江苏省大丰市新丰中学2015-2016学年高一数学上学期期末考试试题
- 格式:doc
- 大小:413.50 KB
- 文档页数:8
丰城中学2015-2016学年上学期高一期末考试试卷数 学本试卷总分值为150分 考试时间为120分钟一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U=R ,集合A={x|x 2﹣2x >0},则C U A 等于( ) A .{x|0≤x≤2} B.{x|0<x <2} C .{x|x <0或x >2} D .{x|x≤0或x≥2} 2. cos600的值是( )A B . C .12- D .123. 由函数()sin 2f x x =的图像得到的图像,可将()f x 的图象( )A B C D 4.函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) A. )1,0( B. )2,1( C. ),2(e D. )4,3(5. 函数()1cos2f x x =-的周期是( ) A.2πB. 2πC. πD. 4π6. 函数22xy x =-的图象大致是( )7.函数()(0,2)y f x =在上是增函数,函数(2)y f x =+是偶函数,则下列结论正确的是( )A.57(1)()()22f f f <<B.57()(1)()22f f f <<C.75()()(1)22f f f <<D.75()(1)()22f f f <<8. 偶函数)(x f y =满足)1()1(-=+x f x f ,且1[-∈x , ]0时, 943)(+=xx f , 则)5(log 31f 的值为( )A .-1B .35-C .95- D .1 9. 在ABC ∆所在的平面上有一点P ,满足→→→→=++AB PC PB PA ,则PBC ∆与ABC ∆的面积之比是( ) A .13 B .12 C .34 D .2310. 已知()22x x f -=,若0m n <<时满足()()f m f n =,则mn 的取值范围为( )A .(]4,0B . (]2,0C . ()2,0D .(]2,0 11. 已知函数(21)(2)()log (1)(2) a a x a x f x x x -+<⎧=⎨-≥⎩是R 上的减函数,则实数a 的取值范围是( )11[,)3.2A 21 [,)5.2B 2 [).,15C 1 (0,).2D 12. 定义域为R 的函数()f x 满足条件:①1212[()()]()0f x f x x x -->1212(,,)x x R x x +∈≠; ②()()0f x f x +-= ()x R ∈; ③(3)0f -=.则不等式()0x f x ⋅<的解集是( ) A. {}|3003x x x -<<<<或 B. {}|303x x x <-≤<或 C. {}|33x x x <->或 D. {}|303x x x -<<>或二、填空题(本大题共4小题,每小题5分,共20分.) 13.计算:43310.25()log 18log 22-⨯-+-= .14.函数f (x )=2sin (ωx+φ)(ω>0,且|φ|<的部分图象如图所示,则f (π)的值为 .15.若→OA =)8,2(,→OB =)2,7(-,则31→AB =________ _.16.已知222(1),0(),4(3),0x k a x f x a R x x a x ⎧+-≥=∈⎨-+-<⎩,对任意非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则实数k 的取值范围是 . 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.(10分) 已知角α的终边经过点P(-4,3), (1)求)tan()cos()sin(απααπ+-+-的值;(2)求1sin cos cos sin 22+-+αααα的值.18(12分)已知函数21)(-+=x x x f 的定义域为集合A ,函数a a x a x x g +++-=22)12()(的定义域为集合B .(1)求集合A 、B ; (2)若A B A = ,求实数a 的取值范围.19. (12分)已知6x π=是函数)2sin()(ϕ+=x x f )20(πϕ<<图象的一条对称轴.(1)求函数)(x f 的解析式;(2)求函数)(x f -的单调增区间;(3)作出函数()f x 在[]0,x π∈上的图象简图(列表,画图).20.(12分)已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1(ω>0)的最小正周期为π.(1)求f ()的值;(2)求函数f (x )的单调递增区间及其图象的对称轴方程.21.(12分) 已知函数])2,0[(1)23(∈-=-x x f x,函数3)2()(+-=x f x g . (1)求函数)(x f y =与)(x g y =的解析式,并求出()f x ,()g x 的定义域; (2)设)()]([)(22x g x g x h +=,试求函数)(x h y =的最值22(本题满分12分)已知函数2()log (41)()x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设函数24()log (2)3xg x a a =⋅-,其中0.a >若函数()f x 与()g x 的图象有且只有一个交点,求a 的取值范围.丰城中学2015-2016学年上学期高一期末考试答案 数 学13. 6 14. ﹣15. (3,2)-- 16. 0k ≤或8k ≥ 17.解:(1);154(2)5418.解:(1)10212x x x x +≥⇒>≤--或,22(21)01x a x a a x a x a -+++≥⇒≥+≤或 ),1[],(),,2(]1,(+∞+-∞=+∞--∞=a a B A(2)11211≤≤-⇒⎩⎨⎧≤+-≥⇒⊆⇔=a a a B A A B A19. 解:(1))62sin()(π+=x x f ;(2)函数()x f 的增区间为Z k k k ∈++],65,3[ππππ (3)列表()x f 在],0[π∈x 上的图象简图如下图所示:20.解:(1)函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1=cos2ωx+sin2ωx=2sin (2ωx+),因为f (x )最小正周期为π,所以=π,解得ω=1, 所以f (x )=2sin (2x+),f ()=2sin=1.(2)由2k π﹣≤2x+≤2k π+,k ∈z ,可得 k π﹣≤x≤k π+,k ∈z ,所以,函数f (x )的单调递增区间为[k π﹣,k π+],k ∈z .由 2x+=k π+可得 x=k π+,k ∈z .所以,f (x )图象的对称轴方程为x=k π+,k ∈z .…21.解:(1)设32xt =-∈(t [-1,7],则3log (t 2)x =+, 于是有3()log (t 2)1f t =+-,[1,7]t ∈-,∴3()log (2)1f x x =+-()[1,7]x ∈-, 根据题意得3()(2)3log 2g x f x x =-+=+,又由721≤-≤-x 得91≤≤x , ∴2log )(3+=x x g ()[1,9]x ∈(2)∵3()log 2,[1,9]g x x x =+∈∴要使函数22()[()]()h x g x g x =+有意义,必须21919x x ⎧≤≤⎨≤≤⎩∴13x ≤≤,∴222223333()[()]()(log 2)2log (log )6log 6h x g x g x x x x x =+=+++=++ (13x ≤≤)设x t 3log =,则66)(2++=t t x h ()332-+=t )10(≤≤t 是()1,0上增函数,∴0=t 时min )(x h =6,1=t 时13)(max =x h ∴函数()y h x =的最大值为13,最小值为6.22. 解:(1)∵2()log (41)()x f x kx k =++∈R 是偶函数,∴2()log (41)()x f x kx f x --=+-=对任意x R ∈恒成立, 即:22log (41)2log (41)x xx kx kx +--=++恒成立,∴1k =- (2)令2,xt =则43t >,因而等价于关于t 的方程24(1)103a t at ---=(*)在4(,)3+∞上只有一解 ① 当1a =时,解得34(,)43t =-∉+∞,不合题意;② 当01a <<时,记24()(1)13h t a t at =---,其图象的对称轴203(1)a t a =<- ∴函数24()(1)13h t a t at =---在(0,)+∞上递减,而(0)1h =-∴方程(*)在4(,)3+∞无解 ③ 当1a >时,记24()(1)13h t a t at =---,其图象的对称轴203(1)a t a =>- 所以,只需4()03h <,即1616(1)1099a a ---<,此恒成立∴此时a 的范围为1a >综上所述,所求a 的取值范围为1a >。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
大丰区新丰中学2017-2018学年度第一学期期末考试高一年级数学试题说明:(1)试卷满分160分,考试时间120分钟.(2)本试卷分为第Ⅰ卷(填空题)和第Ⅱ卷(解答题)两部分. (3)请将答案写在答题纸对应的区域内,否则..答案无效. (第Ⅰ卷)一、填空题(本大题共14小题,每小题5分,共计70分,请把答案填写在答题..卡相应的位置上.......) 1、已知集合{}11M =-,,11242x N xx +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N =2、设全集U={2,3,a 2+2a-3},A={|2a-1|,2},U C A ={5},求实数a 的值3、函数y =1log 0.5(4x -3)的定义域为4、函数y =16-4x 的值域是5、已知偶函数f (x )在区间[0,+∞)单调递增,则满足f(2x -1)<f (1)的x 取值 范围是6、若角α的终边落在直线y =-x 上,则sin α1-sin 2α+1-cos 2αcos α的值等于 7、若3)tan(=+βα,2)4tan(=-πβ,则tan()4πα+= 8、已知向量)3,1(),,2(-==k ,若向量,的夹角θ为钝角,则实数k 的取值范围 9、设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于__________10、函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是_________11、已知△ABC 的三个内角为A 、B 、C ,所对的三边分别为a 、b 、c ,若△ABC 的面积为S=a 2-(b -c )2,则tan A2等于__________.12、已知函数⎩⎨⎧>+-≤+=0,120,1)(2x x x x x x f ,若函数[]R a a x f a x f x g ∈++-=,)()1()()(2恰有五个不同零点,求实数a 的取值范围__________13、已知定义在R 上的奇函数f (x )的图像关于直线x =1对称,并且当x ∈(0,1]时, f (x )=x 2+1,则f (82)的值为__________14、[[⎪⎪⎩⎪⎪⎨⎧∈∈+=-)2,21,2)21,0,21)(1x x x x f x ,存在21,x x ,当2021<<≤x x 时,有)()(21x f x f =,则求)(21x f x ⋅的取值范围_________二、解答题:(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.)15、(本题满分14分)已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a <0}.(1)当a =12时,求(∁U B )∩A ;(2)如果A ⊆B ,求实数a 的取值范围.16、(本题满分14分)已知函数2()1sin cos ,()cos ()12f x x xg x x π=+=+.(1)设0x x =是函数()y f x =图象的一条对称轴,求)(0x g 的值; (2)如果令)0)(2()2()(>+=ωωωxg xf x h ,且)(x h y =的最小正周期为π,求)(x h y =的单调增区间17、(本题满分15分)已知向量a =(cos 32x ,sin 32x ),b =(2sin 2cos xx -,),且x ∈[0,2π].令()2||f x λ=⋅-a b a +b , (1)若2=λ时,求()y f x =的最小值 (2)若()2||f x λ=⋅-a b a +b 的最小值是32-,求λ的值18、(本题满分15分)某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产,已知该厂连续生产n 个月的累计产量为1()(1)(21)2f n n n n =+-吨,但如果月产量超过96吨,将会给环境造成危害.(1)请你代表环保部门给厂拟定最长的生产周期;(2)若该厂在环保部门的规定下生产,但需要每月交纳a 万元的环保税,已知每吨产品售价0.6 万元,第n 个月的工人工资为282()155g n n n =--万元,若每月都赢利,求出a 的范围.19、(本题满分16分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos cos b c Ca A-=. (1)求角A 的值;(2)若ABC ∆的面积为2,且a =ABC ∆的周长.20、(本题满分16分)设函数2()21x f x a =-+是实数集R 上的奇函数。
2015—2016学年大丰区新丰中学第二学期期中考试高一年级数学试题 命题人 奚圣兰一、填空题(本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填空在答题纸相应位置上。
) 1。
直线y=3-x+3的倾斜角的大小为 .2.点M (—1,2,-3)关于原点的对称点是________.3.已知直线01)4()3(:1=+-+-y k x k l 与032)3(2:2=+--y x k l平行,则k =.4。
若错误!=错误!=错误!,则△ABC 的形状是________________三角形. 5.在△ABC 中,角C B A ,,的对边分别为c b a ,,,若a 2+c 2-b 2=错误!ac ,则角B= .6。
两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.7.若圆224xy +=与圆()222600x y ay a ++-=>的公共弦长为a = .8。
已知l 、m 是两条不同的直线,α、β是两个不同的平面.下列命题:① 若l ⊂α,m ⊂α,l ∥β,m ∥β,则α∥β; ② 若l ⊂α,l ∥β,α∩β=m ,则l ∥m ;③ 若α∥β,l ∥α,则l ∥β; ④ 若l ⊥α,m ∥l ,α∥β,则m ⊥β.其中真命题是____________(写出所有真命题的序号).9。
从直线x-y+3=0上的点向圆x2+y2-4x-4y+7=0引切线,则切线长的最小值为________.10。
一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的错误!,则油桶直立时,油的高度与桶的高度的比值是______.11。
若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程是____________.12。
若一个长方体的长、宽、高分别为3、2、1,则它的外接球的表面积是.13。
2015-2016学年度上学期(期末)考试高一数学试题【新课标】考试时间:120分钟 总分:150分第Ⅰ卷(选择题 满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能...是( ) A .0 B .1 C .2 D .3 2.sin45°cos15°+cos225°sin15°的值为( )A .-32B .-12 C.12 D.323.点P (sin2014°,tan2014°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <1 5.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( )6.已知映射B A f →:,其中法则()():,,2,,35f x y z x y y z z →+-+.若(){}8,1,4=B ,则集合A 可以为( )A .(){}1,2,1B .(){}1,2,1或(){}2,0,1-C .(){}2,0,1-D .(){}1,2,1或(){}2,0,1-或()(){}1,0,2,1,2,1-7.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( )A .3a -bB .3a +bC .-a +3bD .a +3b8.若sin2θ=1,则tan θ+cos θsin θ的值是( )A .2B .-2C .±2 D.129.向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ满足( )A .λ<-53B .λ>-53C .λ>-53且λ≠0D .λ<-53且λ≠-510.函数()sin y x x x R =+∈的图像向左平移()0m m >个单位长度后,所得到的图像关于y轴对称,则m 的最小值是( )A .12πB .6πC .3πD .56π11.设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( )A .-2 B.2-2 C .-1 D .1- 212.已知函数f (x )=-x 2+2e x -x -e2x+m (x >0),若f (x )=0有两个相异实根,则实数m 的取值范围是 ( )A .(-e 2+2e ,0)B .(-e 2+2e ,+∞)C .(0,e 2-2e)D .(-∞,-e 2+2e)第Ⅱ卷 (非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =3sin(ωx +π6)(ω≠0)的最小正周期是π,则ω=________。
2015-2016学年度第一学期期末抽测高一年级数学试题一、填空题(本大题共14小题,每小题5分,共70分,将答案填在答题纸上)1.已知全集{}U 1,2,3=,{}1,m A =,{}U 2A =ð,则m = .2.函数()2log 1y x =-的定义域为 .3.若幂函数()f x x α=的图象过点12,4⎛⎫⎪⎝⎭,则实数α= . 4.sin 240=.5.已知向量()1,3a =-,(),1b x =-,且//a b,则x 的值为 . 6.若4sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tan α的值为 . 7.已知10a =,12b =,且()13365a b ⎛⎫⋅= ⎪⎝⎭,则向量a与b的夹角为 . 8.若方程ln 3x x +=的根()0,1x k k ∈+,其中k ∈Z ,则k = . 9.若角α的终边经过点()1,2P ,则22sin cos αα-= .10.已知向量()2,1a = ,()1,2b =- ,若()9,8ma nb +=-(m ,R n ∈),则m n +的值为 .11.已知函数()3g x x x =+,若()()3240g a g a -++>,则实数a 的取值范围是 .12.已知函数()()2log 2a f x x x =+(0a >且1a ≠),当10,2x ⎛⎫∈ ⎪⎝⎭时,恒有()0f x >,则函数()f x 的单调增区间为 .13.已知函数()()2ln 13,121,1x x f x x x x ⎧-+>⎪=⎨--+≤⎪⎩,若关于x 的方程()()2320f x bf x b ++-=恰有4个不同的实数根,则实数b 的取值范围是 .14.若方程22sin sin 20x x m +--=在[)0,2π上有且只有两解,则实数m 的取值范围是 .二、解答题 (本大题共6小题,满分90分.解答应写出文字说明、证明过程或演算步骤.)15.(本题满分14分)已知集合{}05,x x x A =≤≤∈Z ,124,2x x x ⎧⎫B =≤≤∈Z ⎨⎬⎩⎭. (1)用列举法表示集合A 和B ; (2)求A B 和A B ;(3)若集合()C ,a =-∞,C B 中仅有3个元素,求实数a 的取值范围. 16.(本题满分14分)已知函数()()sin f x x ωϕ=A +(0A >,0ω>,2πϕ<),若函数()y f x =的图象与x 轴的任意两个相邻交点间的距离为2π,当6x π=时,函数()y f x =取得最大值3.(1)求函数()f x 的解析式; (2)求函数()f x 的单调减区间; (3)若,63x ππ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域. 17.(本题满分14分)设向量()2,sin a α=,()cos ,1b α=- ,且a b ⊥ .求: (1)tan α;(2)sin cos sin cos αααα+-;(3)2sin sin cos ααα+.18.(本小题满分16分)如图,在菱形CD AB 中,1AB =,D 60∠BA =,且E 为对角线C A 上一点.(1)求D AB⋅A;(2)若2C AE =E ,求AE⋅AB;(3)连结BE 并延长,交CD 于点F ,连结F A ,设C λE =EA(01λ≤≤).当λ为何值时,可使F F A ⋅B 最小,并求出F F A ⋅B的最小值.19.(本小题满分16分)某民营企业生产甲乙两种产品.根据市场调查与预测,甲产品的利润()x P 与投资额x 成正比,其关系如图1;乙产品的利润()Q x 与投资额x 的算术平方根成正比,其关系如图2(利润与投资单位:万元).(1)试写出利润()x P 和()Q x 的函数关系式;(2)该企业已筹集到3万元资金,并全部投入甲乙两种产品的生产.问怎样分配这3万元资金,才能使企业获得最大利润,其最大利润是多少万元?20.(本小题满分16分)已知函数()x xf x a a -=+(0a >且1a ≠).(1)判断函数()f x 的奇偶性; (2)设()()1g x f x =,当()0,1x ∈时,求函数()g x 的值域; (3)若()512f =,设()()222x xh x a a mf x -=+-的最小值为7-,求实数m 的值.2015—2016学年度第一学期期末抽测高一数学试题参考答案一、填空题1.3 2.(1,)+∞ 3.2- 4. 5.136.43- 7.3π8.2 9.35 10.7 11.12a >- 12.1(,)2-∞-13.72[2,)(,665----U 14.178m =-或11m -<<二、解答题15.(1){}0,1,2,3,4,5A =,……………………………………………………………2分{}{}12,1,0,1,2B x x x =-∈=-Z ≤≤. ……………………………………4分(2){}0,1,2A B =I , ……………………………………………………………7分 {}1,0,1,2,3,4,5A B =-U . …………………………………………………10分 (3)如图所示:实数a 的取值范围为12a <≤. …………………………………………14分16.(1)因为当6x π=时,函数()y f x =取得最大值3,所以3A =,……………1分因为函数()y f x =的图象与x 轴的任意两个相邻交点间的距离为2π,所以22T π=⨯=π,即2ωπ=π,所以2ω=, ……………………………3分 将点(,3)6π代入()3sin(2)f x x ϕ=+,得sin(2)16ϕπ⨯+=,因为2ϕπ<,所以6ϕπ=,…………………………………………………5分所以()3sin(2)6f x x π=+.…………………………………………………6分(2)令3222262k x k ππππ++π+≤≤,k ∈Z , ……………………………8分解得263k x k πππ+π+≤≤,k ∈Z ,所以()f x 的单调减区间是2,(63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z). ………………10分 (结果未写出区间形式或缺少k ∈Z 的,此处两分不得)(3)当[,]63x ππ∈-,2[,]666x ππ5π+∈-,1sin(2)[,1]62x π+∈-, …………12分所以函数()f x 的值域是3[,3]2-. ………………………………………14分17.解法一:(1)由⊥a b ,得2cos sin 0αα-=, ………………………………2分 解得tan 2α=. ………………………………………………4分(2)sin cos tan 1sin cos tan 1αααααα++=-- ………………………………………7分21321+==-. ……………………………………9分 (3)2222sin sin cos sin sin cos sin cos αααααααα++=+ ……………………12分22tan tan tan 1ααα+=+426415+==+. …………14分解法二:(1)由⊥a b ,得2cos sin 0αα-=, ……………………………2分 解得tan 2α=. …………………………………………4分(2)由22tan 2,sin cos 1,ααα=⎧⎨+=⎩解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩…8分 将数值代入得sin cos sin cos αααα+-3=. ……………………………11分(3)由(2),代入数值得26sin sin cos 5ααα+=. …………………14分18.(1)1cos 11cos602AB AD AB AD BAD ⋅=∠=⨯⨯=o u u u r u u u r u u u r u u u r . …………………2分(2)因为AC AB AD =+uuu r uu u r uuu r,所以AC AB AD =+=u u u r u u u r u u u r ……4分…………………………………………5分又2AE EC =,所以23AE AC == …………………………6分故cos 11AE AB AE AB BAC ⋅=∠==uu u r uu u r uu u r uu u r . …………………8分 (3)因为CE EA λ=uu u r uu r ,ABE △∽CFE △,1AB =uu u r,故CF λ= ,1FD λ=-, ……………………………………………10分所以()()AF BF AD DF BC CF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u rAD BC AD CF DF BC DF CF =⋅+⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r11cos120(1)1cos60(1)cos180λλλλ=+⨯+-⨯⨯+-⨯⨯o o o22312(1)22λλλ=-+=-+, ……………………14分故当1=λ时,AF BF ⋅uu u r uu u r 的值最小,最小值为12. ……………………16分19.(1)设1()P x k x =,代入(1,0.2),解得115k =,所以1()5P x x =,…………………3分设()Q x k =(4,1.2),解得235k =,所以()Q x .……………6分(2)设投入乙产品x 万元,则甲产品投入3x -万元,利润总和为1()(3)5f x x =-03x ≤≤, …………………………9分(少定义域扣1分)t,则0t ≤ ………………………………………………11分此时22131321()(3)()555220g t t t t =-+=--+, …………………………………13分当32t =,即9 2.254x ==时,()g t 取得最大值2120. …………………………15分答:对甲乙产品分别投入0.75万元和2.25万元时,可使获利总额最大,最大获利为1.05万元. …………………………………………………………16分20.(1)函数()f x 的定义域为R ,对任意的x ∈R ,都有()()()x x x x f x a a a a f x -----=+=+=,所以()f x 为偶函数. ………………………………………………………2分(2)因为()xxf x a a -=+,所以2()1xx a g x a =+(0a >且1a ≠),………………4分①当1a >时,因为(0,1)x ∈,所以(1,)x a a ∈,设x t a =,1y t t=+,(1,)t a ∈, 在区间(1,)a 内任取两个数1t ,2t ,12t t <,则121212121212()(1)11()()t t t t y y t t t t t t ---=+-+=,因为120t t -<,121t t <,所以120y y -<,即12y y <,所以1y t t=+在(1,)a 上是单调增函数, ………………………………6分故2111(,)xx a y t a a t a a+=+=+∈, 所以2211()(,)1112x x x x a a g x a a a a==∈+++. ……………………………8分②当01a <<时,(0,1)x ∈,(,1)xa a ∈,同理可得21()(,)12a g x a ∈+.综上所述,()g x 的值域为21(,)12a a +. …………………………………10分(3)若5(1)2f =,则2a =或12a =,所以()22x x f x -=+, …………………11分222()222(22)(22)2(22)2x x x xx x x x h x m m ----=+-+=+-+-,令()22x x t f x -==+,因为x ∈R,故22222x x -++≥,即2t ≥, …………12分 令222()22()2F t t mt t m m =--=---,①若2m ≥,则2min [()]()27F t F m m ==--=-,解得m = 又因为2m ≥,所以m =②若2m <,则min [()](2)247F t F m ==-=-,解得94m =(舍). 综上所述,实数m…………………………………………16分。
2015—2016学年江苏省盐城市大丰市新丰中学高三(上)12月调研数学试卷一.填空题(本大题共14小题;每小题5分,共70分.不需写出解答过程,请将答案直接写在答题卷上)1.若集合A={x||x|≤1},B={(x,y)|y=x2},则A∩B=.2.已知函数f(x)=6cos(ωπx+)的最小正周期为,则ω=.3.函数f(x)=+lg(5﹣3x)的定义域是.4.(文)已知向量和向量的夹角为30°,||=2,||=,则和的数量积•=.5.等差数列a n中,a3=2,则该数列的前5项的和为.6.中心在原点,准线方程为y=±4,离心率为的椭圆的标准方程是.7.的最小值是.8.函数y=x2﹣lnx的单调递减区间为.9.已知直线5x﹣12y+a=0与圆x2﹣2x+y2=0相切,则a的值为.10.若函数f(x)=mx2﹣6x+2有且只有一个零点,则实数m的值为.11.已知sinα和cosα是方程x2﹣kx+k+1=0的两根,且π<α<2π,则α+k=.12.设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是.13.设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]上的值域为[﹣2,5],则f(x)在区间[﹣10,10]上的值域为.14.已知圆心角为120°的扇形AOB的半径为1,C为弧AB的中点,点D、E分别在半径OA、OB上.若CD2+CE2+DE2=,则OD+OE的最大值是.二.解答题(本大题共6小题,满分90分.解答须写出文字说明、证明过程或演算步骤.)15.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.16.已知向量,设函数.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值.17.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x (单位:元/千克)满足关系式y=+10(x﹣6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.18.在以O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.(1)求向量的坐标;(2)求圆x2﹣6x+y2+2y=0关于直线OB对称的圆的方程;(3)是否存在实数a,使抛物线y=ax2﹣1上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.19.数列{a n}满足a n=2a n+2n+1(n∈N*,n≥2),a3=27.﹣1(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=(a n+t)(n∈N*),且数列{b n}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{a n}的前n项和S n.20.已知函数f(x)=ax+﹣a(a∈R,a≠0)在x=3处的切线方程为(2a﹣1)x﹣2y+3=0 (1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax 围成的三角形面积为定值;(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m﹣x)=k对于定义域内的任意x都成立;(3)若方程f(x)=t(x2﹣2x+3)|x|有三个解,求实数t的取值范围.2015-2016学年江苏省盐城市大丰市新丰中学高三(上)12月调研数学试卷参考答案与试题解析一.填空题(本大题共14小题;每小题5分,共70分.不需写出解答过程,请将答案直接写在答题卷上)1.若集合A={x||x|≤1},B={(x,y)|y=x2},则A∩B=∅.【考点】交集及其运算.【分析】先对两个集合A={x||x|≤1},B={(x,y)|y=x2}进行化简,再求两个集合的交集.【解答】解:集合A={x||x|≤1}={x|﹣1≤x≤1},B={(x,y)|y=x2},集合A是数集,而集合B是点集,所以A∩B=∅.故答案为:∅.2.已知函数f(x)=6cos(ωπx+)的最小正周期为,则ω=±3.【考点】余弦函数的图象.【分析】直接利用三角函数的最小正周期求出正数ω的值即可.【解答】解:因为函数f(x)=6cos(ωπx+)的最小正周期为,所以T==,所以ω=±3.故答案是:±3.3.函数f(x)=+lg(5﹣3x)的定义域是[1,).【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组求解.【解答】解:由,解①得x≥1;解②得x<.∴1.∴函数f(x)=+lg(5﹣3x)的定义域是[1,).故答案为:[1,).4.(文)已知向量和向量的夹角为30°,||=2,||=,则和的数量积•=3.【考点】平面向量数量积的运算.【分析】利用数量积运算法则即可得出.【解答】解:∵向量和向量的夹角为30°,||=2,||=,∴•===3.故答案为:3.5.等差数列a n中,a3=2,则该数列的前5项的和为10.【考点】等差数列的前n项和.【分析】根据等差中项的性质可知2a3=a1+a5,代入等差数列的求和公式即可求得答案.【解答】解:∵a1+a5=2a3,∴S5==a3×5=10故答案为106.中心在原点,准线方程为y=±4,离心率为的椭圆的标准方程是.【考点】抛物线的简单性质.【分析】利用椭圆的准线方程以及离心率求出椭圆的几何量,以及求解椭圆的方程.【解答】解:椭圆的中心在原点,准线方程为y=±4,离心率为,可知,=,解得a=2,c=1,则b=,所以椭圆的标准方程为:.故答案为:.7.的最小值是.【考点】基本不等式.【分析】先将化为形式,但是不能直接用基本不等式求最值,因为等号取不到,可采用导数判单调性求最值.【解答】解:,,则t≥2,则y′=≥0,所以在[2,+∝)上是增函数,所以在[2,+∝)上的最小值是2+=故答案为:8.函数y=x2﹣lnx的单调递减区间为(0,1] .【考点】利用导数研究函数的单调性.【分析】根据题意,先求函数的定义域,进而求得其导数,即y′=x﹣=,令其导数小于等于0,可得≤0,结合函数的定义域,解可得答案.【解答】解:对于函数,易得其定义域为{x|x>0},y′=x﹣=,令≤0,又由x>0,则≤0⇔x2﹣1≤0,且x>0;解可得0<x≤1,即函数的单调递减区间为(0,1],故答案为(0,1]9.已知直线5x﹣12y+a=0与圆x2﹣2x+y2=0相切,则a的值为﹣18或8.【考点】点到直线的距离公式;圆的标准方程.【分析】求出圆心和半径,利用圆心到直线的距离等于半径,求出a的值.【解答】解:圆的方程可化为(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径为1,由已知可得,所以a的值为﹣18或8.故答案为:﹣18;810.若函数f(x)=mx2﹣6x+2有且只有一个零点,则实数m的值为0或.【考点】二次函数的性质.【分析】可讨论m是否为0:m=0时容易看出满足f(x)只有一个零点,而m≠0时,根据f(x)只有一个零点便知f(x)=0有二重根,从而△=0,可求出m=,从而得出m的值.【解答】解:①若m=0,则f(x)=﹣6x+2=0的解为x=;即f(x)只有一个零点;②若m≠0,f(x)只有一个零点;∴△=36﹣8m=0;∴;综上得,m=0或.故答案为:0或.11.已知sinα和cosα是方程x2﹣kx+k+1=0的两根,且π<α<2π,则α+k=﹣1.【考点】同角三角函数基本关系的运用.【分析】根据题意和韦达定理列出方程组,由平方关系化简联立列方程,求出k的值,最后要验证三角函数值的范围,即可求k,α.【解答】解:∵sinα和cosα是方程x2﹣kx+k+1=0的两根,∴sinα+cosα=k,sinαcosα=k+1,①平方得,1+2sinαcosα=k2,将②代入得,k2﹣2k﹣3=0,解得k=3或﹣1,当k=3时,sinαcosα=4,这与sinαcosα<1矛盾,故舍去,当k=﹣1时,经验证符合条件.∴sinα+cosα=﹣1,sinαcosα=0,∵π<α<2π,∴α=.∴α+k=﹣1.故答案是:﹣1.12.设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是6.【考点】椭圆的简单性质.【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故答案为:6.13.设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]上的值域为[﹣2,5],则f(x)在区间[﹣10,10]上的值域为[﹣15,11].【考点】函数的周期性;函数的值域.【分析】根据已知中g(x)是定义在R上,以1为周期的函数,由函数f(x)=x+g(x)在区间[3,4]上的值域为[﹣2,5],结合函数的周期性,我们可以分别求出f(x)在区间[﹣10,﹣9],[﹣9,﹣8],…,[9,10]上的值域,进而求出f(x)在区间[﹣10,10]上的值域.法二:可根据g(x)是定义在R上,以1为周期的函数,研究函数f(x)=x+g(x)的性质,得f(x+1)﹣f(x)=1,由此关系求出函数在f(x)在区间[﹣10,10]上的值域即可.【解答】解:法一:∵g(x)为R上周期为1的函数,则g(x)=g(x+1)又∵函数f(x)=x+g(x)在[3,4]的值域是[﹣2,5]令x+6=t,当x∈[3,4]时,t=x+6∈[9,10]此时,f(t)=t+g(t)=(x+6)+g(x+6)=(x+6)+g(x)=[x+g(x)]+6所以,在t∈[9,10]时,f(t)∈[4,11] (1)同理,令x﹣13=t,在当x∈[3,4]时,t=x﹣13∈[﹣10,﹣9]此时,f(t)=t+g(t)=(x﹣13)+g(x﹣13)=(x﹣13)+g(x)=[x+g(x)]﹣13所以,当t∈[﹣10,﹣9]时,f(t)∈[﹣15,﹣8] (2)…由(1)(2)…得到,f(x)在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]法二:由题意f(x)﹣x=g(x)在R上成立故f(x+1)﹣(x+1)=g(x+1)所以f(x+1)﹣f(x)=1由此知自变量增大1,函数值也增大1故f(x)在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]14.已知圆心角为120°的扇形AOB的半径为1,C为弧AB的中点,点D、E分别在半径OA、OB上.若CD2+CE2+DE2=,则OD+OE的最大值是.【考点】向量在几何中的应用;余弦定理.【分析】设OD=a且OE=b,由余弦定理加以计算,可得CD2+CE2+DE2=2(a2+b2)﹣(a+b)+ab+2=,配方整理得3ab=2(a+b)2﹣(a+b)﹣,结合基本不等式建立不等关系,得2(a+b)2﹣(a+b)﹣≤(a+b)2,最后以a+b为单位解一元二次不等式,即可得到OD+OE的最大值.【解答】解:设OD=a,OE=b,由余弦定理,得CD2=CO2+DO2﹣2CO•DOcos60°=a2﹣a+1.同理可得CE2=b2﹣b+1,DE2=a2+ab+b2从而得到CD2+CE2+DE2=2(a2+b2)﹣(a+b)+ab+2=∴2(a2+b2)﹣(a+b)+ab﹣=0,配方得2(a+b)2﹣(a+b)﹣3ab﹣=0,即3ab=2(a+b)2﹣(a+b)﹣…(*)又∵ab≤[(a+b)]2=(a+b)2,∴3ab≤(a+b)2,代入(*)式,得2(a+b)2﹣(a+b)﹣≤(a+b)2,设a+b=m,代入上式有2m2﹣m﹣≤m2,即m2﹣m﹣≤0,得到﹣≤m≤,∴m最大值为,即OD+OE的最大值是.二.解答题(本大题共6小题,满分90分.解答须写出文字说明、证明过程或演算步骤.)15.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(I)根据线面平行的判定定理证出即可;(II)根据面面垂直的判定定理证明即可.【解答】证明:(I)∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE.∴PA∥平面BDE.(II)∵PO⊥底面ABCD,PO⊥BD,又∵AC⊥BD,且AC∩PO=O∴BD⊥平面PAC,而BD⊂平面BDE,∴平面PAC⊥平面BDE16.已知向量,设函数.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值.【考点】平面向量的坐标运算;两角和与差的正弦函数;正弦定理的应用;余弦定理的应用.【分析】(1)用向量的数量积法则及三角函数的二倍角公式化简f(x),再用三角函数的周期公式和整体代换的方法求出周期和单调区间(2)用三角形的面积公式和余弦定理列方程求.【解答】解:(1)∵,∴===∴令∴∴f(x)的单调区间为,k∈Z.(2)由f(A)=4得∴又∵A为△ABC的内角∴∴∴∵∴∴c=2∴∴17.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x﹣6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【考点】函数模型的选择与应用;利用导数研究函数的单调性.【分析】(Ⅰ)由f(5)=11代入函数的解析式,解关于a的方程,可得a值;(Ⅱ)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.【解答】解:(Ⅰ)因为x=5时,y=11,所以+10=11,故a=2(Ⅱ)由(Ⅰ)可知,该商品每日的销售量y=所以商场每日销售该商品所获得的利润为从而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4)于是,当x变化时,f(x)、f′(x)的变化情况如下表:x (3,4) 4 (4,6)f'(x)+0 ﹣f(x)单调递增极大值42 单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值,且最大值等于42答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.18.在以O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.(1)求向量的坐标;(2)求圆x2﹣6x+y2+2y=0关于直线OB对称的圆的方程;(3)是否存在实数a,使抛物线y=ax2﹣1上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.【考点】关于点、直线对称的圆的方程;向量的模;向量的减法及其几何意义;抛物线的应用.【分析】(1)设出要求的向量的坐标,根据所给的模长的关系和直角三角形两条直角边垂直的关系,写出关于向量坐标的关系式,解方程,舍去不合题意的结果,得到向量的坐标.(2)要求圆关于直线的对称圆,只要求出圆心关于直线的对称点即可,本题需要先根据向量的坐标求出点B的坐标,从而求出直线的方程,通过计算得到结果.(3)设出抛物线上关于直线的对称的两个点,两个点的中点在直线上且两点连线与已知直线垂直,写出所设的点的关系,构造一元二次方程,根据方程有解用判别式得到结果.【解答】解:(1)设,则由||=2||,=0即得,或.∵,∴v﹣3>0,得v=8,∴={6,8};(2)由={10,5},得B(10,5),于是直线OB方程:.由条件可知圆的标准方程为:(x﹣3)2+(y+1)2=10,得圆心(3,﹣1),半径为.设圆心(3,﹣1)关于直线OB的对称点为(x,y)则,得,∴所求圆的方程为(x﹣1)2+(y﹣3)2=10;(3)设P(x1,y1),Q(x2,y2)为抛物线上关于直线OB对称两点,则,得即x1,x2为方程的两个相异实根,于是由,得.∴当时,抛物线y=ax2﹣1上总有关于直线OB对称的两点.19.数列{a n}满足a n=2a n﹣1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=(a n+t)(n∈N*),且数列{b n}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{a n}的前n项和S n.【考点】数列递推式;数列的求和.【分析】(Ⅰ)利用a n=2a n﹣1+2n+1(n∈N,n≥2),a3=27,代入可求;(Ⅱ)假设存在实数t,使得{b n}为等差数列,从而有2b n=b n﹣1+b n+1,.故可求;(Ⅲ)先求出数列的通项,再求和.【解答】解:(Ⅰ)由a3=27,27=2a2+23+1,∴a2=9,∴9=2a1+22+1∴a1=2,(Ⅱ)假设存在实数t,使得{b n}为等差数列.则2b n=b n﹣1+b n+1,∴∴4a n=4a n﹣1+a n+1+t,∴∴t=1,存在t=1,使得数列{b n}为等差数列.(Ⅲ)由(1)、(2)知:,又{b n}为等差数列。
2015-2016学年第一学期期末考试高一数学2016-1注意事项:1.本试卷共4页。
满分160分,考试时间120分钟。
2.请将填空题的答案和解答题的解题过程写在答题纸上,在本试卷上答题无效。
3.答题前,务必将自己的姓名、学校、准考证号写在答题纸的密封线内。
一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置)1.设集合{}12A x x =-≤≤,{}04B x x =≤≤,则A B = ▲ .2.计算1111sincos44ππ+的值为 ▲ .3.函数的)ln1y x =-定义域是 ▲ .4.在平面直角坐标系xOy 中,已知角α的顶点在原点,始边在x 轴正向,终边经过点)6,(-x P ,且53tan -=α,则x 的值为 ▲ .5.已知1sin 4α=,且(,)2παπ∈,则tan α= ▲ . 6.已知扇形的半径为10cm ,圆心角为120︒,则扇形的面积为 ▲ .7.2cos401cos 140--的结果是 ▲ .8.若2829,log 3xy ==,则2x y +的值为 ▲ . 9.函数2sin cos y x x =+的值域为 ▲ .10.设函数24,0()3,0x x f x x x ⎧->=⎨--<⎩,若()(1)f a f >,则实数a 的取值范围是 ▲ .11.已知4tan 3α=-,则221cos sin αα=- ▲ . 12.将函数sin 26y x π⎛⎫=+⎪⎝⎭的图象向右平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后,得到函数()f x 的图象,若函数()f x 是偶函数,则ϕ的值等于 ▲ .13.已知f (x )=2sin(62π-x )-m 在x ∈上有两个不同的零点,则m 的范围是 ▲ .14. 若函数()sin 21f x x ω=+在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为__▲ .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.已知3cos()cos(2)sin()22()3sin()sin()2f ππαπαααππαα+⋅-⋅-+=--⋅+ (1)化简()f α;(2)若α是第三象限角,且31cos()25πα-=,求()f α的值.16.已知12324xA x ⎧⎫=⎨⎬⎩⎭≤≤,121log ,64B y y x x ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭≤≤2. (1)求A B ⋂;(2)若{}11,0C x m x m m =-+>≤≤,若C A ⊆,求m 的取值范围.17.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<在12x π=时取得最大值4,在同一周期中,在512x π=时取得最小值4-. (1) 求函数()f x 的解析式;(2) 求函数()f x 在[0,]π上的单调增区间 ; (3) 若2()2312f πα+=,(0,)απ∈,求α的值.18.已知a 为常数,()lg 11a f x x ⎛⎫=-⎪+⎝⎭是奇函数。
大丰区新丰中学2015-2016第一学期第一次学情检测高三数学试题一. 填空:(每题5分,计70分)1.已知集合A ={-2,-1},B ={-1,2,3},则错误!未找到引用源。
▲ . 2.命题:“错误!未找到引用源。
,错误!未找到引用源。
”的否定是 ▲ . 3.错误!未找到引用源。
的值为▲ .4.“错误!未找到引用源。
”是“错误!未找到引用源。
”的 ▲ 条件.(从 “充分不必要”、 “必要不充分”、“充要”、“既不充分也不必要”中,选出适当的一种填空) 5. 已知幂函数f (x )=(t 3-t +1)x 错误!未找到引用源。
(t ∈N)是偶函数,则实数t 的值为___▲_____. 6.曲线2ay y x x==和在它们的交点处的两条切线互相垂直,则a 的值是 ▲ . 7.已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最大值4和最小值1, 则错误!未找到引用源。
的值为 ▲ .8.设函数错误!未找到引用源。
,则错误!未找到引用源。
的值为 ▲.9.若函数错误!未找到引用源。
定义在错误!未找到引用源。
上的奇函数,且在错误!未找到引用源。
上是增函数,又错误!未找到引用源。
,则不等式错误!未找到引用源。
的解集为 ▲ 10、已知点错误!未找到引用源。
是函数错误!未找到引用源。
图像上的点,直线错误!未找到引用源。
是该函数图像在错误!未找到引用源。
点处的切线,则错误!未找到引用源。
____▲___.11、存在正数错误!未找到引用源。
使错误!未找到引用源。
成立,则错误!未找到引用源。
的取值范围是____▲___.12.已知点P 是函数错误!未找到引用源。
的图像上一点,在点P 处的切线为错误!未找到引用源。
,错误!未找到引用源。
交x 轴于点M ,过点P 作错误!未找到引用源。
的垂线错误!未找到引用源。
,错误!未找到引用源。
交x 轴于点N ,MN 的中点为Q ,则点Q 的横坐标的最大值为 ▲13.已知函数错误!未找到引用源。
2015-2016学年江苏省盐城市大丰市新丰中学高二(上)期末数学试卷(理科)一、填空题(本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在答题纸相应位置上.)1.(5分)命题“∀x∈R,x2≥0”的否定是.2.(5分)抛物线y=2x2的焦点坐标是.3.(5分)复数的值是.4.(5分)函数f(x)=(x﹣3)e x的单调递增区间是.5.(5分)已知椭圆两个焦点坐标分别是(5,0),(﹣5,0),椭圆上一点P到两个焦点的距离之和为26,则椭圆的方程为.6.(5分)设O是原点,向量、对应的复数分别为2﹣3i,﹣3+2i,那么,向量对应的复数是.7.(5分)已知,若则实数x=.8.(5分)已知双曲线,F1,F2分别为它的左、右焦点,P为双曲线上一点,设|PF1|=7,则|PF2|的值为.9.(5分)曲线在点(0,f(0))处的切线方程为.10.(5分)若关于x的不等式x2+mx+m﹣1≥0恒成立,则实数m=.11.(5分)不等式组的所有点中,使目标函数z=x﹣y取得最大值点的坐标为.12.(5分)已知点B是点A(2,﹣3,5)关于平面xOy的对称点,则AB=.13.(5分)已知椭圆:+=1,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若AF2+BF2的最大值为5,则椭圆方程为.14.(5分)有下列命题:①双曲线与椭圆有相同的焦点;②“”是“2x2﹣5x﹣3<0”必要不充分条件;③“若xy=0,则x、y中至少有一个为0”的否命题是真命题.;④若p是q的充分条件,r是q的必要条件,r是s的充要条件,则s是p的必要条件;其中是真命题的有:.(把你认为正确命题的序号都填上)二、解答题(本大题共6小题,14+14+15+15+16+16,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(14分)已知复数z=m(m﹣1)+(m2+2m﹣3)i,当实数m取什么值时,复数z是:(1)零;(2)纯虚数;(3)z=2+5i;(4)表示复数z对应的点在第四象限.16.(14分)已知f(x)=.(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.17.(15分)如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,点E是C1D1的中点.(1)求证:DE⊥平面BCE;(2)求二面角A﹣EB﹣C的大小.18.(15分)已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.(1)求a、b的值;(2)求f(x)的单调区间;(3)求f(x)在[0,4]上的最大值与最小值.19.(16分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x 满足.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.20.(16分)如图,点F1,F2分别是椭圆C:的左、右焦点.点A是椭圆C上一点,点B是直线AF 2与椭圆C的另一交点,且满足AF1⊥x轴,∠AF2F1=30°.(1)求椭圆C的离心率e;(2)若△ABF1的周长为,求椭圆C的标准方程;(3)若△ABF1的面积为,求椭圆C的标准方程.2015-2016学年江苏省盐城市大丰市新丰中学高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在答题纸相应位置上.)1.(5分)命题“∀x∈R,x2≥0”的否定是∃x∈R,x2<0.【分析】根据一个命题的否定定义解决.【解答】解:由命题的否定义知:要否定结论同时改变量词故答案是∃x∈R,x2<02.(5分)抛物线y=2x2的焦点坐标是(0,).【分析】先将方程化成标准形式,即,求出p=,即可得到焦点坐标.【解答】解:抛物线y=2x2的方程即x2=y,∴p=,故焦点坐标为(0,),故答案为:(0,).3.(5分)复数的值是0.【分析】先利用两个复数的除法法则求出,再由虚数单位i的幂运算性质求出i3的值,从而可求所求式子的值.【解答】解:复数=﹣i=﹣i=0.故答案为0.4.(5分)函数f(x)=(x﹣3)e x的单调递增区间是(2,+∞).【分析】首先对f(x)=(x﹣3)e x求导,可得f′(x)=(x﹣2)e x,令f′(x)>0,解可得答案.【解答】解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,令f′(x)>0,解得x>2.故答案为:(2,+∞).5.(5分)已知椭圆两个焦点坐标分别是(5,0),(﹣5,0),椭圆上一点P到两个焦点的距离之和为26,则椭圆的方程为.【分析】由题意可得:c=5,并且得到椭圆的焦点在x轴上,再根据椭圆的定义得到a=13,进而由a,b,c的关系求出b的值得到椭圆的方程.【解答】解:∵两个焦点的坐标分别是(5,0),(﹣5,0),∴椭圆的焦点在横轴上,并且c=5,∴由椭圆的定义可得:2a=26,即a=13,∴由a,b,c的关系解得b=12,∴椭圆方程是.故答案为:.6.(5分)设O是原点,向量、对应的复数分别为2﹣3i,﹣3+2i,那么,向量对应的复数是5﹣5i.【分析】根据向量、对应的复数分别为2﹣3i,﹣3+2i,得到向量=,代入所给的数据作出向量对应的结果.【解答】解:∵向量、对应的复数分别为2﹣3i,﹣3+2i,∴向量==2﹣3i+3﹣2i=5﹣5i故答案为:5﹣5i7.(5分)已知,若则实数x=4.【分析】利用向量垂直的性质求解.【解答】解:∵,,∴=6﹣2﹣x=0,解得x=4.∴实数x的值为4.故答案为:4.8.(5分)已知双曲线,F1,F2分别为它的左、右焦点,P为双曲线上一点,设|PF1|=7,则|PF2|的值为1或13.【分析】根据双曲线的定义知|PF2|﹣|PF1|=2a,计算可得答案.【解答】解:已知双曲线的a=3.当P在左边曲线上时,由双曲线的定义知|PF2|﹣|PF1|=2a=6,∴|PF2|﹣7=6,∴|PF1|=13.当P在右边曲线上时,由双曲线的定义知|PF2|﹣|PF1|=2a=6,∴7﹣|PF2|=6,∴|PF1|=1.故答案为:1或13.9.(5分)曲线在点(0,f(0))处的切线方程为x﹣y+2=0.【分析】把x=0代入曲线方程求出相应的y的值确定出切点坐标,然后根据求导法则求出曲线方程的导函数,把x=0代入求出的导函数值即为切线方程的斜率,由求出的切点坐标和斜率写出切线方程即可.【解答】解:把x=0代入曲线方程得:f(0)=2,所以切点坐标为(0,2),求导得:f′(x)==,把x=0代入导函数得:f′(0)=1,所以切线方程的斜率k=1,则切线方程为:y﹣2=x﹣0,即x﹣y+2=0.故答案为:x﹣y+2=010.(5分)若关于x的不等式x2+mx+m﹣1≥0恒成立,则实数m=2.【分析】根据二次函数的性质得到△=0,解出m的值即可.【解答】解:若关于x的不等式x2+mx+m﹣1≥0恒成立,则△=m2﹣4(m﹣1)=0,解得:m=2,故答案为:2.11.(5分)不等式组的所有点中,使目标函数z=x﹣y取得最大值点的坐标为(2,0).【分析】先画出满足条件的平面区域,将z=x﹣y变形为y=x﹣z,通过图象读出即可.【解答】解:画出满足条件的平面区域,如图示:,显然直线y=x﹣z过(2,0)时,z的值最小,故答案为:(2,0).12.(5分)已知点B是点A(2,﹣3,5)关于平面xOy的对称点,则AB=10.【分析】求出点A(2,﹣3,5)关于平面xOy的对称点B的坐标,然后利用距离公式求出AB即可.【解答】解:点A(2,﹣3,5)关于平面xOy的对称点的坐标(2,﹣3,﹣5),由空间两点的距离公式可知:AB==10,故答案为:10.13.(5分)已知椭圆:+=1,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若AF2+BF2的最大值为5,则椭圆方程为.【分析】|AF2|+|BF2|=4a﹣|AB|=8﹣|AB|,根据|AF2|+|BF2|的最大值为5,可得|AB|的最小值为3.由题意可设直线l的方程为:my=x+c,(直线l的斜率为0不必考虑),A(x1,y1),B(x2,y2).与椭圆方程联立可得:(b2m2+4)y2﹣2mcb2y+b2c2﹣4b2=0,再利用根与系数的关系、弦长公式即可得出.【解答】解:|AF2|+|BF2|=4a﹣|AB|=8﹣|AB|,∵|AF2|+|BF2|的最大值为5,∴|AB|的最小值为3.由题意可设直线l的方程为:my=x+c,(直线l的斜率为0不必考虑),A(x1,y1),B(x2,y2).联立,化为:(b2m2+4)y2﹣2mcb2y+b2c2﹣4b2=0,c2=4﹣b2.∴y1+y2=,y1y2=.∴|AB|===,当m=0时,|AB|=b2;当m≠0时,|AB|=4+>b2.∴b2=3.∴椭圆的标准方程为:,故答案为:.14.(5分)有下列命题:①双曲线与椭圆有相同的焦点;②“”是“2x2﹣5x﹣3<0”必要不充分条件;③“若xy=0,则x、y中至少有一个为0”的否命题是真命题.;④若p是q的充分条件,r是q的必要条件,r是s的充要条件,则s是p的必要条件;其中是真命题的有:①③④.(把你认为正确命题的序号都填上)【分析】①直接根据焦点的定义求出双曲线与椭圆有相同的焦点都为②2x2﹣5x﹣3<0的解集为()故②“”是“2x2﹣5x﹣3<0”充分不必要条件③若xy=0,则x、y中至少有一个为0”的否命题是④否命题:“若xy≠0,则x、y都不为零”故是真命题.④将已知转化为命题间的相互推出关系;利用推出的传递性及充要条件的定义判断出各个命题的真假.【解答】解:①直接根据焦点的定义求出双曲线与椭圆有相同的焦点都为②∵2x2﹣5x﹣3<0的解集为()∴“”是“2x2﹣5x﹣3<0”充分不必要条件③若xy=0,则x、y中至少有一个为0”的否命题是:“若xy≠0,则x、y都不为0”故是真命题.④∵p是q的充分条件∴p⇒q∵r是q的必要条件∴q⇒r∵r是s的充要条件∴r⇒s∴p⇒s故s是p的必要条件答案为:①③④二、解答题(本大题共6小题,14+14+15+15+16+16,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(14分)已知复数z=m(m﹣1)+(m2+2m﹣3)i,当实数m取什么值时,复数z是:(1)零;(2)纯虚数;(3)z=2+5i;(4)表示复数z对应的点在第四象限.【分析】(1)实部与虚部同时为零,求解即可;(2)实部为0,虚部不为0,复数是纯虚数,求出m即可;(3)实部为2,虚部为5求解即可得到m的值,使得z=2+5i(4)表示复数z对应的点在第四象限.实部大于0,虚部小于哦,求出m的范围即可.【解答】解:(1)由可得m=1;(3分)(2)由可得m=0;(6分)(3)由可得m=2;(10分)(4)由题意,解得即﹣3<m<0(14分)16.(14分)已知f(x)=.(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.【分析】(1)根据题意,把f(x)>k化为kx2﹣2x+6k<0,由不等式与对应方程的关系,利用根与系数的关系求出k的值;(2)化简f(x),利用基本不等式,求出f(x)≤t时t的取值范围.【解答】解:(1)∵f(x)>k,∴>k;整理得kx2﹣2x+6k<0,∵不等式的解集为{x|x<﹣3或x>﹣2},∴方程kx2﹣2x+6k=0的两根是﹣3,﹣2;由根与系数的关系知,﹣3+(﹣2)=,即k=﹣;(2)∵x>0,∴f(x)==≤=,当且仅当x=时取等号;又∵f(x)≤t对任意x>0恒成立,∴t≥,即t的取值范围是[,+∞).17.(15分)如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,点E是C1D1的中点.(1)求证:DE⊥平面BCE;(2)求二面角A﹣EB﹣C的大小.【分析】(1)建立如图所示的空间直角坐标系,利用向量法能证明DE⊥平面BCE.(2)求出平面AEB的法向量和平面BCE的法向量,利用向量法能求出二面角A ﹣EB﹣C的大小.【解答】(1)证明:建立如图所示的空间直角坐标系,则D(0,0,0),E(0,1,1),B(1,2,3),C(0,2,0),∴=(0,1,1),=(﹣1,﹣1,1),=(﹣1,0,0),∵=0,=0,∴DE⊥BE,DE⊥BC,∵BE⊂平面BCE,BC⊂平面BCE,BE∩BC=B,∴DE⊥平面BCE.(2)解:设平面AEB的法向量=(x,y,z),则,取x=1,得=(1,0,1),∵DE⊥平面BCE,∴=(0,1,1)是平面BCE的法向量,∵cos<>==,∴二面角A﹣EB﹣C的大小为120°.18.(15分)已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.(1)求a、b的值;(2)求f(x)的单调区间;(3)求f(x)在[0,4]上的最大值与最小值.【分析】(1)求出导函数,令导函数在1处的值为0;f(x)在1处的值为10,列出方程组求出a,b的值.(2)令导函数大于0求出f(x)的单调递增区间;令导函数小于0求出f(x)的单调递减区间.(3)利用(2)得到f(x)在[0,4]上的单调性,求出f(x)在[0,4]上的最值.【解答】解:(1)由f′(1)=3+2a+b=0,f(1)=1+a+b+a2=10,得a=4,或a=﹣3∵a>0,∴a=4,b=﹣11(经检验符合)(2)f(x)=x3+4x2﹣11x+16,f'(x)=3x2+8x﹣11,由f′(x)=0得所以令f′(x)>0得;令所以f(x)在上单调递增,上单调递减.(3)由(2)知:f(x)在(0,1)上单调递减,(1,4)上单调递增,又因为f(0)=16,f(1)=10,f(4)=100,所以f(x)的最大值为100,最小值为1020.19.(16分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x 满足.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)p∧q为真,即p和q均为真,分别解出p和q中的不等式,求交集即可;(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.【解答】解:(1)a=1时,命题p:x2﹣4x+3<0⇔1<x<3命题q:⇔⇔2<x≤3,p∧q为真,即p和q均为真,故实数x的取值范围是2<x<3(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.由(1)知命题q:2<x≤3,命题p:实数x满足x2﹣4ax+3a2<0⇔(x﹣a)(x﹣3a)<0由题意a>0,所以命题p:a<x<3a,所以,所以1<a≤220.(16分)如图,点F1,F2分别是椭圆C:的左、右焦点.点A是椭圆C上一点,点B是直线AF2与椭圆C的另一交点,且满足AF1⊥x轴,∠AF2F1=30°.(1)求椭圆C的离心率e;(2)若△ABF1的周长为,求椭圆C的标准方程;(3)若△ABF1的面积为,求椭圆C的标准方程.【分析】(1)通过求解直角三角形得到A的坐标,代入椭圆方程整理,结合隐含条件求得椭圆C的离心率e;(2)通过椭圆定义结合三角形的周长及隐含条件求得答案;(3)由(1)得到a与c,b与c的关系,设直线AF2的方程为,代入2x2+3y2=6c2化简整理,求得B的坐标,再由点到直线的距离公式结合三角形面积求得答案.【解答】解:(1)Rt△AF1F2中,∵∠AF2F1=30°,∴,则,代入并利用b2=a2﹣c2化简整理,得3a4﹣2a2c2﹣3c4=0,即(a2﹣3c2)(3a2﹣c2)=0,∵a>c,∴,∴.(2)由椭圆定义知AF1+AF2=BF1+BF2=2a,∴△ABF1的周长为4a,∴,则,,故椭圆C的标准方程为;(3)由(1)知,则,于是椭圆方程可化为,即2x2+3y2=6c2,设直线AF2的方程为,代入2x2+3y2=6c2化简整理得3x2﹣2cx﹣5c2=0,∴x=﹣c或,则点B的横坐标为,∴点B到直线AF1的距离为,∴△ABF1的面积为,解得c=3,∴,故椭圆C的标准方程为.赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
2015-2016学年第一学期期末考试 高二年级数学(文科)试题一.填空题(本大题共14小题;每小题5分,共70分.不需写出解答过程,请将答案直接写在答题卷上)1.设命题2:,10p x R x ∀∈+>,则p ⌝为____________________.2.抛物线x y 42=的准线方程为___________________. 3.设复数22i(1i)z +=+(i 为虚数单位),则z 的虚部是___________________. 4.“1x <”是 “2log 0x <”的______________________条件. (在“充分必要”、“充分不必要”、“必要不充分”、 “既不充分也不必要”中选一个合适的填空)5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数y x z 24+=的最大值为_____.6.函数xe x xf )3()(-=的单调递增区间是___________________. 7.若1x >,则11x x +-的最小值是___________________. 8.曲线xxx f cos sin 2)(+=在点))0(,0(f 处的切线方程为 ___________________.9.记不等式062<-+x x 的解集为集合A ,函数)lg(a x y -=的定义域为集合B .若“A x ∈”是“B x ∈”的充分条件,则实数a 的取值范围为_____________. 10.若不等式02<++q px x 的解集是{}21/<<x x ,则不等式0622≥+-++x x qpx x 的解集是____________________. 11.如图甲在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,按图所标边长,由勾股定理有222b ac +=,设正方形换成正方体,把截线换成如图乙的截面,从正方体上截下三条侧棱两两垂直的三棱锥LMN O -,如果用1S 、2S 、3S 表示三个侧面面积,用4S 表示截面面积,那么你类比得到的结论是______________.12.已知复数()0,,≠∈+=x R y x yi x z 且32=-z ,则xy的范围为___________. 13.已知函数223)(a bx ax x x f +++=在x =1处有极值10.则=+b a _________.14.已知椭圆:14222=+by x ,左右焦点分别为21,F F ,过1F 的直线l 交椭圆于B A ,两点,若22BF AF +的最大值为5,则椭圆方程为____________.二.解答题(本大题共6小题,满分90分.解答须写出文字说明、证明过程或演算步骤.) 15. (本题满分14分) 已知z 是复数,i z 2+、iz -2均为实数(i 为虚数单位),且复数2)(ai z +在复平面上对应的点在第一象限,求实数a 的取值范围.16.(本小题满分14分)给出下面两个命题,命题:p 方程172522=-+-m y m x 表示焦点在x 轴上的椭圆 命题:q 双曲线1522=-mx y 的离心率)2,1(∈e 已知q p ⌝∨⌝为假,求实数m 的取值范围。
2015-2016学年江苏省徐州市高一第一学期期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,将答案填在答题纸上)1.已知全集U={1,2,3},A={1,m},∁U A={2},则m=3.解:∵全集U={1,2,3},且∁U A={2},∴A={1,3}∵A={1,m},∴m=3.2.函数y=log2(x﹣1)的定义域是(1,+∞).解:∵y=log2(x﹣1),∴x﹣1>0,x>1函数y=log2(x﹣1)的定义域是(1,+∞)故答案为(1,+∞)3.幂函数f(x)=xα的图象经过点(2,),则α=﹣2.解:∵幂函数f(x)=xα的图象经过点(2,),∴2α==2﹣2∴α=﹣2故答案为:﹣2.4.sin240°=.解:根据诱导公式sin(180°+α)=﹣sinα得:sin240°=sin(180°+60°)=﹣sin60°=﹣.故答案为:﹣5.已知向量,,且,则x的值为.解:∵向量,,且,∴3x﹣(﹣1)•(﹣1)=0,解得x=.故答案为:.6.若sinα=,,则tanα的值为﹣.解:∵sinα=,,∴cosα==﹣=﹣,∴tan==﹣.故答案为:﹣7.已知,,且,则向量与的夹角为.解:设向量与的夹角为θ,,,且,∴(3)•()=|3|•||cosθ=3×10××12cosθ=36,∴cosθ=,∵0≤θ≤π,∴θ=,故答案为:.8.若方程lnx+x=3的根x0∈(k,k+1),其中k∈Z,则k=2.解:令函数f(x)=lnx+x﹣3,则由x0是方程lnx+x=3的根,可得x0是函数f(x)=lnx+x﹣3 的零点.再由f(2)=ln2﹣1=ln2﹣lne<0,f(3)=ln3>0,可得f(2)f(3)<0,故x0∈(2,3),∴k=2,故答案为2.9.若角α的终边经过点P(1,2),则sin2α﹣cos2α=.解:∵角α的终边经过点P(1,2),∴,∴sin2α﹣cos2α=()2﹣()2=.故答案为:.10.已知向量=(2,1),=(1,﹣2),若m=(9,﹣8)(m,n∈R),则m+n的值为7.解:∵向量=(2,1),=(1,﹣2),∴m=(2m+n,m﹣2n)=(9,﹣8),即,解得,∴m+n=7.故答案为:7.11.已知函数g(x)=x3+x,若g(3a﹣2)+g(a+4)>0,则实数a的取值范围是a>﹣.解:根据题意,对于函数g(x)=x3+x,有g(﹣x)=﹣x3﹣x=﹣g(x),即函数g(x)为奇函数;而g(x)=x3+x,g′(x)=2x2+1,则g′(x)≥0恒成立,即函数g(x)为增函数;若g(3a﹣2)+g(a+4)>0,即g(3a﹣2)>﹣g(a+4)=g(﹣a﹣4),又由函数g(x)为增函数,则可以转化为3a﹣2>﹣a﹣4,解可得a>﹣;即a的取值范围是a>﹣;故答案为:a>﹣.12.若函数f(x)=log a(2x2+x)(a>0,a≠1)在区间恒有f(x)>0,则f(x)的单调递增区间是.解:函数f(x)=log a(2x2+x)(a>0,a≠1)在区间恒有f(x)>0,由于x∈,得2x2+x∈(0,1),又在区间恒有f(x)>0,故有a∈(0,1)对复合函数的形式进行,结合复合函数的单调性的判断规则知,函数的单调递增区间为(﹣∞,﹣)故应填(﹣∞,﹣)13.已知函数f(x)=,若关于x的方程f2(x)+bf(x)+3b﹣2=0有4个不同的实数根,则实数b的取值范围是(﹣,6﹣2)∪[﹣2,﹣).解:作函数f(x)=的图象如下,,∵关于x的方程f2(x)+bf(x)+3b﹣2=0有4个不同的实数根,∴x2+bx+3b﹣2=0有2个不同的实数根,令g(x)=x2+bx+3b﹣2,若2个不同的实数根都在[﹣2,2)上,则,解得,﹣<b<6﹣2,若2个不同的实数根都在(3,+∞)上,则,无解;若分别在[﹣2,2),(3,+∞)上,令g(x)=x2+bx+3b﹣2,则,解得,﹣2≤b<﹣;故答案为:(﹣,6﹣2)∪[﹣2,﹣).14.若方程2sin2x+sinx﹣m﹣2=0在[0,2π)上有且只有两解,则实数m的取值范围是(﹣1,1)∪{﹣}.解:由于方程2sin2x+sinx﹣m﹣2=0在[0,2π)上有且只有两解,故函数y=2sin2x+sinx的图象和直线y=m+2在[0,2π)上有且只有两个交点.由于sinx在(﹣1,1)上任意取一个值,在[0,2π)上都有2个x值和它对应,故令t=sinx∈[﹣1,1],则函数y=2t2+t的图象和直线直线y=m+2在(﹣1,1)上有且只有一个交点,如图所示:∵当t=﹣时,y=﹣,故1<m+2<3或m+2=﹣,求得﹣1<m<1或m=﹣,故答案为:(﹣1,1)∪{﹣}.【点评】本题主要考查正弦函数二、解答题(本大题共6小题,满分90分)15.已知集合A={x|0≤x≤5,x∈Z},B={x|≤2x≤4,x∈Z}.(1)用列举法表示集合A和B;(2)求A∩B和A∪B;(3)若集合C=(﹣∞,a),B∩C中仅有3个元素,求实数a的取值范围.解:(1)由题意得:A={x|0≤x≤5,x∈Z}={0,1,2,3,4,5},B={x|﹣1≤x≤2,x∈Z}={﹣1,0,1,2};(2)∵A={0,1,2,3,4,5},B={﹣1,0,1,2},∴A∩B={0,1,2},A∪B={﹣1,0,1,2,3,4,5};(3)∵B={﹣1,0,1,2},C=(﹣∞,a),且B∩C中仅有3个元素,∴实数a的取值范围为1<a≤2.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,),若函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为,当时,函数y=f (x)取得最大值3.(1)求函数f(x)的解析式;(2)求函数f(x)的单调减区间;(3)若,求函数f(x)的值域.解:(1)因为当时,函数y=f(x)取得最大值3,所以A=3,…因为函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为,所以,即,所以ω=2,…将点代入f(x)=3sin(2x+φ),得,因为,所以,…所以.…(2)令,k∈Z,…解得,k∈Z,所以f(x)的单调减区间是.…(结果未写出区间形式或缺少k∈Z的,此处两分不得)(3)当,,,…所以函数f(x)的值域是.…17.设向量,,且.求:(1)tanα;(2);(3)sin2α+sinαcosα.解:解法一:(1)由a⊥b,得2cosα﹣sinα=0,…解得tanα=2.…(2)…=.…(3)…==.…解法二:(1)由a⊥b,得2cosα﹣sinα=0,…解得tanα=2.…(2)由,解得或.…将数值代入得=3.…(3)由(2),代入数值得.…18.如图,在菱形ABCD中,AB=1,∠BAD=60°,且E为对角线AC上一点.(1)求•;(2)若=2,求•;(3)连结BE并延长,交CD于点F,连结AF,设=λ(0≤λ≤1).当λ为何值时,可使•最小,并求出的最小值.解:(1)•=AB•AD•cos∠BAD=1×1×cos60°=.(2)∵=2,∴==(),∴•=()•=+=+×=1.(3)以AB所在直线为x轴,以A为原点建立平面直角坐标系,则A(0,0),B(1,0),D(,).C(,).∴,=(,).∵=λ,∴=(﹣λ,0),=(1﹣λ,0).∴==(,),==(,),∴•=()×()+=λ2﹣2λ=(λ﹣1)2+.∴当λ=1时,•最小,的最小值是.19.某民营企业生产甲乙两种产品.根据市场调查与预测,甲产品的利润P(x)与投资额x成正比,其关系如图1;乙产品的利润Q(x)与投资额x的算术平方根成正比,其关系如图2(利润与投资单位:万元).(1)试写出利润P(x)和Q(x)的函数关系式;(2)该企业已筹集到3万元资金,并全部投入甲乙两种产品的生产.问怎样分配这3万元资金,才能使企业获得最大利润,其最大利润是多少万元?解:(1)设P(x)=k1x,代入(1,0.2),解得,所以,…设,代入(4,1.2),解得,所以.…(2)设投入乙产品x万元,则甲产品投入3﹣x万元,利润总和为,0≤x≤3,…记,则,…此时,…当,即时,g(t)取得最大值.…答:对甲乙产品分别投入0.75万元和2.25万元时,可使获利总额最大,最大获利为1.05万元.…20.已知函数f(x)=a x+a﹣x(a>0且a≠1).(1)判断函数f(x)的奇偶性;(2)设g(x)=,当x∈(0,1)时,求函数g(x)的值域;(3)若f(1)=,设h(x)=a2x+a﹣2x﹣2mf(x)的最小值为﹣7,求实数m值.解:(1)函数f(x)的定义域为R.f(﹣x)=a﹣x+a x=f(x),∴函数f(x)为偶函数.(2)x∈(0,1)时,a x>0.0<g(x)===<,∴函数g(x)的值域为.(3)f(1)==a+a﹣1,解得a=2.h(x)=a2x+a﹣2x﹣2mf(x)=22x+2﹣2x﹣2m(2x+2﹣x)=(2x+2﹣x﹣m)2﹣m2﹣2,当m≤2时,h(x)的最小值为h(0)=2﹣4m=﹣7,解得m=,舍去;当m>2时,h(x)的最小值为﹣m2,∴﹣m2﹣2=﹣7,解得m=.综上可得:m=.。
2015—2016学年度第一学期期末考试高一年级化学试题本卷可能使用的相对原子质量:H—1 O—16 C—12 Mg-24 Al-27N—14 Cu—64 Fe—56 Cl-35.5 Na-23第I卷(选择题,共69分)一、选择题(本大题包括23小题,每小题仅有1个选项符合题意,每小题3分,共69分)Ho,可有效地治疗肝癌。
该同位素原子核内中子数为1.某放射性元素的原子钬16667A.32 B.67 C.99 D.1662.下列气体不能用排水集气法收集的是A.NO B.NH3C.O2D.CO3.下列物质属于电解质的是A.熔融的NaOH B.氨气C.蔗糖D.KCl溶液4.化学与生活密切相关。
下列生活中常见物质的俗名与化学式相对应的是A.小苏打——Na2CO3B.熟石灰——Ca (OH)2C.漂白粉—Ca(ClO)2D.氯水——Cl25.下列变化属于化学变化的是A.过滤除去水中的泥沙B.食物腐烂C.蒸馏法分离酒精与水D.分液法分离四氯化碳与水6.正确存放化学药品,是化学实验基本要求之一,下列物质存放错误..的是A.金属钠存放于煤油中B. NaOH溶液盛放在带橡皮塞的试剂瓶中C.新制的氯水保存在棕色玻璃试剂瓶中D. 漂白粉露置在空气中保存7.下列说法正确的是A.摩尔是一种国际基本物理量B.标准状况下气体摩尔体积约为22.4LC.1mol氧气的质量为16gD.在同温同压下,相同体积的任何气体单质所含分子数相同8.下列有关说法正确的是A.陶瓷的主要成分是碳酸钙B.硅是制造半导体的常用材料C.电解氯化钠溶液制取金属钠D.用铁槽存放浓盐酸9.有NaCl、FeCl2、、FeCl3、MgCl2、AlCl3五种溶液,用一种试剂就可以将它们鉴别出来,这种试剂是A .H 2SO 4B .NaOHC .BaCl 2D .KSCN10.实验室制备氯气的反应为:MnO 2+4HCl (浓) MnCl 2+Cl 2↑+2H 2O 中,有关该反应的说法正确的是A .HCl 是氧化剂B .Cl 元素被还原C .MnO 2在反应中失去电子D .生成1 molCl 2时有2 mol 电子转移 11.下列物质中既能与稀H 2SO 4反应, 又能与NaOH 溶液反应的是①NaHCO 3 ②Al 2O 3 ③Al(OH)3 ④(NH 4)2 CO 3⑤Na 2CO 3A .③④B .①②③④C .①③④D .全部12.以下物质间的每步转化通过一步反应就能实现的是A .N 2→NO 2→HNO 3B .Fe →FeCl 3→FeCl 2C .Si →H 2SiO 3→Na 2SiO 3D .Al 2O 3→Al(OH)3→NaAlO 2 13.下列实验装置、试剂选用或操作正确的是浓硫酸饱和Na 2CO 3溶液A .干燥Cl 2B .除去CO 2中的HClC .稀释浓硫酸D .制取少量氨气14.生产自来水是要用氯气消毒。
2015-2016学年第一学期期末考试高一数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}1,0,1,2,3A =-,(){}2log 11x x B =-≤,则A B 的元素个数为( )A .0B .2C .3D .5 2.设{}06x x A =≤≤,{}02y y B =≤≤,下列从A 到B 的对应法则f 不是映射的是( ) A .1:2f x y x →=B .1:3f x y x →=C .1:4f x y x →= D .1:6f x y x →= 3.与函数y x =是同一函数的函数是( )A .y =.y =.2y = D .2x y x= 4.下列函数在R 上单调递增的是( )A .y x =B .lg y x =C .12y x =D .2xy =5.已知0a >且1a ≠,函数log a y x =,x y a =,y x a =+在同一坐标系中的图象可能是( )A .B .C .D .6.函数()y f x =是定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()f x 等于( )A .1x -+B .1x --C .1x +D .1x -7.方程330x x --=的实数解所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,3 8.已知函数()2log ,02,0x x x f x x >⎧=⎨≤⎩,则f f ⎡⎤⎢⎥⎣⎦的值是( )A. C.-10.设1a >,则0.2log a 、0.2a 、0.2a 的大小关系是( )A .0.20.20.2log a a a <<B .0.20.2log 0.2a a a <<C .0.20.2log 0.2a a a <<D .0.20.20.2log a a a <<11.若11log log 44a a =,且log logb b a a =-,则a ,b 满足的关系式是( ) A .1a >且1b > B .1a >且01b <<C .1b >且01a <<D .01a <<且01b <<12.若函数()24f x x x a =-+有4个零点,则实数a 的取值范围是( )A .[]4,0-B .()4,0-C .[]0,4D .()0,4第Ⅱ卷(共90分)二、填空题(每题4分,满分20分,将答案填在答题纸上)13.设集合{}1,2,3A =,集合{}2,2B =-,则A B = .14.已知()y f x =在定义域R 上为减函数,且()()121f a f a -<-,则a 的取值范围是 .15.已知函数()132f x x +=+,则()f x 的解析式是 .16.命题“0x ∀>,2320x x -+<”的否定是 .17.若()()()f a b f a f b +=⋅,且()12f =,则()()()()()()232013122012f f f f f f ++⋅⋅⋅+= . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分10分)已知命题:p x ∈A ,且{}11x a x a A =-<<+,命题:q x ∈B ,且{}2430x x x B =-+≥.(I )若A B =∅ ,R A B = ,求实数a 的值;(II )若p 是q 的充分条件,求实数a 的取值范围.19.(本小题满分12分)已知命题:p “[]1,2x ∀∈,20x a -≥”;命题:q “R x ∃∈,2220x ax a ++-=”.若命题“p q ∧”是真命题,求实数a 的取值范围.20.(本小题满分12分)设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤或2280x x +->,且p ⌝是q ⌝的必要不充分条件,求a 的取值范围.21.(本小题满分11分)已知命题:p {}21x x a ∈<;:q {}22x x a ∈<. (I )若“p q ∨”为真命题,求实数a 的取值范围;(II )若“p q ∧”为真命题,求实数a 的取值范围.22.(本小题满分12分)已知:p 12112x ≥+,:q 22210x x m -+-≤(0m >).若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.23.(本小题满分13分)已知:p 1123x --≤,:q 22210x x m -+-≤(0m >),若非p 是非q 的必要不充分条件,求实数m 的取值范围.高一数学--期末考试答案1-12 BABDC BCCDB CB13.{}2 14.23a < 15.()31f x x =- 16.0x ∃>,2320x x -+≥ 17.4024 18.(I )2a =;(II)0a ≤或4a ≥.解析:(I )因为{}31x x x B =≥≤或,由题意得,11a -=且13a +=,所以2a =. (II )由题意得11a +≤或13a -≥,0a ≤或4a ≥.19.2a ≤-或1a =20.4a ≤-或203a -≤< 解:设{}{}22430,03,0x x ax a a x a x a a A =-+<<=<<<,由⊂A B ≠,得40a a ≤-⎧⎨<⎩或320a a ≥-⎧⎨<⎩,解得4a ≤-或203a -≤<. 21.若p 为真,则{}21x x a ∈<,所以21a <,则1a > 若q 为真,则{}22x x a ∈<,即4a > 4分 (1)若“p q ∨”为真,则1a >或4a >,则1a > 6分(2)若“p q ∧”为真,则1a >且4a >,则4a > 8分22.解:由1212x ≥+,得210x -<≤. “p ⌝”:{}102xx x A =>≤-或.由22210x x m -+-≤,得11m x m -≤≤+(0m >). ∴“q ⌝”:{}11,0xx m x mm B =>+<->或. p ⌝是q ⌝的充分而不必要条件,∴A ⊂B .结合数轴有011012m m m >⎧⎪+≤⎨⎪-≥-⎩,解得03m <<23.解:由p 得210x -≤≤,由q 得11m x m -≤≤+. 非p 是非q 的必要不充分条件,∴p 是q 的充分不必要条件,∴12110m m -≤-⎧⎨+≥⎩, 解得9m ≥,∴实数m 的取值范围是[)9,+∞.。
2015-2016学年高一第一学期期末考试数学试题 Word版含答案2014-2015学年度高一第一学期期末考试数学试题一、选择题(每小题4分,共40分)1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(N-B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}2.在△ABC中,AN=12NC,P是BN上的一点,若AP=mAB+AC,则实数m的值为()A.1/3B.1/2C.2/3D.3/23.已知f(x)=log2x,x>1x+1,x≤1若f(x)是f(x)的最小值,则a的取值范围为()A.[0,2]B.[1,2]C.[-1,0]D.[-1,2]4.已知函数y=sin(ωx+φ),ω>0,φ<π/2的部分图象如图所示,则()图略A.ω=1,φ=π/6B.ω=2,φ=-π/6C.ω=1,φ=-π/6D.ω=2,φ=π/65.如果函数f(x)上存在两个不同点A、B关于原点对称,则称A、B两点为一对友好点,记作A,B。
规定A,B和B,A是同一对,已知f(x)=cosx,x≥0lgx,x<0则函数f(x)上共存在友好点()A.1对B.3对C.5对D.7对6.已知方程sin2x+cosx+k=0有解,则实数k的取值范围为()A.-1≤k≤5/4B.-5/4≤k≤1C.-1≤k≤1D.-5/4≤k≤-1二、填空题11.已知O为坐标原点,点A(2,0),B(0,2),C(cosα,sinα),且π/2<α<π。
若|OA+OC|=7,则OB与OC的夹角为______。
12.已知角α的顶点在原点,始边与x轴的正半轴重合,终边落在第三象限,与圆心在原点的单位圆交于点P(cosα,-sinα),则tanα=________。
13.已知函数f(x)=loga(2x-a)在区间(0,a/2)上恒有f(x)>1,则实数a的取值范围是________。
2015-2016学年第一学期期末考试高一年级数学试题一、填空题(本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题纸相应位置上。
)1、设集合A={ 1,2,3},B={ 2,4},则A B= .2、函数1sin()24y x π=+的周期为 .3、已知幂函数)(x f y =图象过点)2,2(,则)9(f = .4、集合{}1,2共有 个子集.5、在△ABC 中,已知D 是AB 边上一点,若AD →=2D B →,CD →=13CA →+λCB →,则λ= .6、已知点(1,2)P 在α终边上,则6sin 8cos 3sin 2cos αααα+-= .7、已知平面向量()()1,1,2,a b n ==b a ⋅=+,则______n =.8、已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4=________. 9、函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为.10、设函数f (x )=⎩⎪⎨⎪⎧-1, -2≤x ≤0,x -1, 0<x ≤2,若函数g (x )=f (x )-ax ,x ∈[-2,2]为偶函数,则实数a 的值为 . 11、若函数()()sin f x x θ=-(0θ>)的图象关于直线π6x =对称,则θ 的最小值为 .12、在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为 .13、设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R ,若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为 .14、已知βα,均为锐角,且,sin sin )cos(βαβα=+则αtan 的最大值是 . 二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内。
2015—2016学年度第一学期期末抽测高一数学试题参考答案一、填空题1.3 2.(1,)+∞ 3.2- 4. 5.13 6.43- 7.3π 8.2 9.35 10.7 11.12a >- 12.1(,)2-∞- 13.72[2,)(,665----U 14.178m =-或11m -<< 二、解答题15.(1){}0,1,2,3,4,5A =,……………………………………………………………2分{}{}12,1,0,1,2B x x x =-∈=-Z ≤≤. ……………………………………4分(2){}0,1,2A B =I , ……………………………………………………………7分{}1,0,1,2,3,4,5A B =-U . …………………………………………………10分(3)如图所示:实数a 的取值范围为12a <≤. …………………………………………14分16.(1)因为当6x π=时,函数()y f x =取得最大值3,所以3A =,……………1分 因为函数()y f x =的图象与x 轴的任意两个相邻交点间的距离为2π, 所以22T π=⨯=π,即2ωπ=π,所以2ω=, ……………………………3分 将点(,3)6π代入()3sin(2)f x x ϕ=+,得sin(2)16ϕπ⨯+=, 因为2ϕπ<,所以6ϕπ=,…………………………………………………5分 所以()3sin(2)6f x x π=+.…………………………………………………6分 (2)令3222262k x k ππππ++π+≤≤,k ∈Z , ……………………………8分 解得263k x k πππ+π+≤≤,k ∈Z , 所以()f x 的单调减区间是2,(63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z). ………………10分 (结果未写出区间形式或缺少k ∈Z 的,此处两分不得)(3)当[,]63x ππ∈-,2[,]666x ππ5π+∈-,1sin(2)[,1]62x π+∈-, …………12分 所以函数()f x 的值域是3[,3]2-. ………………………………………14分 17.解法一:(1)由⊥a b ,得2cos sin 0αα-=, ………………………………2分 解得tan 2α=. ………………………………………………4分(2)sin cos tan 1sin cos tan 1αααααα++=-- ………………………………………7分 21321+==-. ……………………………………9分 (3)2222sin sin cos sin sin cos sin cos αααααααα++=+ ……………………12分 22tan tan tan 1ααα+=+426415+==+. …………14分 解法二:(1)由⊥a b ,得2cos sin 0αα-=, ……………………………2分 解得tan 2α=. …………………………………………4分(2)由22tan 2,sin cos 1,ααα=⎧⎨+=⎩解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩…8分 将数值代入得sin cos sin cos αααα+-3=. ……………………………11分 (3)由(2),代入数值得26sin sin cos 5ααα+=. …………………14分 18.(1)1cos 11cos602AB AD AB AD BAD ⋅=∠=⨯⨯=o u u u r u u u r u u u r u u u r . …………………2分 (2)因为AC AB AD =+uuu r uu u r uuu r ,所以AC AB AD =+=u u u r u u u r u u u r ……4分…………………………………………5分又2AE EC =,所以23AE AC == …………………………6分故cos 11AE AB AE AB BAC ⋅=∠==uu u r uu u r uu u r uu u r . …………………8分 (3)因为CE EA λ=uu u r r ,ABE △∽CFE △,1AB =uu u r , 故CF λ= ,1FD λ=- , ……………………………………………10分所以()()AF BF AD DF BC CF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r AD BC AD CF DF BC DF CF =⋅+⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r11cos120(1)1cos60(1)cos180λλλλ=+⨯+-⨯⨯+-⨯⨯o o o22312(1)22λλλ=-+=-+, ……………………14分 故当1=λ时,AF BF ⋅uu u r uu u r 的值最小,最小值为12. ……………………16分 19.(1)设1()P x k x =,代入(1,0.2),解得115k =,所以1()5P x x =,…………………3分设()Q x k =(4,1.2),解得235k =,所以()Q x .……………6分 (2)设投入乙产品x 万元,则甲产品投入3x -万元,利润总和为1()(3)5f x x =-03x ≤≤, …………………………9分 (少定义域扣1分)t,则0t ≤ ………………………………………………11分 此时22131321()(3)()555220g t t t t =-+=--+, …………………………………13分 当32t =,即9 2.254x ==时,()g t 取得最大值2120. …………………………15分 答:对甲乙产品分别投入0.75万元和2.25万元时,可使获利总额最大,最大获利为1.05万元. …………………………………………………………16分20.(1)函数()f x 的定义域为R ,对任意的x ∈R , 都有()()()x x x x f x a a a a f x -----=+=+=,所以()f x 为偶函数. ………………………………………………………2分(2)因为()x xf x a a -=+,所以2()1xx a g x a =+(0a >且1a ≠),………………4分 ①当1a >时,因为(0,1)x ∈,所以(1,)x a a ∈,设x t a =,1y t t =+,(1,)t a ∈, 在区间(1,)a 内任取两个数1t ,2t ,12t t <, 则121212121212()(1)11()()t t t t y y t t t t t t ---=+-+=, 因为120t t -<,121t t <,所以120y y -<,即12y y <, 所以1y t t=+在(1,)a 上是单调增函数, ………………………………6分 故2111(,)x x a y t a a t a a+=+=+∈, 所以2211()(,)1112x x x xa a g x a a a a ==∈+++. ……………………………8分 ②当01a <<时,(0,1)x ∈,(,1)x a a ∈,同理可得21()(,)12a g x a ∈+. 综上所述,()g x 的值域为21(,)12a a +. …………………………………10分(3)若5(1)2f =,则2a =或12a =,所以()22x x f x -=+, …………………11分 222()222(22)(22)2(22)2x x x x x x x x h x m m ----=+-+=+-+-,令()22x x t f x -==+,因为x ∈R ,故22222x x -++≥,即2t ≥, …………12分 令222()22()2F t t mt t m m =--=---,①若2m ≥,则2min [()]()27F t F m m ==--=-,解得m =又因为2m ≥,所以m =②若2m <,则min [()](2)247F t F m ==-=-,解得94m =(舍).综上所述,实数m …………………………………………16分。
2015-2016学年第一学期期末考试高一年级数学试题一、填空题(本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题纸相应位置上。
)1、设集合A={ 1,2,3},B={ 2,4},则A B= .2、函数1sin()24y x π=+的周期为 .3、已知幂函数)(x f y =图象过点)2,2(,则)9(f = .4、集合{}1,2共有 个子集.5、在△ABC 中,已知D 是AB 边上一点,若AD →=2D B →,CD →=13CA →+λCB →,则λ= .6、已知点(1,2)P 在α终边上,则6sin 8cos 3sin 2cos αααα+-= .7、已知平面向量()()1,1,2,a b n ==b a ⋅=+,则______n =.8、已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4=________. 9、函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为.10、设函数f (x )=⎩⎪⎨⎪⎧-1, -2≤x ≤0,x -1, 0<x ≤2,若函数g (x )=f (x )-ax ,x ∈[-2,2]为偶函数,则实数a 的值为 . 11、若函数()()sin f x x θ=-(0θ>)的图象关于直线π6x =对称,则θ 的最小值为 .12、在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为 .13、设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R ,若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为 .14、已知βα,均为锐角,且,sin sin )cos(βαβα=+则αtan 的最大值是 . 二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内。
) 15、(本小题满分14分)记函数1)3lg()(-+-=x x x f 的定义域为集合,Aa x g x +=2)(的值域为集合.B(1) 若,2=a 求B A 和B A ; (2) 若,B B A = 求a 的取值范围.16、(本小题满分14分)已知向量()()k ,2,2,6-==,k 为实数 (1) 若b a //,求k 的值; (2) 若b a ⊥,求k 的值;(3) 若与的夹角为钝角,求k 的取值范围.17、(本小题满分14分)已知函数f (x )=2sin(2x +φ)(0<φ<2π)的图象过点(π2,-2).(1)求φ的值;(2)若f (α2)=65,-π2<α<0,求sin(2α-π6)的值.18.(本小题满分16分)如图所示,某住宅小区有一个矩形休闲广场ABCD ,其中AB =40 米,BC =30 米,根据小区业主建议,需将其扩大成矩形区域EFGH ,要求A 、B 、C 、D 四个点分别在矩形EFGH 的四条边(不含顶点)上.设∠BAE =θ,EF 长为y 米. (1)将y 表示成θ的函数;(2)求矩形区域EFGH 的面积的最大值.(第18题图)A BCDFGHθ19、(本小题满分16分)已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围.20、(本小题满分16分)设函数)10)1()(≠>-+=-a a a k a x f xx 且(是定义域为R 的奇函数.(1)求k 值;(2)若0)1(>f ,试判断函数单调性,并求使不等式0)2()(2>-++x t f x x f 恒成立的t 的取值范围; (3)若()312f =,设)(2)(22x mf a a x g xx -+=-,)(x g 在[)1,+∞上的最小值为1-,求m 的值.2015-2016学年第一学期期末考试高一年级数学试卷答案一、填空题1、 {2}2、π41 3、 3 4、45、326、57、38、619、f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3 10、21 11、32π 12、213、-10 14、42二、解答题 15、(1)由⎩⎨⎧≥->-0103x x ,解得31<≤x ,所以).3,1[=A …………………2分若,2=a 则),2(+∞=B ……………………………4分 所以,).,1[).3,2(+∞==B A B A ……………………………8分 (2)).3,1[=A ),(+∞=a B ………………………………10分B A B B A ⊆∴=, , ………………………………12分1<∴a ,则a 的取值范围是).1,(-∞ ……………………………14分17、(1)因为函数f (x )=2sin(2x +φ)(0<φ<2π)的图象过点(π2,-2),所以f (π2)=2sin(π+φ)=-2,即sin φ=1. …………………… 4分因为0<φ<2π,所以φ=π2. ………………………………… … 6分 (2)由(1)得,f (x )=2cos2x . …………………………………… 8分 因为f (α2)=65,所以cos α=35. 又因为-π2<α<0,所以sin α=-45. …………………………… 10分所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=-725. ……… 12分从而sin(2α-π6)=sin2αcos π6-cos2αsin π6=7-24350. … 14分18、19、解 (1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1] 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,20、解:(1)∵f (x )是定义域为R 的奇函数,∴f (0)=0,∴k =0, ……………………2分 (2)),10()(≠>-=-a a a a x f x x 且 由0)1(>f 得到1>a ,x a 单调递增,x a -单调递减,故f (x )在R 上单调递增。
……………………4分不等式化为)2()(2t x f x x f ->+,t x x x ->+∴22,02>+-∴t x x 恒成立, ……6分041<-=∆∴t ,t 的取值范围为⎭⎬⎫⎩⎨⎧>41t t ; ……………………8分 (3)∵f (1)=32,231=-∴a a ,即,02322=--a a (舍去)。
或212-==∴a a (10)分∴g (x )=22x+2-2x-2m (2x -2-x )=(2x -2-x )2-2m (2x -2-x)+2.令t =f (x )=2x-2-x,由(1)可知f (x )=2x -2-x为增函数,∵x ≥1,∴t ≥f (1)=32,令h (t )=t 2-2mt +2=(t -m )2+2-m 2(t ≥32) ……………………12分若m ≥32,当t =m 时,h (t )min =2-m 2=-1,∴m =3±,∴m =3若m <32,当t =32时,h (t )min =174-3m =-1,解得m =47>32,舍去。
综上可知m=3…………………16分.。