高一物理动能定理习题
- 格式:doc
- 大小:93.00 KB
- 文档页数:5
高一物理77动能与动能定理习题及答案1. 一物体从静止开始在光滑水平面上滑行,经过一定距离后达到速度v,求它的动能。
答:由动能定理可得,物体的动能等于产生它动能的力的功。
由于在光滑水平面上物体没有受到重力的作用,因此物体产生动能的力是摩擦力(摩擦力的大小与物体的速度成正比),所以物体的动能为:E = Ff × s = (μk × m × g × s) / 2其中,Ff为摩擦力,s为物体的滑行距离,μk为动摩擦因数,m为物体质量,g为重力加速度。
由于物体从静止开始运动,初动能为0。
2. 一名运动员以30m/s的速度向前冲,他的质量为80kg,求他的动能。
答:运动员的动能可以用动能定理计算,即:E = (1/2)mv² = (1/2) × 80kg × (30m/s)² = 36000J所以运动员的动能为36000焦耳。
3. 一个物体以5m/s的速度向右运动,它撞击一个静止的物体,两个物体黏在一起后以4m/s的速度向右运动,求两个物体的动能变化。
答:撞击时,物体1的动能为:E1 = (1/2)mv1² = (1/2) × m × 5m/s² = 12.5mJ物体2的动能为0。
撞击后,两个物体黏在一起,以v2 = 4m/s的速度向右运动,它们的总质量为m1 + m2,所以它们的动能为:E2 = (1/2)(m1 + m2)v2² = (1/2)(m1 + m2) × 4m/s²两个物体的动能变化为:ΔE = E2 - E1 = [ (1/2)(m1 + m2) × 4m/s² ) - (1/2)mv1² ] =(1/2)(m1 + m2) × 4m/s² - (1/2)mv1²4. 如果一个人用力推一个质量为50kg的物体,使它在10m的距离内加速到10m/s,求这个人用力的大小和这个物体的动能。
高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。
【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。
其v-t图象如图所示。
则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。
【考点】动能定理。
3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。
【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。
【考点】动能定理。
4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。
“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。
高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。
某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。
已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。
小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。
只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。
已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。
动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
高一物理动能定理的理解试题答案及解析1.质量为0.01kg、以800m/s的速度飞行的子弹与质量为0.8kg、以10m/s的速度飞行的皮球相比A.子弹的动量较大B.皮球的动量较大C.子弹的动能较大D.皮球的动能较大【答案】C【解析】根据,子弹的动量P1=8Kg.m/s;皮球的动量P2=8Kg.m/s;所以两者动量相等;根据,子弹的动能EK1="3200J;" 皮球的动能EK2=40J;所以子弹的动能较大,选项C正确。
【考点】动量及动能的概念。
2.一质量为m的滑块,以速度v在光滑水面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v(方向与原来相反),在这段时间内,水平力所做的功为:()A.B.C.D.【答案】A【解析】水平力做的功等于物体动能的变化量,所以,选A。
3.水平地面上,一运动物体在10 N摩擦力的作用下,前进5 m后停止,在这一过程中物体的动能减少了()A.10 J B.25 JC.50 J D.100 J【答案】C【解析】根据动能定理内容:合外力做功等于动能变化量,所以开始动能为fs=50J,C对;4.某运动的物体动能为Ek,若将其质量和速度均变为原来的2倍,则物体的动能变为() A.2Ek B.4EkC.8Ek D.16Ek【答案】C【解析】根据动能公式,质量和速度都变为原来的2倍,动能变为原来的8倍,C对;5.一个物体的速度从0增加到v,再从v增加到2v,前后两种情况下,物体所受的合外力对物体做的功之比是()A.1∶1B.1∶3C.1∶2D.1∶4【答案】B【解析】,B对;6.在足球比赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功为 : ( )A .B .C .D .【答案】C【解析】以踢球后到最高点应用动能定理,,则W=,C 对;7. 一人用力踢质量为1 kg 的皮球,使球由静止以10m/s 的速度飞出,假定人踢球瞬间对球的平均作用力是200N ,球在水平方向运动了20 m 停止,那么人对球所做的功为 A .500J B .4000J C .50J D .1000J【答案】C【解析】根据动能定理,人对球所做的功等于动能的变化量,即,C 正确。
高一物理动能定理试题1.如图所示,AB和CD是半径为R=1m的1/4圆弧形光滑轨道,BC为一段长2m的水平轨道质量为2kg的物体从轨道A端由静止释放,若物体与水平轨道BC间的动摩擦因数为0.1.求:(1)物体第1次沿CD弧形轨道可上升的最大高度;(2)物体最终停下来的位置与B点的距离。
【答案】(1)0.8m (2) B点的距离为2m【解析】:(1)设物体沿CD圆弧能上滑的最大高度为h,则此过程由动能定理可得:,解得;(2)设物体在BC上滑动的总路程为s,则从下滑到静止的全过程由动能定理可得:,解得,即物体在BC上要来回滑动10m,一次来回滑动4m,故物体可完成2.5次的来回运动,最终停在C处,即离B点的距离为2m。
【考点】考查了机械能守恒定律,动能定理2.如图所示,木块放在光滑水平面上,一颗子弹水平射入木块中,受到阻力为f,射入深度为d,此过程木块位移为s,则()A.子弹损失的动能为f(s+d)B.木块增加的动能为f sC.子弹动能的减少等于木块动能的增加D.子弹、木块系统总机械能的损失为fd【答案】ABD【解析】对子弹运用动能定理得,.故子弹损失的动能为,故A正确;对木块运用动能定理得,.则木块获得的动能为,故B正确;子弹减少的动能转化为木块增加的动能和系统增加的内能,故子弹动能的减少大于木块动能的增加,故C错误;系统损失的机械能转化为产生的内能,故D正确.【考点】考查了功能关系的应用3.一汽车质量为2000kg,行驶时受到的阻力为车重的0.1倍。
若汽车以3000N的恒定牵引力在水平公路上从静止开始前进100m时关闭发动机。
求:(1)汽车前进100m时的速度;(2)汽车关闭发动机后还能滑行多远。
【答案】(1)v=10m/s(2)x=50m【解析】设汽车前进100m时的速度为v,则对汽车应用动能定理得:.......................① 4分代入数据解得:v=10m/s....... ..... ..② 1分设汽车关闭发动机后还能滑行的距离为x,则对汽车应用动能定理得:.......... ..... ..... ③ 4分代入数据解得:x=50m..... ..... ..... . ④ 1分【考点】考查了动能定理的综合应用4.运动员驾驶摩托车做腾跃特技表演是一种刺激性很强的运动项目。
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
高一物理动能定理试题答案及解析1.一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平力F的作用下,从P点缓慢地移动到Q点,如图所示,则力F所做的功为()A.mglcosθB.Flsin θC.mgl(1-cos θ)D.Flcos θ【答案】C【解析】小球缓慢移动过程中认为动能不变,合力为零,小球在水平力F的作用下,从P点缓慢地移动到Q点的过程中,外力的功与小球克服摩擦力所做的功相等,即,C正确。
【考点】动能定理的应用2.关于功和物体动能之间的关系,以下说法中正确的是()A.如果物体所受合外力做功为零,则物体所受合外力就为零B.如果物体所受合外力做功为零,则物体的动能就不会发生改变C.做变速运动的物体其动能有可能保持不变D.如果物体的动能不变,则物体受到的合外力一定为零【答案】BC【解析】试题解析:如果物体所受合外力做功为零,物体所受合外力不一定为零,例如物体在水平桌面上做匀速圆周运动时,拉力总与物体的运动方向垂直,故物体受到的合外力的功为零,但物体受到的合力却不为零,故A错误;根据动能定理,如果物体所受合外力做功为零,则物体的动能变化量也为零,即物体的动能就不会发生改变,B正确;速度是矢量,大小如果不变,方向改变时,物体的速度也在改变,但物体的动能此时就是不变的,故C正确;由于做匀速圆周运动的物体的动能不变,但是它受到的合外力却不为零,故D错误。
【考点】动能定理。
3.如图所示,倾角为45°的光滑斜面AB与竖直的光滑半圆轨道在B点平滑连接,半圆轨道半径R=0.40m,一质量m=1.0kg的小物块在A点由静止沿斜面滑下,已知物块经过半圆轨道最高点C时对轨道的压力恰好等于零,物块离开半圆形轨道后落在斜面上的点为D(D点在图中没有标出)。
g取10m/s2。
求:A点距水平面的高度h。
【答案】【解析】(1)对物块从A点运动C点的过程,由机械能守恒有:①由题意物块在C点时,有:②由①②式得:【考点】考查了圆周运动,机械能守恒定律的应用4.如图所示,一质量为m的物块从光滑斜面顶端的A点由静止开始下滑,A点到水平地面BC的高度H=2m,通过水平地面BC(BC=2m)后滑上半径为R=1m的光滑1/4圆弧面CD,上升到D点正上方0.6m(图中未画出最高点)后又再落下。
高一物理动能定理试题1.两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。
一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动.取无限远处的电势为零,则A.q由A向O的运动是匀加速直线运动B.q由A向O运动的过程电势能逐渐减小C.q运动到O点时的动能最大D.q运动到O点时电势能为零【答案】BC【解析】两等量正电荷周围部分电场线如右图所示,其中P、Q连线的中垂线MN上,从无穷远到O过程中电场强度先增大后减小,且方向始终指向无穷远方向.故试探电荷所受的电场力是变化的,q由A向O的运动做非匀加速直线运动,故A错误.电场力方向与AO方向一致,电场力做正功,电势能逐渐减小;故B正确.从A到O过程,电场力做正功,动能增大,从O到N过程中,电场力做负功,动能减小,故在O点试探电荷的动能最大,速度最大,故C正确.取无限远处的电势为零,从无穷远到O点,电场力做正功,电势能减小,则q运动到O点时电势能为负值,故D错误.【考点】考查了带电粒子在电场中的运动2.如图所示,物体在长1m的斜面顶端由静止下滑,然后进入由圆弧与斜面连接的水平面,(由斜面滑至平面时无能量损失)若物体与斜面及水平面的动摩擦因数均为0.5,斜面倾角为37°,取g=10m/s2,已知:sin37°=0.6,cos37°=0.8。
求:(1)物体到达斜面底端时的速度大小;(2)物体能在水平面上滑行的距离。
【答案】(1)(2)【解析】试题分析(1)物体在斜面滑下的过程中,重力做功,滑动摩擦力做功为,是斜面的长度,由动能定理得:斜面上:…①解①式得:…②(2)平面上,由动能定理得:…③由①、②式得:…④【考点】考查了动能定理的应用3.如图所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一有内阻的电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则()A.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B.升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能C.升降机上升的全过程中,电动机消耗的电能等于升降机增加的机械能D.升降机上升的全过程中,电动机消耗的电能大于升降机增加的机械能【答案】BD【解析】根据动能定理可知,升降机匀加速上升过程中,升降机底板对人做的功等于重力做功与人增加的动能,即等于人增加的机械能,故A错误,B正确;根据功能关系可知,升降机上升的全过程中,电动机消耗的电能等于升降机增加的机械能和电动机消耗的内能之和,故C错误,D正确。
动能定理习题课
一、利用动能定理求解多过程问题
例1、以10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,它上升的最大高度为4m,设空气对物体的阻力大小不变,求物体落回抛出点时的动能。
二、利用动能定理求变力做的功
例2、如图所示,一球从高出地面H米处由静止自由落下,忽略空气阻力,落至地面后并深入地下h米处停止,设球质量为m,求球在落入地面以下过程中受到的平均阻力。
三、利用动能定理求解多个力做功的问题
例3、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m时速度的大小。
(g=10m/s2)
课堂练习:
1、一粒子弹以700m/s的速度射入一块木块,射穿后的速度降为500m/s,则这粒子弹能再穿过_____块同样的木块。
(设木块固定,子弹受到阻力恒定)。
2、细绳一端拴着一个小球,在光滑的水平桌面上做匀速圆周运动,则在运动中,绳的拉力对小球做的功为。
3、质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到底端的过程中:()
A、重力对滑块所做的功为mgh
B、滑块克服阻力所做的功等于mgh
C、合力对滑块所做的功为mgh
D、合力对滑块所做的功不能确定
4、从高h处以相同的速度先后抛出三个质量相同的球,其中一个上抛一个下抛,另一个平抛,不计空气阻力,则从抛出到落地()
A、重力对它们做的功相同
B、落地时它们的动能相同
C、落地时它们的速度相同
D、以上说法都不对
5、一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2m/s,分别求手对物体做的功、合力对物体做的功和物体克服重力做的功为多少(g取10m/s2)
6、质量为m的物体从高为h的斜面顶端自静止起下滑,最后停在平面上的B点,如图所示,若
v沿斜面滑下,则停在平面上的C点,已知AB=BC,则物体在斜面该物体从斜面顶端以初速度
0 Array
上克服摩擦力所做的功为多少?
3.动能、动能定理练习
1.在同一高度处,将三个质量相同的球a 、b 、c 分别以大小相等的速率竖直上抛、竖直下抛和平抛,落在同一水平面上的过程中,重力做的功及重力功的平均功率的关系是:…………( )
A .W W W P P P a b c b c a ==>>,
B .W W W P P P a b c a b c ====,
C .W W W P P P a b c a b c >>>>,
D .W W W P P P a b c a b c >><<,
2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们制动距离之比是:…………………………………( )
A .1∶2∶3
B .12∶22∶32
C .1∶1∶1
D .3∶2∶1
3.一个物体自由下落,落下一半时间的动能与落地时动能之比为:………………………( )
A .1∶1
B .1∶2
C .1∶3
D .1∶4
4.汽车的额定功率为90KW ,路面的阻力为f ,汽车行驶的最大速度为v 。
则:…………( )
A .如果阻力为2f ,汽车最大速度为
v
2。
B .如果汽车牵引力为原来的二倍,汽车的最大速度为2v 。
C .如果汽车的牵引力变为原来的
1
2
,汽车的额定功率就变为45KW 。
D .如果汽车做匀速直线运动,汽车发动机的输出功率就是90KW 。
5.质量为m ,速度为υ的子弹,能射入固定的木板L 深。
设阻力不变,要使子弹射入木板3L 深,子弹的速度应变为原来的……………………………………………………………………( )
A .3倍
B .6倍
C .
2
3
倍 D .3倍 6.原来静止在水平面上的物体,受到恒力F 作用,开始运动,通过的位移为S ,则……( )
A .当有摩擦时,力F 对物体做功多
B .当无摩擦时,力F 对物体做功多
C .当有摩擦时,物体获得的动能大
D .当无摩擦时,物体获得的动能大
7.质量为m 的汽车以恒定功率P 的平直公路上行驶,若汽车匀速行驶的速度为υ1,当汽车的速度为υ2时(υ2<υ1)汽车的加速度大小为…………………………………………………( )
A .
1υm P B .2
υm P
C .2121)(υυυυm P -
D .)(2121υυυυ-m P
8.火车质量是飞机质量的110倍,火车的速度只有飞机速度的1/12,火车和飞机的动能分别为E k1和E k2,那么二者动能大小相比较,有………………………………………………………( )
A .E k1<E k2
B .E k1>K k2
C .E k1=K k2
D .无法判断
9.质量为1kg 的小球,从距地面80m 高处由静止开始下落,不计空气阻力,落地时小球的速度大小为_________,小球落地时的动能为_________J ,下落过程中重力对小球做的功为_____J 。
10.物体从静止开始自由下落,下落ls 和下落4s 时,物体的动能之比是_____;下落1m 和4m 时,物体的动能之比是________。
11.质量为m 的物体在水平力F 的作用下,由静止开始光滑地面运动,前进一段距离之后速度大小为v 。
再前进一段距离使物体的速度增大为2v ,则( )
A 、第二过程的动能增量是第一过程的动能增量的4倍
B 、第二过程的动能增量是第一过程的动能增量的3倍
C 、第二过程的动能增量是第一过程的动能增量的2倍
D 、第二过程的动能增量等于第一过程的动能增量
12.质量为m 的物体以初速度v 0开始沿水平地面滑行,最后停下来。
在这个过程中,物体的动能增量多大?
13.一个小孩把6.0kg 的物体沿高0.50m ,长2.0m 的光滑斜面,由底部匀速推到顶端,小孩做功为
,若有5.0N 阻力的存在,小孩匀速把物体推上去应做 功,物体克服
阻力做的功为
,重力做的功为。
(g m s 取102
/)
14.把质量为3.0kg 的石块,从高30m 的某处,以50./m s 的速度向斜上方抛出,g m s 取102
/,不计空气阻力,石块落地时的速率是 ;若石块在运动过程中克服空气阻力做了
73.5J 的功,石块落地时的速率又为 。
15.竖直上抛一个质量为m 的物体,物体上升的最大高度 h ,若不计空气阻力,则抛出时的初动能为 。
16.一个人站在高出地面点h 处,抛出一个质量为m 的物体,物体落地时速率为v ,人对物体做的功等于_______(不计空气阻力)
17.木块在粗糙水平面上以大小为υ的初速度开始运动,滑行s 后静止,则要使木块在此平面上滑行3s 后静止,其开始运动的初速度应为 。
18.一个人站在15米高的台上,以10m s /的速度抛出一个0.4kg 的物体。
求:
(1)人对物体所做的功。
(2)物体落地时的速度。
19.质量1kg 的小球从20m 高处由静止落下,阻力恒定,落地时速度为16m/s ,则阻力的大小是多少?
20.质量为m 的铅球以速度υ竖直向下抛出,抛出点距离地面的高度为H ,落地后,铅球下陷泥土中的距离为s ,求泥土地对铅球的平均阻力? 答案:
课堂练习:1. 1 2. 0 3. AB 4.AB 5.12J 、2J 、-10J 6、202
1mv mgh -
课后练习:1.A 2.C 3.D 4.A 5.D 6.D 7.C 8.A 9.40m/s 800J 800J 10.1:16 1:4 11.B 12.2
02
1mv - 13.30J 、40J 、10J 、-30J 14、25m/s 、24m/s 15、mgh 16、
mgh mv -2
21 17、v 3 18、20J 、20m/s 19、3.6N 20、S
mv S H mg 2
21
)(++。