romax 齿轮箱振动分析要点
- 格式:doc
- 大小:785.00 KB
- 文档页数:28
基于Romax的变速箱建模及模态分析Romax是著名的机械设计软件,该软件可以用来进行机械系统的建模、仿真和分析,其中包括变速箱的建模及模态分析。
本文将详细介绍Romax的变速箱建模及模态分析流程。
一、变速箱建模在Romax中,变速箱的建模分为三个步骤:建立齿轮、建立轴承和连接齿轮。
1.建立齿轮首先,需要选择相应的齿轮进行建模,可以根据实际情况选择不同类型的齿轮。
进入Romax Gear模块,选择“New Gear”,然后从“Model Library”中选择相应的齿轮。
通常情况下需要填写参数,例如模数、齿轮宽度等,以确保齿轮的正确性。
2.建立轴承建立完齿轮之后,需要对其进行支撑。
在Romax Bearing模块中选择“New Bearing”,然后选择合适的轴承类型,如球轴承、滚子轴承等。
填写相应的参数后,可以将轴承放置在相应的位置上。
3.连接齿轮在将齿轮连接起来之前,需要在Romax Gears模块中选择“New Shaft Assembly”,然后选择正确的轴承类型。
然后在“New Gear”中选择齿轮并放置到相应的位置上,最后将齿轮进行连接。
二、模态分析在建立完变速箱的三维模型之后,就可以进入模态分析。
Romax使用有限元方法来预测变速箱的固有频率和固有振型,以便确定变速箱的可靠性和稳定性。
1.建立模态分析模型模态分析模型需要包括整个变速箱的结构,包括轴、齿轮、轴承、支撑等所有部分。
在Romax中,可以使用“Create New Model”来建立模态分析模型。
在建立模型时需要将齿轮和轴承等等加入到模型中。
2.设置分析参数确定好模态分析模型之后,需要设置一些分析参数,如边界条件、网格密度、模型尺寸和接触范围等等。
设置完这些参数后,可以使用FEA技术进行模态分析。
3.模态分析结果模态分析结果可以得到变速箱的固有频率和固有振型,这些结果可以用来判断变速箱的稳定性和可靠性。
同时,也可以进一步优化设计,以提高变速箱的实际性能。
基于Romax的电动汽车齿轮箱优化设计利用Romax软件对某纯电动商用车传动系统进行仿真分析,研究了齿轮修形对传动误差和齿面接触斑的影响,合理的修形参数可改善齿轮啮合质量,使齿轮系统运行更平稳,减小系统运行噪音。
标签:电动汽车;齿轮箱;传动误差;Romax;修形随着新能源汽车产业的迅速发展,电动汽车齿轮箱的NVH性能愈加受到关注。
传动误差是齿轮传动噪音的主要激励源,也是振动和噪声的主要评价指标。
本文利用Romax对某纯电动商用车传动系统进行仿真分析,优化齿廓、齿向修形参数,以减小传动误差的波动,优化接触斑分布,从而提高齿轮强度,改善齿轮啮合质量,降低传动系统噪音。
1 传动系统模型的建立高速电机因其功率密度大已成为各车企主流应用产品,本车型也选用了一款高速电机,最高转速14000rpm,电机直驱无法满足整车动力,需要匹配合适的减速器以满足整车需求。
针对整车实际情况,设计开发了一款单级齿轮箱,传动系统齿轮副基本参数如下:m=2,主动齿轮齿数23,从动轮齿数95,螺旋角10°。
齿轮选用低碳钢材料,轮齿经渗碳淬火后磨齿加工,精度等级6级。
在Romax软件中根据齿轮参数对对应的轴进行建模,并以额定工况载荷,建立Romax模型。
2 修形前模型的分析建立模型后,利用Romax软件针对额定工况进行分析,即输入转速4775rpm、扭矩90N.m的工况下对齿轮箱传递系统进行传动误差分析。
修形前齿轮副传动误差曲线如图1所示,修形前齿轮单位啮合长度的载荷分布如图2所示。
结果表明啮合齿轮副未修形时,传动误差整体波动量较小但变动剧烈存在突变点,说明存在剧烈啮入啮出冲击;同时齿面偏载严重,影响齿轮的使用寿命。
3 齿轮修形量的确定为了改善齿轮啮合性能,弥补齿轮变形、制造误差和齿轮的啮合错位对传递误差的影响,改善齿轮齿面在齿宽方向的受载不平衡及齿面的润滑状态,需对高速齿轮进行齿廓、齿向修形。
齿廓修形有齿顶修形和齿根修形两种方式,齿根修形易导致齿轮强度削弱,因而本设计选用齿顶修形;同时为提高加工效率仅对主动齿轮进行齿向修形,从动大齿轮齿向不修形。
某型齿轮箱传动系统的噪声与振动分析随着科技的进步和人们对质量要求的提高,噪声和振动问题已经成为工业界面临的一个重要挑战。
对于某型齿轮箱传动系统来说,噪声和振动不仅会对设备的正常运行产生负面影响,还会对操作人员的健康和环境造成潜在风险。
因此,对齿轮箱传动系统的噪声与振动特性进行深入分析和优化是十分必要的。
首先,要了解齿轮箱传动系统中噪声和振动的产生机制。
齿轮箱主要由齿轮、轴、轴承等组成,当这些部件在工作过程中发生相对运动时,就会产生振动。
而由于材料、摩擦、结构等因素的限制,这种振动会以声波的形式传播出来,产生噪声。
齿轮、轴、轴承等部件的质量、结构、加工精度等都会对振动和噪声产生影响,因此,在设计和制造过程中应该注重提高部件的质量和加工精度,减少不必要的振动和噪声。
其次,齿轮箱传动系统噪声和振动的分析方法主要由试验和数值模拟两部分组成。
试验方法通常使用振动传感器和声学传感器来测量实际工作状态下的振动和噪声数据。
通过对实测数据的分析,可以了解不同工况下齿轮箱振动和噪声的变化规律,找出可能存在的问题和改进措施。
数值模拟方法则通过建立齿轮、轴、轴承等部件的有限元模型,并结合运动学和动力学分析方法,计算出齿轮箱在不同工况下的振动和噪声情况。
通过数值模拟可以在设计阶段就预测和评估齿轮箱的性能,提前采取相应的改进措施。
齿轮箱传动系统的噪声和振动问题涉及到多个方面的因素。
首先,振动和噪声的源头主要包括齿轮啮合、轴承摩擦、轴向不稳定等。
齿轮啮合时会产生周期性的振动和噪声,当齿轮啮合配合不良或齿轮质量不合格时,啮合过程中会产生不规则的振动和噪声。
轴承摩擦和轴向不稳定则会导致齿轮箱产生高频振动和噪声。
其次,传动系统的结构和材料也会对振动和噪声产生影响。
合理设计传动系统的结构和加强件的连结,选择合适的材料和表面处理方法,可以有效地减少振动和噪声的产生。
再次,传动系统的工作工况也会对噪声和振动产生不同程度的影响。
根据传动系统的工况,合理调整传动比、转速和负载等参数,可以减少振动和噪声的幅度和频率。
浅析齿轮箱震动信号频谱分析与故障诊断摘要齿轮箱作为机械设备重要构成部分,在实际的机械生产和应用中涉及十分广泛,而其在恶劣复杂的工作环境中性能的发挥将直接对整个机械设施的运转产生重要影响。
若是齿轮箱在正常的运转过程中出现问题,不但会影响正常的生产,对经济效益造成影响,甚至会对人身安全产生威胁。
所以,在确保机械设施能够维持正常运转且不具备安全隐患的基础上针对其进行有效的安全检查和定期维保有着十分重要的意义。
关键词:齿轮箱;故障诊断;频谱分析前言近年来,随着科技的不断发展,各个行业有了先进的科学作为基础,呈现出向好发展的趋势,其中,人工智能技术被应用到机械设备领域,对机械设备进行改造,使机械设备变得更智能、更高效、更精确,进一步提高人类生活水平。
在机械设备变得智能化的同时,对机械设备本身的要求也会更高,其中任何一处问题都可能会导致机械设备故障,从而引发重大安全事故。
齿轮传动是较为常用的机械设备传动方式,齿轮传动的应用非常广泛,如为发电机组关键部件,其中齿轮箱为其传动装置,齿轮箱的特点是结构紧密并且传动比大,因此它被运用到各行各业,对的日常生活有很大的影响。
齿轮在使用过程中,一般都处于高速运转状态,冲击力也比较大,在这样的工作环境下,齿轮容易产生很多故障,比如纹裂和断齿等。
在机械运作的过程中,齿轮的损坏可能会导致其他零件的损坏,造成机械故障,从而引发巨大损失。
齿轮箱的主要零部件有齿轮轴、轴承、齿轮和箱体。
齿轮箱根据用途可以选用有平行轴、交错轴及相交轴三种内部形式。
齿轮箱在高运转、高负荷、高冲击的环境下运行时很容易发生故障,可能会导致其他设备故障,从而引发事故的产生。
不仅会造成经济损失,还会威胁人类生命健康,所以针对齿轮箱的实际运行状态进行实时的监控并有针对性的制定应预案,对设备定期展开维护检查,在最大程度上保证设备的稳定安全运转,对人们的安全健康保障有着重要的意义。
1.设备振动信号分析方法1.1时域分析分析系统振动情况时,针对在设备振动信号中存在在时域中时变数据的分析方法是时域分析。
齿轮与齿轮箱振动噪声机理分析及控制写在前面噪声是指发声体做无规则振动时发出的声音。
声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播。
一、齿轮振动的实例1齿轮轮毂的振动齿轮传递扭矩首先从轴传至轮毂,由轮毂传递到轮齿,再由主动轮轮齿传递到被动轮轮毂和轴系。
在传递过程中,由于受到轴向激励力的作用,齿轮轮毂产生轴向振动。
另外,由于啮合力的作用,轮毂也会产生横向和沿周向的振动。
2轴承及轴承座的振动齿轮系统通过轴系安置于轴承及其轴承座上,由于齿轮本体的轴向和周向振动必引起轴承支承系统的振动,相反,外界干扰力(如螺旋桨的轴承力)也可能通过轴承传递给齿轮系统。
3齿轮箱的振动齿轮的振动由轴系传到齿轮箱,激励箱体振动,从而辐射出噪声。
另外,齿轮在箱内振动的辐射声激励箱体,使箱体形成二次辐射噪声,这类噪声大部在中低频范围内。
齿轮箱体本身的振动也直接产生辐射声。
4齿轮的振动在啮合过程中,轮齿先由一点接触而扩展到线接触,或一次实现线接触,使得接触力大小、方向改变,产生机械冲击振动,从而辐射出噪声。
这类噪声呈现高频冲击的形式,其典型的齿轮振动时程曲线示于图2。
轮齿啮合时不断变化的啮合力,既激发齿轮的强烈振动,即各个轮齿的响应很大,也激发了齿轮箱箱体较弱的振动。
通常认为齿轮产生噪声的主要原因是轮齿之间的相对位移。
这类噪声源产生的噪声可以用付氏变换法把噪声表示为稳定频率的分量的集合。
图1 齿轮啮合振动及噪声传播图2 齿轮振动时程曲线二、齿轮振动噪声产生的机理1齿轮啮合激励产生的噪声齿轮的轮齿在啮合时因传动误差产生交变力,在交变力作用下产生线性及扭转响应,使齿轮产生振动辐射出噪声。
这是一种主要的噪声源,接触力变化越大,则齿轮相应的振动响应越大。
另外,齿轮的周节差产生的由复杂的或调制频率及其倍频组成的噪声,含有重复的基频(轴频),频率很低。
由于周节差产生了不规则的脉冲序列。
这种脉冲序列包括了众多的频率成份,但还不能认为是宽带随机噪声。
齿轮箱振动信号频谱分析与故障诊断摘要:随着科技的快速发展,齿轮已经成为现代工业中主要的零部件之一,由于齿轮箱传动比是固定的,传动力矩大,结构紧凑,被各种机械设备广泛的应用,成为各种机械的变速传动部件,但是齿轮是诱发机械故障的重要部位,所以对齿轮箱故障诊断是十分必要的,本文基于齿轮箱振动及调制边频带形成机理的分析,提出用谱平均及倒频谱分析相结合的方法,对监测系统输出信号进行频域分析,诊断齿轮箱故障,并分析产生的原因。
关键词:齿轮箱;振动信号;频谱分析;故障诊断一、齿轮传动装置故障基本形式及振动信号特征对于齿轮传动装置来说零件失效的主要表现为齿轮和轴承,而齿轮所占比例很大,所以根据提取的故障信号特征,提出行之有效的诊断方法是十分必要的,这样才能更好地诊断齿轮传动装置的问题所在。
1.齿形误差当齿轮出现齿形误差的时候,频谱产生啮合频率及高次谐波为载波频率,齿轮所在的轴转频及倍频为调制频率的啮合频率调制现象,谱图上在啮合频率及倍频附近会产生幅值比较小的边频带,当齿形误差比较严重的时候,激振能量很大,就会产生固有频率,齿轮所在轴转频及倍频为调制频率的齿轮共振频率调制现象。
2.齿面均匀磨损当齿轮使用以后齿面会出现磨损失效,当磨损的时候,使得轮齿齿形的局部出现改变,箱体振动信号与齿形误差也有很大的不同之处,啮合频率及高次谐波的幅值也会增加,由于齿轮的均匀摩擦,就不会产生冲击振动信号,所以不会出现明显的调制现象。
当摩擦达到一定程度以后,啮合频率及谐波幅值就会增加,而且越来越大,同时振动能量也在增加。
3.箱体共振齿轮传动装置箱体共振是比较严重的问题,这主要是因为受到箱体外的影响,激发箱体的固有频率,导致共振的形成。
4.轴的弯曲轴轻度弯曲就会造纸齿轮齿形误差,形成以啮合频率及倍频为载波频率,如果弯曲轴上有多对齿轮啮合,就会对啮合频率调制,但是谱图上的边带数量少,但是轴向振动能量很大。
当轴严重弯曲的时候,时域会出现冲击振动,这于单个断齿和集中性故障产生的冲击振动有很大的区别,这是一个严重的冲击过程。
齿轮箱专用振动信号分析方法齿轮箱振动信号的特点是频率成分复杂,存在大量的调制现象,并且齿轮箱(特别是行星齿轮箱)内部的故障信号传递路径长,冲击脉冲比较弱,易受其他信号干扰,被幅值大的转动轴振动信号掩盖,基本的频谱分析有时效果不理想,需要根据结构特点,采用一些专用的分析方法一、多轴系阶比跟踪技术计算阶比跟踪技术(Computed Order Tracking)对齿轮箱分析非常适用,特别是变速齿轮箱的低速轴分析,由于转速低,测量5-10个转动周期需要耗时很长,加上转速变动,如果不做阶比跟踪采集,得到的振动信号直接做FFT,频谱存在非常严重的“模糊”现象(谱线相互重叠,不清晰,不便于故障识别和分析)。
图1:阶比跟踪采样图2:普通频谱分析图3:计算阶比跟踪分析图4:计算阶比跟踪分析局部放大(啮合频率和边带明显)齿轮箱类设备因为有多个齿轮轴,采用多轴系阶比跟踪分析,很多时候分析结果非常直观,直接从不同转轴的阶比跟踪采样波形就能得到故障信息。
图5:中间轴故障图6:输出轴故障二、齿轮箱振动分析Circular图技术下面三张图分别是一个齿轮箱输入轴(高速)、中间轴、输出轴(低速)的Circular图,三个轴的转速比是1:3:5。
可以直观的看到输出轴存在故障。
图7:输入轴振动Circular图图8:中间轴振动Circular图图9:输出轴振动Circular图下图是一个行星齿轮箱的齿圈故障时的振动Circular图。
该行星齿轮箱有三个行星轮。
图10:齿圈有1个断齿时的Circular图三、阶比包络谱技术包络分析对于齿轮箱及其内部的滚动轴承故障分析和故障定位非常有效,包络分析可以有效提取齿轮箱、轴承部件存在缺陷时的高频冲击脉冲信号,但是如果齿轮箱转速不稳定,存在转速变动,这种冲击信号的周期也是随转速变动的,直接进行包络分析效果不好。
采用阶比包络分析技术可以消除转速波动的影响,得到非常清晰的诊断图谱。
图11:频谱分析图12:普通包络分析图13:阶比包络分析四、阶比边带能量比技术齿轮箱振动信号频谱最基本的特征是啮合频率和转轴边带信号。
机械监测与诊断技术论文齿轮震动故障诊断与分析学院:机械与动力学院姓名:**学号:**********2015年11月4号齿轮振动故障诊断与分析一.齿轮典型故障介绍(1)磨损磨损包括磨粒磨损、腐蚀磨损和冲击磨损,磨粒磨损是常见的磨损形式,一般是由于齿的工作表面进入了金属微粒、尘埃和沙粒等所引起的齿面擦伤或者齿面材料脱落,是润滑不好的开式传动齿轮的主要故障类型。
齿轮磨损后,齿的厚度变薄,齿廓变形,侧隙变大,会造成齿轮动载荷增大,不仅会使振动和噪音加大,而且很可能导致断齿。
磨损故障大概占齿轮常见故障比例的10%。
(2)点蚀点蚀是减速箱等闭式齿轮传动系统中极其普遍的故障类型,约占齿轮常见故障比例的31%。
齿轮受啮合过程产生的循环交变应力会在表面产生微小疲劳裂纹,啮合时润滑油进入该裂纹中后被封口并受挤压产生高压,从而扩大了裂纹,最终导致齿轮表面金属的脱落形成麻点状小坑,这就是点蚀。
在齿轮表面硬度低于350HBS的闭式齿轮上,点蚀现象尤为常见。
点蚀的出现会加大齿轮表面的局部接触应力,导致点蚀现象的恶化,进而加剧齿轮啮合时的噪声、降低齿轮传动的精度。
(3)断齿断齿在齿轮故障类型中是最容易发生的,占齿轮常见故障比例的41%。
断齿故障有过载断齿、疲劳断齿和缺陷断齿三种,这里面又以疲劳断齿最为常见,它是由于齿轮工作受到周期性载荷,弯曲应力超过弯曲疲劳极限而在齿根处产生疲劳裂纹,裂纹渐渐扩大,当载荷的循环次数达到一定值时,就会致使轮齿折断。
断齿是所有齿轮故障中最严重的类型,经常会导致停工停产。
(4)胶合齿轮润滑良好时齿面间会保持一层润滑油膜作用,但是当载荷较大、齿面间压力大、工作转速高、工作表面温度较高时,润滑油膜被破坏,使金属齿面直接接触,相接触的金属材料在高温高压作用下发生粘着,相粘连的齿面由于相对滑动而被撕裂,在相对滑动方向形成划痕。
齿面的胶合故障,会加剧齿面的磨损程度和速度,从而使齿轮更加快速地失效。
这种故障类型占齿轮常见故障比例的10%。
摘要齿轮箱作为风电机组中最重要的传动部件,负责将风轮叶片的低转速转换为发电机所需要的高转速,实现能量与扭矩的高效传输;振动是风电机组齿轮箱故障失效的主要原因,随着机组容量的增加, 长期处于恶劣条件下的齿轮箱,由于结构体积的增大和弹性增加,更易引发振动问题。
本文主要研究齿轮箱在变速变载下的振动特性,基于Romax软件建立齿轮箱的振动模型,分析齿轮箱各级齿轮的啮合频率和固有频率。
本文研究内容可为风电机组齿轮箱的优化设计、故障、预防和处理提供技术基础。
关键词: 齿轮箱,固有频率,啮合频率,共振,RomaxABSTRACTGear box is the most transmission Parts in the Wind turbine,it is responsible for the low-speed wind turbine blade into the high-speed generator required to achieve the efficient transmission of energy and torque.Vibration is the main reason of wind turbine gear box failure , along with the increase of unit capacity, long-term adverse conditions in the gear box, due to the increase of the structure and flexibility to increase volume, caused more vibration problems.This paper mainly research gear box's vibration characteristics in the speed change, established gearbox vibration model based on Romax software,analysis of gearbox gear mesh frequency and levels of natural frequency.The contents of this paper provide wind turbine gearbox optimized design, failure for technical basis for the prevention and treatment.Key words : Gear Box , Natural frequency , Meshing frequency, Resonance, Romax目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1选题背景和意义 (1)1.2国内外研究现状 (2)1.3本文工作 (3)1.4本章小结 (3)第2章风电机组齿轮箱力学特点 (4)2.1 前言 (4)2.2 风电机组齿轮箱机械结构 (4)2.3 风电机组齿轮箱外部载荷 (5)2.4 风电机组齿轮箱内部激励 (6)2.5 齿轮箱振动机理 (6)2.6 机械振动系统 (8)2.7本章小结 (10)第3章基于romax的风电齿轮箱建模 (11)3.1世界各地对romax的应用 (11)3.2 Romax软件介绍 (11)3.3 Romax建模 (12)3.4本章小结 (17)第4章固有频率和啮合频率分析 (18)4.1传动比及啮合频率计算 (18)4.2固有频率和啮合频率分析比较 (21)4.3本章小结 (22)第5章结论和展望 (23)5.1结论 (23)5.2展望 (23)参考文献 (24)致谢 (25)第1章绪论1.1 选题背景和意义在人类越来越渴望清洁能源和环保能源的大时代背景下,风电作为一种新兴的清洁能源,受到全世界人类的广泛关注。
美国,德国,日本等国家都在积极地研究风电这一清洁、高效的发电方式。
在中国,风电也在蓬勃发展,金风,华锐,明阳这些企业已经走在了科研的前列,而东方汽轮机厂,华能也新建了风电厂。
从九十年代到2007年,我国风电机组装机总容量已超过560万kW,风电机组共计6469台,分布在全国22个省、市和自治区。
目前已装机的风电机组中,大部分采用的是水平轴结构,并采用齿轮箱作为风轮与发电机之间的传动部件。
齿轮箱负责将风轮叶片的低转速转换为发电机所需要的高转速,实现能量与扭矩的高效传输。
因此,齿轮箱是风电机组中最重要的传动部件。
风电齿轮箱具有质量大、重心高等特点,随着风电机组装机容量的不断增大,轮毂高度逐渐增加,齿轮箱受力变得复杂化,这就造成有些齿轮箱可能在设计上存在缺陷。
一般风电机组都安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难。
由于齿轮箱长期处于这样的恶劣条件下,会出现粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀等失效形式,轻则导致润滑油失效,重则轴、轴承、轮齿的断裂,导致风电机组的停机[5]。
在变速变载这样的情况下,还会出现轮齿折断、齿面点蚀等的情况。
根据国际上有关机构对25台实际运行机组在3个月时间段的故障统计,机组各部件故障造成发电量损失见图1,齿轮箱是风电机组中故障率最高的部件,其主要失效形式为轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形[6]。
图1-1 风电机组故障所造成的发电量损失估计上述齿轮箱失效形式主要由风电机组所承受的变速、变载的复杂作用力引起,其故障特点皆可通过齿轮箱的振动信息表征出来。
因此,分析大型风电机组齿轮箱的振动特点,对于判断零件的失效原因,明确故障部位,并对齿轮箱进行优化设计具有指导意义。
1.2国内外研究现状1.2.1 国外研究现状由于人类认识到风能是清洁、可再生能源,因此世界的风力发电工业正以不同的方式提高风力发电的经济性,各国的公司也都在想方设法提高现有的技术水平,选择最优秀的设计方案。
对振动特性的研究和应用,美国、德国已经走在了世界的前列。
在国外,已经把齿轮的振动和噪声问题作为评价一个齿轮装置好坏的重要因素[7]。
齿轮的振动和噪声问题这个问题引起了世界范围内的广泛关注。
而对齿轮箱的振动模型的建立及其仿真系统已经在德、美这些发达国家中指导并应用在风力的发电当中了,对于齿轮箱的固有频率和啮合频率的研究已经处于世界前沿,使用了如有限元法、使用计算机软件等有效的手段,对影响齿轮箱振动的因素分析比较透彻,并能有效地减小这些影响因素,从而为风电机组齿轮箱的故障分析和判断提供了非常好的平台。
1.2.2 国内研究现状国内由于风力发电机行业本身起步较晚,很多风电技术还不成熟,处于探索阶段。
对于齿轮箱振动特性的分析还处于起步状态,在国内风力发电机上的运用还比较少。
目前我国还没有相关的振动标准,对整个齿轮箱系统模型进行了模态分析和动态响应分析,得出了齿轮箱的固有特性和箱体表面的振动响应曲线,而对成果的检验和应用还没有完善的技术。
但是,我们国家已经有企业致力于这方面的研究,通过建立各种模型,对轮齿进行受力分析,在变速变载的情况下研究振动特性,分析各种型号的固有频率、啮合频率等等已经有了很大的进步了.我国很多企业引进国外成熟技术,吸收消化,以提高国产化机组的制造技术。
采用与国外公司合作生产的方式引进技术,并允许国外风电机组制造厂商在我国投资设厂。
国内有关的风电机组制造、生产企业,已研制出、1.5Mw机组的关键部件,如齿轮箱和叶片等,并且750Kw的机组其本地化率已达到90%,还有如江苏千鹏公司,建立了该齿轮箱的直齿圆柱齿轮三维接触有限元模型和整个齿轮箱系统有限元模型,对直齿圆柱齿轮进行了接触分析,得到了直齿圆柱齿轮的综合啮合刚度激励,同时对整个齿轮箱系统模型进行了模态分析和动态响应分析,得出了齿轮箱的固有特性和箱体表面的振动响应曲线。
通过齿轮箱声压和声强实验,预测了该齿轮箱噪声值,且验证了有限元分析的有效性和准确性。
而在应用这方面国家也正在不遗余力地研究,相信在十年之内,我国的风电技术会引领世界[8]。
1.3 本文工作齿轮箱是风电机组主传动系统最主要的振动部位,本文对风电机组齿轮箱的振动特性进行深入研究,分析齿轮箱各级齿轮的固有频率与啮合频率之间的关系,主要研究内容如下:(1)分析风电机组齿轮箱的机械结构振动问题作了一些介绍,然后对齿轮箱的重要性,产生故障的原因,故障的类型等等作了一些详尽的阐述。
(2)在变速变载的情况下,,对机械振动系统特别是固有动态产生比较大的影响.选取了一组风电机组齿轮箱的数据作为参考,作了一些计算,计算了各级轮系的传动比,然后在风轮转速为15,22.34,85,128,306,457六种速度下分别计算了主轴,太阳轮,中间轮,高速轴的转速同步频率;行星级、中间级、高速级的啮合频率及10%的浮动范围。
(3)系统学习Romax软件, 并基于该软件建立齿轮箱振动模型。
分析变速、变载情况下齿轮箱的各阶振型和固有频率。
(4)对齿轮箱的固有频率和啮合频率进行比较分析,得到了共振区,指出在实际应用中应该尽量避开这些共振区。
1.4本章小结本章对风电机组振动特性的选题背景和意义作了一些阐述,并介绍了一些国内外研究现状,然后介绍了本文所要进行的工作,并介绍了主要研究内容。
第2章风电机组齿轮箱力学特点2.1 前言风电齿轮箱是一个复杂的弹性机械系统。
齿轮啮合时轮齿的弹性变形、时变啮合刚度、啮入出冲击、齿侧间隙、制造误差等都对轮齿静动力接触特性、系统动态性能、系统传动精度等有很大影响。
齿轮箱同时承受由原动机和负载引入的外部激励和由时变啮合刚度、齿轮传动误差和啮合冲击所引起的内部激励,其振动受轴、齿轮、轴承、等多种振动的影响,具有高度的非线性特点及耦合效应。
要综合考虑上述因素,用解析法难以全面描述其动力模型,其求解过程也极为繁杂,用实验方法可以测量系统的模态和响应,但难以直接测量齿轮接触区动态接触特性,也无法在设计阶段预估其动态特性并修改设计加以改善。
因此,有必要结合试验分析数据,研究齿轮系统动态特性综合数值分析方法,开发齿轮系统振动冲击数值仿真软件,实现它的动态响应分析[9]。
2.2 风电机组齿轮箱机械结构图2-1 风电齿轮箱机械结构图使用齿轮箱,可以将风电机转子上的较低转速、较高转矩,转换为用于发电机上的较高转速、较低转矩。
风电机上的齿轮箱,通常在转子及发电机转速之间具有单一的齿轮比。
对于600千瓦或750千瓦机器,齿轮比大约为1比50。
齿轮箱的结构包括输出轴、齿轮箱盖、大齿轮、小齿轮和齿轮箱,所述的齿轮箱内设有至少二个卡位,挡油罩上设有与卡位相对应的定位,挡油罩通过定位设置在齿轮箱的卡位上,齿轮箱盖上设有与挡油罩接合口相匹配的压圈,挡油罩与齿轮箱盖构成小齿轮和大齿轮的传动腔室.齿轮箱以三点支撑,输入为空心轴,采用锁紧盘,联接在主轴上,其余两点通过对称分布于前箱体扭力臂两端上的支座、弹性套联接在机舱底座上。