《初中同步测控全优设计》2013-2014学年沪科版七年级数学上册例题与讲解:第4章4.4 角
- 格式:doc
- 大小:6.25 MB
- 文档页数:4
【七年级上册数学同步学考优化设计(沪科版)】一、引言在七年级数学学习中,数学同步学考是非常重要的一环。
它不仅能够检测学生对数学知识的掌握程度,还可以帮助学生巩固知识,提高解题能力。
对于七年级上册数学同步学考的优化设计尤为重要。
二、解题技巧的培养在进行数学同步学考优化设计时,首先要注意的是培养学生的解题技巧。
对于七年级的学生来说,他们在数学学习中需要掌握一些基本的解题技巧,比如说列方程、几何图形的运用、分数的运算等。
在同步学考的设计中,应该注重对这些技巧的训练和考察,帮助学生掌握解题方法,从而提高他们的解题能力。
三、深化对基础知识的理解除了解题技巧的培养,同步学考的设计也应该着重于深化学生对基础知识的理解。
七年级上册数学包括了整数、有理数、方程、比例、百分数等内容,这些都是数学学习的基础,对于学生的数学学习能力起着至关重要的作用。
在同步学考的设计中,应该设置一些能够考察学生对这些基础知识掌握程度的题目,帮助他们深化对基础知识的理解,从而为将来更深入的学习打下坚实的基础。
四、引导学生思维的发展在同步学考的设计中,还应该注重引导学生思维的发展。
数学作为一门学科,其核心是逻辑思维和数学思维。
同步学考的设计应该设置一些能够引导学生思维发展的题目,帮助他们培养良好的数学思维习惯,提高他们的逻辑思维能力。
只有这样,学生才能在数学学习中游刃有余。
五、个人观点对于七年级上册数学同步学考的优化设计,我认为应该注重培养学生的解题技巧,深化对基础知识的理解,引导学生思维的发展。
只有这样,才能真正帮助学生在数学学习中取得更好的成绩。
六、总结与回顾在七年级上册数学同步学考的优化设计中,应该全面考虑学生的数学学习需求,注重培养解题技巧,深化基础知识的理解,引导思维的发展。
只有这样,才能帮助学生在数学学习中取得更好的成绩,为将来的学习打下更加坚实的基础。
在撰写这篇文章时,我深刻地体会到了七年级上册数学同步学考的重要性,对各个方面的优化设计也有了更深入的理解和思考。
(沪科版)七年级数学上册专题复习 二元一次方程组及其解法例题与解析1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1=y +5,5y -1=3x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3, 所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题 常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b 的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2x +m -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2x +m -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本.8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。
3.4 整式的加减1.同类项所含字母相同,并且相同字母的指数也相等的项叫做同类项.在学习同类项时,注意以下几点:x 2yxy 2x 2yxy 2不是同类项;(2)所含字母相同,并且次数也相同的两个单项式不一定是同类项,如4a 2b 3与-23a 3b 2所含字母都是a ,b ,两个单项式的次数都是5,但相同字母的指数并不相等,因此不是同类项;(3)同类项与所含字母的顺序无关,如3x 2y 与-32yx 2虽然所含字母x ,y 的顺序不同,但x 的指数都是2,y 的指数都是1,因此它们是同类项;(4)同类项与单项式的系数无关,如3m 2n 3与-m 2n 3x 2yxy 2虽然系数相同,却不是同类项;(5)作为特例,几个常数项也是同类项,如-125与12,23与32是同类项;若把某些多项式看成一个整体,它们也是同类项,如若把(x -y )看成一个整体,则-4(x -y )与7(x -y ),3(x -y )2与-6(x -y )2都是同类项;(6)由于π是一个以字母面孔出现的特殊常数,因此在判断同类项时,要注意提高对π的警惕.如在判断-12x 2y 3x 2y 3是否为同类项时,有的同学误把π当作字母而断定-12x 2y 3x 2y 3不是同类项.其实,-12x 2y 3x 2y 3是同类项,原因就在于π是常数,因此-12x 2y 3x 2y 3的字母部分相同.【例1】 下列各题中的两项是同类项的个数是( ).(1)2ab 2与-4a 2b ;(2)-2abc 与acb ;(3)-2a 2b 与-6a 2c ;(4)-10与15.A .1B .2C .3D .4解析:判别两项是否是同类项,要看所给的两项是否满足同类项所具备的两个条件.同时还要注意以下几点:①同类项与系数大小没有关系;②同类项与字母的排列顺序没有关系;③几个常数(有理数)也是同类项.本题中(1)不是同类项,因为相同字母的指数不相同;(2)是同类项,因为具备同类项的两个条件;(3)不是同类项,因为两项所含的字母不相同;(4)是同类项,因为几个常数也叫做同类项.答案:B谈重点识别同类项的关键识别同类项应把握两个方面,一是字母,二是相同字母的指数,与系数、顺序无关.2.合并同类项(1)概念:把多项式中的同类项合并成一项,叫做合并同类项.①一个多项式中的同类项可能有几组,应正确找出多项式的同类项,将每组同类项分别合并;②几个常数项也是同类项,也需要合并成一项.(2)法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.①只有同类项才能合并,不是同类项的项不能合并.②合并同类项,只合并系数,字母和字母的指数不变.③合并同类项时要彻底,不要漏项.④合并同类项后的结果,若系数是带分数,一定要化成假分数.⑤若合并同类项后系数是1或-1,则应省去1.⑥若合并同类项后系数为0,则合并的结果等于0.⑦合并同类项的类型比较多,在合并同类项时,要根据题目特点灵活合并.(3)步骤:①用各种不同的符号标出同类项,这样可防止弄错,特别可防止漏掉同类项.②利用加法交换律,把同类项连同前面的性质符号写在一起,再用括号括起来.谈重点合并同类项的关键合并同类项的关键是先标出同类项再进行合并,合并同类项时,只把系数相加减,字母及其指数不变.【例2】合并同类项4x2-6x+3-5x2-7x-1.分析:合并同类项首先要找出同类项,然后再根据合并同类项的法则进行合并.本题的同类项有:4x2和-5x2,-6x和-7x,3和-1.解:4x2-6x+3-5x2-7x-1=(4x2-5x2)+(-6x-7x)+(3-1)=-x2-13x+2.警误区合并同类项要注意的问题合并同类项应注意系数包括前面的符号,如4x2和-5x2是同类项,不要漏掉-5x2前面的“-”号.3.去括号(1)为什么要去括号?在有理数运算中,如有括号,一般要先算括号里面的.但在整式运算中,如有括号,常常无法先算括号里的,此时需先去括号,才能使运算进行下去.如化简5a+2b+(3a-4b),若不先去括号,就无法化简.(2)怎样去括号?①利用去括号法则去括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.②利用分配律去括号a(b+c)=ab+ac,这是我们熟知的分配律.如果视括号前的“+”号为“+1”,“-”号为“-1”,那么利用分配律也可以去括号.(3)去括号的注意事项①把括号和括号前的符号视为一个整体,就是说去括号时,要连同它前面的符号同时去掉.②若括号前的系数不是“1”,去括号时应灵活选择适当的方法去括号.③去括号法则是从大量的运算事实中推导出来的,遵循上述去括号的法则可以确保括号去掉后与去掉前两个整式的相等性;如果不遵循法则,括号虽然去掉了,但这种变形不能称是去括号.【例3】x-(2x-y)的运算结果为__________.解析:此题的括号前为“-”号,所以在去括号时,括号里的各项都要改变符号,括号里的项为2x,-y,变号后为-2x,y,所以结果为x-2x+y,合并同类项,算得最后结果即可.答案:-x+y4.添括号(1)添括号思路:确定放入括号中的项;确定括号前的符号;决定放入括号中的项是否变号.①a+b-c=a+(b-c);②-a+b+c-d=(-a+b)+(c-d);③3a-2b+c=+(3a-2b+c)=-(-3a+2b-c).(2)添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.【例4】按下列要求,将多项式x3-5x2-4x+9的后两项用( )括起来:(1)括号前面带有“+”号;(2)括号前面带有“-”号.分析:首先要确认x3-5x2-4x+9的后两项是什么——-4x,+9,要特别注意每一项都包括前面的符号;再次确认添的是什么——是( )及它前面的“+”号或“-”号.若是“+”号,则放入括号中的项不改变正负号;若是“-”号,则放入括号中的项要改变正负号.解:(1)x3-5x2-4x+9=x3-5x2+(-4x+9);(2)x3-5x2-4x+9=x3-5x2-(4x-9).解技巧添括号问题的解题思路(1)确认要放入括号中的项;(2)确认括号前的符号,从而决定放入括号中的项是否改变正负号.5.整式的加减整式的加减实质上就是“去括号”和“合并同类项”法则的综合运用,一般步骤是:先去括号,再合并同类项.【例5】已知A=2x2-3x+1,B=3x2-2x-4,求3A-2B.分析:A,B分别表示两个多项式,先把这两个多项式分别进行整体代入,然后再去括号,合并同类项.解:3A-2B=3(2x2-3x+1)-2(3x2-2x-4)=6x2-9x+3-6x2+4x+8=-5x+11.警误区进行整式的加减要注意的问题一方面注意把多项式当作整体加上括号;另一方面当括号前面既有数又有“-”号时,注意去括号时的符号变化情况.6.深入理解同类项以及合并同类项的意义根据同类项的概念求整式的未知次数是一个重点题型,解决此类问题主要根据同类项的相同字母的指数相同构造关系式.注意解决本题时所体现的方程思想与分类讨论的思想.考查方式主要有以下两种:①直接告诉两个单项式是同类项,②间接告诉两个单项式是同类项,例如告诉两个单项式的和是单项式,两个单项式能够合并为一项等.析规律能合并的项是同类项只有同类项才能合并,非同类项不能合并.所以如果两个单项式能够合并为一项,则这两个单项式一定是同类项.【例6-1】若2x m-1y2与-x2y n的和是单项式,则(-m)n=__________.解析:要使2x m-1y2与-x2y n的和是单项式,必须要求这两个单项式是同类项,根据同类项的意义“相同字母的指数分别相同”可得m-1=2,即mn=2,所以(-m)n可求.答案:9【例6-2】若a4b3与3a m-1b n是同类项,-2a x b|y|与3a m-1b n是同类项,则x=__________,y=__________.解析:由同类项的概念可知,a4b3与-2a x b|y|也是同类项,从而有x=4,|y|=3.∴x,y 的值可求.答案:4 ±3解技巧由同类项的概念求字母指数的问题的解题思路解决此类问题时,一定要先求容易计算的字母的次数,不容易计算的字母的次数或者需要借助另一个未知数才能计算的字母的次数可以放在最后计算.已知代数式和代数式中字母的取值,求代数式的值,一般不要直接将字母的取值代入代数式,而应该先将代数式进行化简,然后再代入求值(有时往往要用到整体思想).若直接代入,将不胜其繁,不可取,请同学们注意.含多层括号的整式加减实质上就是去括号、合并同类项的化简过程,化简多项式时,如果题中含有多重括号,可由里往外逐层去括号,也可以由外往里逐层去括号,但是要注意内层括号看成一项来处理.将代数式化简到最简形式后,如果代数式里面不再含有字母,而是一个常数,则代数式的取值就与字母的取值无关.【例7-1】求代数式-3x2+5xx2+x-1的值,其中x=2,说一说你是怎么算的.分析:代数式中的项-3x2x2,5x与x是同类项,要先合并同类项,再代入x的值,从而求代数式的值,先化简再求值可使运算简便.解:原式=-3x2+5xx2+xx2+6x-1,当x=2时,原式=-3.5×22+6×2-1=-14+12-1=-3.【例7-2】李老师给学生出了一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b +3a3+6a3b-3a2b-10a3的值.题目出完后,小聪说:“老师给的条件a=0.35,b=-0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理?为什么?分析:要判断谁说得有道理,可以先合并同类项,如果最后的结果是个常数,则小聪说得对,否则,小明说得有道理.解:原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,合并的结果为0,与a,b的取值无关,所以小聪说得有道理.8.整式加减中的数学思想的应用学习整式的加减,不仅要熟练地掌握运算法则进行整式的加减运算,而且还要了解其中蕴涵的数学思想方法.(1)分类讨论思想分类讨论思想就是根据问题可能存在的情况,进行分类讨论,防止出现漏解的一种数学思想方法.(2)由一般到特殊的思想根据“如果一个命题在一般情况下成立,那么它在特殊情况下也必定成立”的原理,这样就能取特殊值代入求值,则很容易就能求出所求的值.(3)化归转化思想化归转化思想就是将需要研究和解决的新问题变为已经学过的老问题来处理的一种数学思想.陌生问题熟悉化,复杂问题简单化,抽象问题具体化,就是化归转化思想的具体表现.解决此类问题时,分层、分阶梯的分析、思考是一种很好的解题途径.【例8-1】 若多项式2xn -1-x n +3x m +1是五次二项式,试求3n 2+2m -5的值. 分析:求代数式3n 2+2m -5的值,必须根据条件求出n 和m 的值.从表面上看所给的多项式2xn -1-x n +3x m +1有三项,这就说明某两项是相同的,显然2x n -1和x n 不可能合并成一项.解:由多项式2xn -1-x n +3x m +1是五次二项式,可分情况讨论: ①若2x n -1与3x m +1是同类项,而-x n 是五次的,则n =5,n -1=4,m +1=n -1=4,得m =3.所以3n 2+2m -5=3×52+2×3-5=76;②若-x n 与3x m +1是同类项,且都是五次的,则n =5,m +1=5,得m =4,所以3n 2+2m -5=3×52+2×4-5=78.【例8-2】 已知a +b +c =0,abc >0,求b +c |a |+a +c |b |+a +b |c |. 分析:本题可以用特殊值法求解,用特殊值法求解可以把看似复杂的问题变得简单明确. 解:因为a +b +c =0,abc >0,所以我们不妨设a =3,b =-1,c =-2,则原式=-1-23+3-21+3-12=-1+1+1=1.。
4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB 等于a-b的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小. (2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________; (4)AB =__________+__________. 解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能. 答案:(1)AC AD AB CD CB DB (2)AC CD DB AC CD CD DB (3)CB AC DB(4)AD DB 或AC CB 6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点…. (3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB .【例6】 如图,点C 是线段AB 的中点. (1)若AB =6 cm ,则AC =__________cm. (2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm).若AC =6 cm ,那么AB =2AC =2×6=12(cm). 答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ).A .点C 在AB 上 B .点C 在AB 外 C .点C 在AB 延长线上D .无法确定 答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算:(1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm , 所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm ,所以BE =AB +AE =5+5=10 (cm). 8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1).【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种).答:共有4 950种不同的结果.9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm).答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2.答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个.【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ). A .1 B .2 C .3 D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况. 11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB放置到一个平面上,根据“两点之间,线段最短”,连接AB,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB,则AB是壁虎爬行的最短路线.解:在圆柱上,标出A,B两点,将圆柱的侧面展开(如图(2)),连接AB,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律立体图形中的最短路线在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。
3.3 二元一次方程组及其解法1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1y +5,5y -13x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本. 8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。
3.6 综合与实践 一次方程组与CT 技术1.三元一次方程组(1)由三个一次方程组成的含三个未知数的方程组,叫做三元一次方程组.如⎩⎪⎨⎪⎧x =3,y =1,z =-1,⎩⎪⎨⎪⎧4x +3y +2z =7,6x -4y -z =6,2x -y +z =1都是三元一次方程组.(2)判断一个方程组是不是三元一次方程组就看它是否满足以下两个条件:一是看整个方程组里含有的未知数是不是三个;二是看含有未知数的项的次数是不是1.【例1】 下列方程组不是三元一次方程组的是( ).A.⎩⎪⎨⎪⎧ x +y =1,2y +z =-2,3y =6B.⎩⎪⎨⎪⎧ x 2-4=0,y +1=x ,xy -z =-3C.⎩⎪⎨⎪⎧x =2,2y =-3,x -z =1D.⎩⎪⎨⎪⎧y -x =-1,x +z =3,2y -z =0解析:由题意知,含有三个未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.A 中满足三元一次方程组的定义,故A 选项正确;B 中x 2-4=0,未知量x 的次数为2次, 所以不是三元一次方程,故B 选项错误;C 中满足三元一次方程组的定义,故C 选项正确;D 中满足三元一次方程组的定义,故D 选项正确. 答案:B2.三元一次方程组的解法(1)解三元一次方程组的基本思路:化三“元”为二“元”,再化二“元”为一“元”,即利用代入法和加减法消“元”逐步求解.(2)解三元一次方程组的基本步骤:①把三个方程分成两组,分别组成两个方程组.一般地,把系数最小的方程作为公共方程,分别与其余两个方程组成两个方程组.②分别消去两个方程组中的同一个未知数,得到两个二元一次方程.一般消去两个方程组中系数小的未知数,特别注意,两个方程组必须消去同一个未知数.③把两个二元一次方程联立组成二元一次方程组,并解方程组,求出二元一次方程组的解.④把二元一次方程组的解代入三元一次方程组中的某个方程,求出另一个未知数的值. ⑤写出三元一次方程组的解.【例2】 解方程组⎩⎪⎨⎪⎧ 3x +2y +z =13,x +y +2z =7,2x +3y -z =12.①②③分析:比较此三元一次方程组的三个方程都含三元,三个方程中未知数z 的系数最简单,考虑用加减法消z ,消z 的方案有以下几种:方案:①+③;②+③×2;①×2-②.这里选择最简单的两种方案①+③和②+③×2,消同一个未知数z ,就可以得到关于x ,y 的二元一次方程组.解:①+③,得5x +5y =25,④②+③×2,得5x +7y =31,⑤④与⑤组成⎩⎪⎨⎪⎧5x +5y =25,5x +7y =31, 解这个方程组,得⎩⎪⎨⎪⎧x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入①,得z =1.所以⎩⎪⎨⎪⎧x =2,y =3,z =1.3.列三元一次方程组解应用题的一般步骤(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系. (2)设:设未知数(一般求什么,就设什么为x ,y ,z ). (3)找:找出能够表示应用题全部意义的三个等量关系.(4)列:根据这三个等量关系列出需要的代数式,进而列出三个方程,组成方程组. (5)解:解所列方程组,得方程组的解.(6)验:检验所求未知数的值是否符合题意,是否符合实际. (7)答:写出答案(包括单位名称).谈重点 用三元一次方程组解应用题的步骤(1)“审”和“找”两步在草稿上进行,书面格式中主要写“设”、“列”、“解”和“答”四个步骤.(2)解应用题时,切勿漏写“答”,“设”和“答”要写清单位名称.【例3】 某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人 获一等奖人数(名) 获二等奖人数(名) 获三等奖人数(名)奖金总额(万元)2009年 10 20 30 41 2010年 12 20 28 42 2011年 14 25 40 54分析: 解:设一、二、三等奖的奖金额分别为x 万元、y 万元和z 万元,可得⎩⎪⎨⎪⎧ 10x +20y +30z =41,12x +20y +28z =42,14x +25y +40z =54,解这个方程组得⎩⎪⎨⎪⎧x =1,y =0.8,z =0.5.答:技术革新一、二、三等奖的奖金额分别是1万元、0.8万元和0.5万元. 4.构造三元一次方程组解决问题 (1)求不定方程 不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.任何一个三元一次方程都有无数组解,但是其整数解有有限个.一般的应用三元一次方程解决实际问题时所列出的三元一次方程的解应当有有限个. 因为对于实际问题,必须保证其解有意义,一般从某一个未知数的符合条件的最小值开始试,然后依次增大,分别求出另一个未知数的对应值,从而确定问题的答案.(2)方程组的解的应用 常见的考查方式是,已知二元一次方程组的解满足第三个二元一次方程或已知两个未知数的某种关系,求方程中的待定系数的值.通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.【例4-1】 有一份选择题试卷共六道小题.其得分标准是:一道小题答对得8分,答错得0分,不答得2分.某同学共得了20分,则他( ).A .至多答对一道小题B .至少答对三道小题C .至少有三道小题没答D .答错两道小题 解析:设答对x 题,答错的有y 题,不答的有z 题. 依题意得⎩⎪⎨⎪⎧ x +y +z =6,8x +2z =20,①②且满足0≤x ≤6,0≤y ≤6,0≤z ≤6,都为整数.当x =0时,z =10,不合题意舍去;当x =1时,z =3,y =6,不合题意舍去;当x =2时,z =2,y =2.故选D.答案:D【例4-2】 如果方程组⎩⎪⎨⎪⎧3x +7y =10,ax +a -1y =5的解中的x 与y 的值相等,那么a 的值是( ).A .1B .2C .3D .4解析:理解清楚题意,运用三元一次方程组的知识,解出a 的数值,根据题意得⎩⎪⎨⎪⎧ 3x +7y =10,ax +a -1y =5,x =y ,①②③把③代入①得3y +7y =10,解得y =1,x =1,代入②得a +(a -1)=5,解得a =3.故选C.答案:C5.利用三元一次方程组解数字问题 (1)多位数字表示问题两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.如:一个两位数,个位数字是a ,十位数字是b ,所以这个两位数是b 个10和a 个1的和,那么这个数可表示为10b +a ;如果交换个位和十位上的数字,得到一个新的两位数可表示为10a +b .(2)数位变换后多位数的表示两位数x 放在两位数y 的左边,组成一个四位数,这时,x 的个位数就变成了百位,十位数就变成了千位,因此这个四位数里含有x 个100,而两位数y 在四位数中数位没有变化,因此这个四位数中还含有y 个1.因此用x ,y 表示这个四位数为100x +y .同理,如果将x 放在y 的右边,得到一个新的四位数为100y +x .(3)一个两位数,个位上的数字是m ,十位上的数字是n ,如果在它们之间添上零,十位上的n 便成了百位上的数.因此这个三位数是由n 个100,0个10,m 个1组成的,用代数式表示这个三位数即为100n +m .【例5-1】 一个三位数,它的十位上的数字是百位上数字的3倍,个位上数字是百位上数字的2倍,设这个三位数个位上的数字是x ,十位上的数字为y ,百位上的数字为z .(1)用含x ,y ,z 的代数式表示这个三位数:__________; (2)用含z 的代数式表示这个三位数:__________; (3)写出所有满足题目条件的三位数:__________.解析:(1)x 在个位上,直接用x 表示;y 在十位上,表示y 个10,用10y 表示;z 在百位上,表示z 个100,用100z 表示,用含x ,y ,z 的代数式表示这个三位数为100z +10y +x .(2)因为该数的十位上的数字是百位上数字的3倍,个位上数字是百位上数字的2倍,所以y =3z ,x =2z ,于是100z +10y +x =100z +10×3z +2z =132z .(3)当z =1时,y =3z =3,x =2z =2,该数为132;当z =2时,y =3z =6,x =2z =4,该数为264;当z =3时,y =3z =9,x =2z =6,该数为396;当z >3时,该数不存在.答案:(1)100z +10y +x (2)132z (3)132,264,396【例5-2】 某个三位数除以它各数位上数字和的9倍,得到的商为3,已知百位上的数字与个位上的数字的和比十位上数字大1,如果把百位上的数字与个位上的数字交换位置,则所得新数比原数大99,求这个三位数.分析:在设未知数时,应设出各位上的数字.题目中共有三个等量关系式:(1)这个三位数=各位数字之和的9倍×3;(2)百位上的数字+个位上的数字的和=十位上数字+1;(3)百位上的数字与个位上的数字交换位置所得新数-原三位数=99.解:设这个三位数,个位上的数字为x ,十位上的数字为y ,百位上的数字为z ,根据题意,得⎩⎪⎨⎪⎧100x +10y +z =3×9x +y +z ,x +z =y +1,100z +10y +x -100x +10y +z =99.解得⎩⎪⎨⎪⎧x =2,y =4,z =3.所以这个三位数是243.。
5.1 相交线1.对顶角(1)对顶角概念如图,直线AC 与BD 相交于O 点,则图中形成了四个角,分别是:∠1,∠2,∠3与∠4.∠1和∠3具有相同的顶点,且∠1的两边OA ,OC 分别与∠3的两边OB ,OD 互为反向延长线,我们把这样的两个角叫做对顶角.∠2和∠4也是对顶角.谈重点 对顶角概念的理解 ①对顶角必须具备两个条件:一是有公共顶点;二是两边互为反向延长线.②对顶角是成对出现的,且具有特殊的位置关系,主要反映角的位置关系.(2)对顶角性质性质:对顶角相等,即:∠1=∠3,∠2=∠4.【例1-1】 下列各组角中,∠1与∠2是对顶角的为( ).解析:根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.根据两条直线相交,才能构成对顶角进行判断,A ,B ,C 都不是由两条直线相交构成的图形,错误;D 是由两条直线相交构成的图形,正确.故选D.答案:D【例1-2】 如图,AB ,CD 相交于点O ,OB 平分∠DOE ,若∠DOE =60°,求∠AOD 和∠AOC 的度数.分析:观察图形可以发现,∠AOD 和∠BOD 互为补角,∠AOC 和∠BOD 互为对顶角,所以只要求出∠BOD 的度数,然后利用互补和对顶角的性质即可解决问题.解:因为OB 是∠DOE 的平分线,所以∠BOD =∠DOE =×60°=30°.1212所以∠AOC =∠BOD =30°,∠AOD =180°-∠BOD =180°-30°=150°.解技巧 利用对顶角、邻补角解决问题时要仔细观察图形 利用对顶角、邻补角解决问题,应注意图形中哪些是互补的角,哪些是对顶角,在解决问题时用到哪些对顶角和互补的角.2.垂线(1)垂线的定义:当两条直线相交所构成的四个角中有一个角是直角时,其他三个角也都成为直角,此时,这两条直线互相垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足.如图,直线AB,CD互相垂直,记作AB⊥CD,读作“AB垂直于CD”.注意:两条射线或线段的垂直,指的是它们所在的直线相互垂直.(2)画垂线①用量角器画垂线,相当于利用量角器作一个90度的角.a.经过直线上一点画已知直线的垂线先让量角器的底线落在已知直线上,并使量角器底边的中心点与直线上已知的点O重合,再在量角器90度所对的位置处标出一点C,拿走量角器,过O,C两点作直线OC即可.b.经过直线外一点画已知直线的垂线先让量角器的底线落在已知直线上,并使量角器90度的垂直线经过直线外的点P,再在量角器90度所对的位置处标出一点C,拿走量角器,过P,C两点作直线PC即可.②用三角板画垂线,利用三角板画垂线,主要是利用三角板中的直角.a.落:使三角板的一条直角边落在已知直线上;b.过:移动三角板,使三角板的另一直角边经过已知点;c.画:沿过已知点的直角边画直线.(3)垂线段:过一条直线外一点作已知直线的垂线,这点与垂足之间的线段叫做垂线段;从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.注意区分两组概念:①垂线与垂线段:它们都具有垂直于已知直线的共同特征,但垂线是一条直线,不能度量,而垂线段是一条线段,可以度量长度,它是垂线的一部分.②两点之间的距离与点到直线的距离:两种距离都是指线段的长度,是一种数量关系,都具有“最小”的特征,但前者是指连接两点的线段的长度,后者是指点到直线的垂线段的长度(可以化归为这点与垂足之间的线段长).(4)垂线的性质:①过一点有且只有一条直线与已知直线垂直.②直线外一点与直线上各点连接的所有线段中,垂线段最短.【例2】如图,∠1=53°,∠2=37°,CD与CE的位置关系是__________.解析:先求出∠DCE的度数,再根据度数判定位置关系.因为∠DCE=180°-∠1-∠2=180°-53°-37°=90°,所以CD⊥CE.答案:垂直解技巧证明两直线垂直的方法 垂直的定义为我们提供了一种证明垂直的方法和途径,若要证明两直线垂直,只需要证明两直线相交所成的四个角中有一个是直角即可.3.相交线中的角(1)同位角、内错角、同旁内角的定义:①如图,∠1和∠5分别在直线AB,CD的上方,并且都在直线EF的右侧,像这样位置的一对角叫做同位角.②如图,∠3和∠5这两个角都在直线AB,CD之间,并且∠3在直线EF的左侧,∠5在直线EF的右侧,像这样位置的一对角叫做内错角.③如图,∠3和∠6这两个角都在直线AB,CD之间,并且在直线EF的一旁,像这样位置的一对角叫做同旁内角.(2)同位角、内错角、同旁内角的识别:①定义法:根据定义两个角共涉及三条直线,两角的一边分别在两条直线上,而另一边在同一直线上,两角有“共线边”是定义的实质,抓住“一边共线”便不难识别.如图甲中的∠1和∠2,涉及EF,MG,ND三条直线,且它们都有边在直线EF上,故∠1和∠2是同位角.又如图乙中的∠1和∠2是否为同位角?因涉及AD,AC,AB,BC四条直线,无公共边,故∠1和∠2不是同位角.②简化法:“简化”就是排除次要的部分,把复杂图形中需要识别的图形无关的部分略去不考虑,使隐藏于其中的基本图形显现出来,如图中的∠1和∠2是否是同位角?将∠1和∠2的两边描粗,可知两角无共线边,故∠1和∠2不是同位角.③分离图形法:把有一边共线的两角从复杂图形中分离出来,两角关系便一目了然,如要找出图中的用数字标注的角中的同位角、内错角、同旁内角时,我们可以把有共线边的两角从图中分离出来,形成如图所示的简单图形,这就容易识别出∠1和∠5是同位角,∠3和∠5,∠3和∠4,∠4和∠5是同旁内角,∠2和∠4是内错角.④形象感受法a.同位角的边构成形如字母“F”状.如图,∠M与∠N为同位角.b.内错角的边构成形如字母“Z”状.如图,∠M与∠N为内错角.c.同旁内角的边构成形如字母“U”状.如下图,∠M与∠N为同旁内角.【例3】如图,∠1和∠2是哪类角?分析:首先找到构成这对角的三条直线a,b,c,其中c为截线,然后去掉无关的直线d,则原图简化成为下图,这样便知∠1和∠2为同位角.解:∠1和∠2为同位角.解技巧 分离图形识别“三线八角” 对复杂图形中“三线八角”的识别,巧妙分离图形,简化图形是最有效的方法之一.同时,本题还可用其他方法解决.4.两条直线垂直关系的判断两条直线垂直是相交的特殊情况,两线段垂直、两射线垂直、线段与射线垂直、线段与直线垂直、射线与直线垂直,都指它们所在的直线垂直.垂直关系的判断就是通过角度的计算得到两条直线所成的四个角中有一个角是90°.下面简单回顾一下能得到90°角的几种情况:(1)平角的一半是直角;(2)利用等量代换得到的和为90°的角.如图,∠1+∠2=90°,如果∠2=∠3,则∠1+∠3=90°,所以OA ⊥OB .【例4】如图所示,已知AOB 是一条直线,OD 平分∠AOC ,OE 平分∠BOC ,判断OD ,OE 的位置关系,并说明你的理由.分析:由AOB 是一条直线,可知∠AOC +∠BOC =180°,又因为OD 平分∠AOC ,OE 平分∠BOC ,所以利用角平分线的概念可以求解.解:OD 与OE 的位置关系是互相垂直,垂足为O .理由如下:因为AOB 是一条直线(已知),所以∠AOC +∠BOC =180°(平角的定义),所以∠AOC +∠BOC =90°(等式的性质).又因为OD 平分∠AOC ,OE 平分∠BOC (已知),所以1212∠DOC =∠AOC ,∠COE =∠BOC (角平分线的定义),所以∠DOC +∠COE =90°(等量代1212换),所以∠DOE =90°,所以OD ⊥OE (垂直的定义).5.垂线段最短在实际生活中的应用求最短路线问题,就是一类最优化问题,我们所学的“两点之间,线段最短”与“垂线段最短”是解决这类问题的两个重要依据.当然如何将实际问题转化为数学问题也是解题的关键之一.“两点之间,线段最短”主要解决两点之间的距离最短问题;“垂线段最短”是解决点与直线距离最短的问题,通常过这个点作已知直线的垂线段,垂线段的长度就是最短距离.【例5】 如图甲,要挖一条水渠,要求先把水送到B 地,然后再送到A 地.请你设计一条最短的路线,并在图上画出来.图甲图乙分析:解本题的关键是在直线l上找一点C,使线段BC最短.要使点到直线的距离最小,考虑垂线段.解:如图乙,连结AB,过点B作BC⊥l于点C,折线ABC就是水渠的线路.。
4.4 角
1.角的有关概念
(1)钟面上的时针与分针所构成的图形、四面体中任意两条相交棱所构成的图形,都给我们以角的形象.
(2)角可以看作是从一点O出发的两条射线OA,OB所组成的图形.如图,其中,点O 叫做角的顶点,射线OA,OB叫做角的边.这个角可记作∠AOB,读作“角AOB”.∠AOB 也可以看成是射线OA绕着点O旋转到OB的位置后形成的图形.射线OA,OB分别叫做这个角的始边和终边.
(3)当角的终边是由始边旋转半周得到的(这时角的始边和终边互为反向延长线),如图,这样的角叫做平角,1平角=180°.
(4)当角的终边是由始边旋转一周得到的(这时角的始边和终边重合成一条射线,但它不是一条射线),如图,这样的角叫做周角,一周角=360°.
释疑点理解角的特征
(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,二者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小不会因为图形的位置、图形的放大或缩小而改变;(4)平角与直线有区别,平角是一个角,它有角的内部,而直线是一条线,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”,同样不能说“一条射线是周角”;(5)没有特别说明,本书中所指的角都是指小于平角的角.【例1】下列说法:①两条射线所组成的图形叫做角;②一条射线旋转而成的图形叫做角;③角的大小与这个角的两边长短有关;④平角是一条直线.其中错误的有().A.1个B.2个
C.3个D.4个
①×没有说明两条射线是否有公共端点,缺少组成的要素,所以①错误.
②×没有说明两条射线是否有公共端点,缺少组成的要素,所以②错误.
③×角的两边都是射线,因此角的大小与这个角的两边长短无关,所以③错误.
④×平角和一条直线的图形是一样的,但平角和直线是两个不同的概念,所以不能说平角是一条直线,所以④错误.
释疑点概念是识别图形的依据
角的概念是识别一个图形是否是角的主要依据,其他图形的识别也是如此,所以我们要十分重视对概念的正确理解.
2.角的表示方法
(1)用三个大写字母表示:如图,角的顶点为O,角的两边为射线OA,OB,该角可记为:∠AOB或∠BOA(顶点的大写字母写在中间).
(2)用一个大写字母表示:当以某一点为顶点的角只有一个时,可用表示这个点的字母表示这个角,如上图,这个角又可表示为∠O.
(3)用数字表示:如下图中的两个角,我们可以表示为∠1和∠2,同时在原图中,需要在顶点数加上弧线.
(4)用希腊字母表示:如下图中的两个角,我们可以表示为∠α和∠β,同时在原图中,需要在顶点处加上弧线.
释疑点如何准确地表示角
当以某个字母为顶点的角仅有一个时,才能用表示其顶点的一个大写字母来表示该角.用阿拉伯数字或小写的希腊字母表示角时,一定要在图中该角的位置上标出字母或数字,并画上弧线.
【例2】如图,下列表示∠1的方法中,正确的是().
A.∠A B.∠ABC
C.∠BAD D.∠BAC
解析:根据角的四种表示方法的规定,只有∠BAC与∠1表示同一个角,因此应选D.
答案:D
3.角的度量
(1)角的度量单位:角的度量单位是度、分、秒.度、分、秒之间的进率是60.
(2)把一个周角平均分成360等份,每一份就是1度的角,1度记作1°;把1°的角60等分,每一份是1分的角,1分记作1′;把1′的角60等分,每一份是1秒的角,1秒记作1″.这种以度、分、秒为单位的角的度量制,叫做角度制.
(3)角度的换算:1°=60′,1′=60″.由以上关系式可将度化为度、分、秒的形式,也可将度、分、秒化成度的形式.
析规律正确进行角的换算
用度、分、秒表示度时,要先把度的小数部分化成分,再把分的小数部分化成秒;用度表示度、分、秒时,要先把秒化成分,再把分化成秒;遇到乘法时,先乘再进位,遇到加法时,先加再进位,遇到减法时,先借位再减.
【例3】解答下列问题:
(1)用度、分、秒表示57.53°;
(2)用度表示36°23′45″;
(3)计算53°25′28″×5;
(4)已知∠α=32.68°,∠β=18°41′55″,求∠α-∠β.
解:(1)57.53°=57°+0.53×60′
=57°+31.8′
=57°+31′+0.8×60″
=57°+31′+48″
=57°31′48″;
(2)因为45″=⎝⎛⎭⎫4560′=0.75′,
23.75′=⎝⎛⎭⎫23.7560°
≈0.396°, 所以36°23′45″≈36.396°;
(3)53°25′28″×5=265°125′140″=267°7′20″;
(4)因为∠α=32.68°=32°40′48″,
所以∠α-∠β=32°40′48″-18°41′55″
=32°39′108″-18°41′55″
=31°99′108″-18°41′55″
=13°58′53″.
析规律 角的加减乘除运算
进行角的加减乘除运算,遇到加法时,先加再进位;遇到减法时,先借位再减;遇到乘法时,先乘再进位;遇到除法时,先借位再除.
4.探索角的个数
探索由一个点引出若干条射线组成的角的个数时,可按边分别按逆时针或顺时针的顺序数,先确定以一条边为始边的所有角的个数,再确定以另一条边为始边的所有角的个数,以此类推,再求和可得角的总个数,并利用这一关系求出从一个点出发若干条射线时构成的角的个数的规律.数角时,观察一定要有条理,既要防止重复,又要防止遗漏.
解技巧 从一个顶点出发的n 条射线组成的角的个数
一般地,从点O 出发引出n 条射线,能组成(n -1)个基本角,共有角的个数为(n -1)+
(n -2)+…+3+2+1=n (n -1)2
. 【例4】 观察下列图形,并阅读相关文字:
从图中的规律能知道从一个点出发10条射线时构成__________个不同的角.
解析:2条射线构成角的个数为1;3条射线构成角的个数为2+1=3;4条射线构成角的个数为3+2+1=6;5条射线构成角的个数为4+3+2+1=10;…;由此可得10条射线构成角的个数为9+8+7+6+5+4+3+2+1=45.
答案:45
5.钟表盘上角的度量与换算 钟表上的时针与分针如果看作两条射线,不同时刻它们组成的角大小不同,时针与分针不同时间分别旋转过的角的大小各不相同,解决这类问题的关键是判断不同时刻时针与分针的位置以及各自每分钟旋转的角度的大小,然后运用角的定义和度量解决问题.
【例5】 若时针由2点30分走到2点55分,问时针、分针各转过多大角度?
分析:时针和分针每分钟转过的角度如下表所示.
解:所以分针转过的角度为360°60
×(55-30)=6°×25=150°, 时针转过的角度为360°60×12
×(55-30)=150°×112=12.5°.
6.实际问题中的方位角的操作
方位角一般以正北、正南为基准,描述物体所在的方向.如图所示的是我们常用到的一些方向,但实际上八个方向还不够用,如果要详尽准确地表示每一个方向上的角,就要借助角度来表示.
(1)用射线表示的方位角一般说法是北偏东×度,北偏西×度,南偏东×度,南偏西×
度.一般把南、北放在前,但东南、西南、西北、东北例外.
(2)方位角是表示方向的射线与正北、正南方向的夹角,若已知条件给的不是这个角度,则需转化成与正北、正南方向的夹角.
(3)通常规定上北、下南、左西、右东.
【例6】 如图,在一张某地区的地图上,原标有学校、公园和广场三个位置,由于被墨水污染,广场的具体位置已看不清了.根据记忆,广场位置在学校的北偏东60°的方向,在公园的北偏西45°的方向.根据上述信息,请找出广场的具体位置.
分析:根据题意,可知广场在学校的北偏东60°的方向.画图时,应以学校所在地为测
点,在此处画出上北下南,左西右东的方向,以正北方向的射线为始边,顺时针旋转60°,则广场的位置就在这条射线上,同理,在公园的位置作一条北偏西45°的射线,这两条射线的交点,即为广场的位置.
解:所画的图形如图所示.。