56=686所以,98×7=686二、除法运算除法是一种常见的运算,我们可以使用心算和简化方法来快速计算除法。
功的7种计算方法方法1:利用定义式计算恒力做的功(1)恒力做的功:(2)合力做的功 方法一:先求合力F 合,再用W 合=F 合l cos α求功。
方法二:先求各个力做的功W 1、W 2、W 3、…,再应用W 合=W 1+W 2+W 3+…求合力做的功。
【题型1】(多选)如图所示,水平路面上有一辆质量为M 的汽车,车厢中有一个质量为m 的人正用恒力F 向前推车厢,在车以加速度a 向前加速行驶距离L 的过程中,下列说法正确的是( )A .人对车的推力F 做的功为FLB .人对车做的功为maLC .车对人的作用力大小为maD .车对人的摩擦力做的功为(F +ma )L方法2:利用动能定理求变力做的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功。
因使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选。
W =12mv 22-12mv 21 【题型2】如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高;质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g 。
质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgRB.13mgRC.12mgRD.π4mgR 方法3:化变力为恒力求变力做的功变力做功一般难以直接求解,但若通过转换研究的对象,有时可化为恒力做功,用W =Fl cos α求解。
此法常常应用于轻绳通过定滑轮拉物体的问题中。
当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程(不是位移)的乘积。
如滑动摩擦力做功、空气阻力做功等。
【题型3】如图所示,在光滑的水平面上,物块在恒力F =100 N 作用下从A 点运动到B 点,不计滑轮的大小,不计绳、滑轮的质量及绳与滑轮间的摩擦,H =2.4 m ,α=37°,β=53°.求拉力F 所做的功.【题型4】如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉轻绳,使滑块从A 点起由静止开始上升。
8种乘法计算方法乘法是数学中的一个基本运算。
它用于计算两个数的乘积,表示为a×b=c,其中a和b是被乘数,c是积。
乘法可以用多种方式进行计算,下面将介绍8种常用的乘法计算方法。
方法一:竖式乘法竖式乘法是最常见的乘法计算方法,适用于任意大小的数字乘法运算。
它的基本原理是从右到左分别将每个位上的数相乘,并将结果按位相加得到最终的乘积。
具体步骤如下:1.将两个数写在竖式中,被乘数在上面,乘数在下面,对齐各位。
2.从被乘数的个位开始,依次将每一位与乘数相乘。
3.将每一位乘积按照对应的位数写在下面。
4.对所有位数的乘积进行相加,得到最终的乘积。
方法二:横式乘法横式乘法也称为“十字相乘法”,它适用于两位数或以上的数字乘法。
这种方法可以有效地减少计算过程中的错误。
具体步骤如下:1.将两个数分别写在乘法式的左侧和上方,对齐各位。
2.从乘法式的右下角开始,将每一位上的数两两相乘,然后将结果按位写在对应的位置上。
3.将每一列的结果相加,并按位排列,得到最终的乘积。
方法三:折线乘法折线乘法是一种可以简化计算的乘法方法,适用于多位数的乘法运算。
它的基本原理是将被乘数和乘数分别分解成整数和分数部分,并通过计算整数和分数的乘积得到最终结果。
具体步骤如下:1.将被乘数和乘数分别拆分成整数和分数部分。
2.计算整数部分的乘积。
3.计算分数部分的乘积。
4.将整数部分的乘积和分数部分的乘积相加,得到最终的乘积。
方法四:长方体法长方体法是一种用物理模型来解释乘法的方法。
它适用于多位数的乘法计算。
这种方法通过将被乘数和乘数表示为长方体的长度和宽度,并通过计算长方体的体积得到最终的乘积。
具体步骤如下:1.将被乘数和乘数分别表示为长方体的长度和宽度。
2.计算长方体的体积,即被乘数乘以乘数。
3.得到长方体的体积即为最终的乘积。
方法五:分配律法则分配律法则是一种利用代数运算的法则来计算乘法的方法。
它适用于涉及到多个因数的乘法运算。
具体步骤如下:1.将乘数分解成两个或多个分量。
七种数学简便运算方法数学是一门精确而有趣的学科,它涉及各种运算方法和技巧。
在学习数学的过程中,我们往往会遇到一些较为繁琐的运算,如何能够以更加简便的方式进行计算,就成为了提高运算效率的关键。
下面将介绍七种数学简便运算方法,以帮助你提高数学运算的速度和准确性。
1.约数分解法:约数分解法是一种将一个数表示为几个质数的乘积的方法。
例如,如果要将120分解为质数的乘积,可以先找到能够整除120的最小质数2,然后将120除以2得到60,再将60除以2得到30,以此类推,直到无法再整除为止。
最终得到120=2^3*3*5的结果。
使用约数分解法可以简化复杂的数学问题,特别是在分解多项式或求最大公因数等问题时非常实用。
2.数根法:数根法是一种通过不断的将一个数的各位数相加,直到得到的结果为个位数为止的方法。
例如,对于数字1234,将1+2+3+4得到10,再将1+0相加得到1,所以1234的数根为1、数根法可以用来判断一个数是否能够被另一个数整除,或者判断两个数的关系等。
3.数字转换法:数字转换法是一种将一个数转换为另一种形式的方法,以便于进行计算。
例如,在计算一个小数的百分数值时,可以将小数乘以100,再加上百分号即可。
同样地,如果要计算一个分数的小数值,可以将分子除以分母得到小数值。
数字转换法可以使一些计算更加直观和简便。
4.分配律法则:分配律法则是一种将一个复杂的运算式分解为两个简单的部分进行计算的方法。
例如,对于一个表达式a*(b+c),按照分配律法则,可以先计算b+c的值,再将得到的结果与a相乘。
分配律法则可以用来简化复杂的多项式运算,使计算更加容易和高效。
5.数量关系法:数量关系法是一种通过分析数之间的关系来简化计算的方法。
例如,对于一个表达式a-b+b,根据数量关系法,可以发现a和-b+b相互抵消,所以结果为a。
随着运算问题的复杂性增加,数量关系法可以帮助我们在不进行实际计算的情况下推导出结果。
6.合并同类项法:在代数运算中,合并同类项法是一种将具有相同变量的项相加或相乘的方法。
参考答案:习题七7.1 运用Euler 方法和改进Euler 方法求下列初值问题在给定区间上的数值解, 计算结果保留四位小数。
(1) ⎪⎩⎪⎨⎧=≤≤=-=04.0,2.00,1)0(22h x y y x dxdy; (2) ⎪⎩⎪⎨⎧=≤≤=-=1.0,5.00,1)0(h x y ydxdy。
解:(1) 5,4,3,2,1,0,,04.0,1)0(,),(22====-=n nh x h y y x y x f n8360.08635.08935.09262.09616.01Euler 8299.08583.08894.09232.096.01Euler 2.016.012.008.004.00改进k x (2) 5,4,3,2,1,0,,1.0,1)0(,),(====-=n nh x h y y y x f n6071.06708.07412.0819.0905.01Euler 5905.06561.0729.081.09.01Euler 5.04.03.02.01.00改进k x 7.2 用Euler 方法和改进Euler 方法求初值问题⎪⎩⎪⎨⎧=+=0)0(y bax dx dy的解在),2,1(, ==n hn x n 处的近似值。
bnh ah n n bnh n ah bh anh h n a y bhanh y b anh h y b ax h y y x hf y y y x b ax y x f n n n n n n n n n ++=+++++==++-+=++=++=++=+===+=-+2222121002)1()...210(...2)1()()(),(0,0,),(7.3 运用标准四阶Runge--Kutta 法求初值问题⎪⎩⎪⎨⎧=+=1)1(32y yx x dx dy的解在x =1.1,1.2,1.3处的近似值, 计算结果保留三位小数。
102.2)3.1(,587.1)2.1(,24.1)1.1(===y y y7.4 运用标准四阶Runge--Kutta 法求初值问题⎪⎩⎪⎨⎧=--=1)0(2y xy y dx dy在区间[0,1]上的数值解, 取步长h =0.2, 将计算结果与准确值1)12()(---=x e x y x 进行比较。
小学数学速算技巧顺口溜简便计算三字经做简算,是享受。
细观察,找特点。
连续加,结对子。
连续乘,找朋友。
连续减,减去和。
连续除,除以积。
减去和,可连减。
除以积,可连除。
乘和差,分别乘。
积加减,莫慌张,同因数,提出来,异因数,括号放。
同级算,可交换。
特殊数,巧拆分。
合理算,我能行。
常用的七种简便运算方法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+ba+b-c=a-c+ba-b+c=a+c-ba-b-c=a-c-ba×b×c=a×c×ba÷b÷c=a÷c÷ba×b÷c=a÷c×ba÷b×c=a×c÷b)(一)加括号法1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。
)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
)1.分配法括号里是加或减运算,与另一个数相乘,注意分配例:8×(3+7)=8×3+8×7=24+56=802.提取公因式注意相同因数的提取。
例:9×8+9×2=9×(8+2)=9×10=903.注意构造,让算式满足乘法分配律的条件。
例:8×99=8×(100-1)=8×100-8×1=800-8=792看到名字,就知道这个方法的含义。