2014~2015学年度 最新 山东省泰安市肥城2015中考模拟数学试题及答案
- 格式:doc
- 大小:1012.50 KB
- 文档页数:10
山东省泰安市2015届中考数学模拟试题一一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.下列四个有理数、0、1、﹣2,任取两个相乘,积最小为()A.B.0 C.﹣1 D.﹣22.﹣是的()A.相反数B.倒数 C.绝对值D.算术平方根3.下列图形中,是中心对称图形的是()A.B.C.D.4.若x=1,,则x2+4xy+4y2的值是()A.2 B.4 C.D.5.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()A.B.C.D.6.下列各式,分解因式正确的是()A.a2+b2=(a+b)2B.xy+xz+x=x(y+z)C.x2+x3=x3(+1)D.a2﹣2ab+b2=(a﹣b)27.下面计算正确的是()A.3+=3B.÷=3 C.•=D.=±28.将一副三角板按图中的方式叠放,则∠α等于()A.75° B.60° C.45° D.30°9.某地统计部门公布最近5年国民消费指数增长率分别为:8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据()比较小.A.方差 B.平均数C.众数 D.中位数10.如图,以点P为圆心,以为半径的圆弧与x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.(4,)B.(4,2) C.(4,4) D.(2,)11.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A.B.C.D.12.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)13.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.14.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.B.C.πD.15.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组16.某中学为迎接建党九十周年,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年級同学获得前两名的概率是()A.B.C.D.17.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m18.如果不等式组的解集是x<2,那么m的取值范围是()A.m=2 B.m>2 C.m<2 D.m≥219.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是()A.7.5cm2B.5.1cm2C.5.2cm2D.7.2cm220.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x+2C.y=﹣x2﹣x+1 D.y=﹣x2+x+2二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)21.方程(x﹣1)(x+2)=2(x+2)的根是.22.化简的结果是.23.如图,AB为⊙O的直径,弦CD⊥AB于点H,连接OC,AD,若BH:CO=1:2,AD=4,则⊙O的周长等于.24.某市广播电视局欲招聘播音员一名,对A、B两名候选人进行了两项素质测试,两人的两项测试成绩如表所示.测试项目测试成绩A B面试90 95综合知识测试85 80根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么(填A或B)将被录用.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?26.如图,在平面直角坐标系xOy中,反比例函数(x>0)的图象与一次函数y=﹣x+b的图象的一个交点为A(4,m).(1)求一次函数的解析式;(2)设一次函数y=﹣x+b的图象与y轴交于点B,P为一次函数y=﹣x+b的图象上一点,若△OBP 的面积为5,求点P的坐标.27.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.28.如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD 的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=3,求CD的长.29.如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.2015年山东省泰安市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.下列四个有理数、0、1、﹣2,任取两个相乘,积最小为()A.B.0 C.﹣1 D.﹣2【考点】有理数的乘法;有理数大小比较.【分析】根据有理数的乘法和有理数的大小比较列式算式计算即可得解.【解答】解:乘积最小为:(﹣2)×1=﹣2.故选D.【点评】本题考查了有理数的乘法,有理数的大小比较,熟记运算法则并列出算式是解题的关键.2.﹣是的()A.相反数B.倒数 C.绝对值D.算术平方根【考点】实数的性质.【分析】和为0的两数为相反数,由此即可求解.【解答】解:∵﹣ +=0,∴﹣是的相反数.故选:A.【点评】本题主要考查了相反数的概念:两个相反数它们符号相反,绝对值相同.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【专题】数形结合.【分析】根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.【点评】本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.若x=1,,则x2+4xy+4y2的值是()A.2 B.4 C.D.【考点】完全平方公式.【分析】首先用完全平方公式将原式化简,然后再代值计算.【解答】解:原式=(x+2y)2=(1+2×)2=4.故选B.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.5.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()A.B.C.D.【考点】由三视图判断几何体.【分析】从正面看可看到每列正方体的最多个数分别为2,2,1,表示为平面图形即可,【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是2,2,1.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.6.下列各式,分解因式正确的是()A.a2+b2=(a+b)2B.xy+xz+x=x(y+z)C.x2+x3=x3(+1)D.a2﹣2ab+b2=(a﹣b)2【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】根据因式分解的定义,以及完全平方公式即可作出判断.【解答】解:A、a2+b2+2ab=(a+b)2,故选项错误;B、xy+xz+x=x(y+z+1),故选项错误;C、结果不是整式,不是分解因式,故选项错误;D、正确.故选D.【点评】本题考查了因式分解的定义以及完全平方式和提公因式法,正确理解因式分解的定义是关键.7.下面计算正确的是()A.3+=3B.÷=3 C.•=D.=±2【考点】实数的运算.【分析】A、根据合并二次根式的法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的乘法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、不能合并,故选项错误;B、÷==3,故选项正确;C、,故选项错误;D、=2,故选项错误.故选B.【点评】此题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二次根式才能合并;乘法法则;除法法则.8.将一副三角板按图中的方式叠放,则∠α等于()A.75° B.60° C.45° D.30°【考点】三角形内角和定理.【分析】首先根据三角板可知:∠CBA=60°,∠BCD=45°,再根据三角形内角和为180°,可以求出∠α的度数.【解答】解:∵∠CBA=60°,∠BCD=45°,∴∠α=180°﹣60°﹣45°=75°,故选:A.【点评】此题主要考查了三角形内角和定理,关键是根据三角板得到∠CBA与∠BCD的度数.9.某地统计部门公布最近5年国民消费指数增长率分别为:8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据()比较小.A.方差 B.平均数C.众数 D.中位数【考点】方差.【专题】应用题.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故从统计角度看,“增长率相当平稳”说明这组数据方差比较小.【解答】解:根据方差的意义知,数据越稳定,说明方差越小.故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,以点P为圆心,以为半径的圆弧与x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.(4,)B.(4,2) C.(4,4) D.(2,)【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PC⊥AB于点C,利用垂径定理以及结合点A和点B的坐标即可得出点C的坐标,即可得出AC的长度,从而可得出PC的长度,且点P位于第一象限,即可得出P的坐标.【解答】解:过点P作PC⊥AB于点C;即点C为AB的中点,又点A的坐标为(2,0),点B的坐标为(6,0),故点C(4,0)在Rt△PAC中,PA=,AC=2,即有PC=4,即P(4,4).故选C.【点评】本题主要考查垂径定理的应用和解直角三角形的应用,要求学生能够准确作出辅助线,灵活运用所学知识.11.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小刚的弹珠数为x颗,小龙的弹珠数为y颗,根据题意,列方程组即可.【解答】解:设小刚的弹珠数为x颗,小龙的弹珠数为y颗,由题意得,x+y=10,x+y=10化简得,.故选A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.12.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)【考点】一次函数综合题.【专题】压轴题.【分析】求得直角△ABO的两条直角边的长,即可利用解直角三角形的方法求得AB,以及∠OAB的度数,则∠OAB′是直角,据此即可求解.【解答】解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选B.【点评】本题考查了一次函数与解直角三角形,正确证明∠OAB′=90°是关键.13.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.B.C.πD.【考点】弧长的计算;切线的性质;特殊角的三角函数值.【专题】计算题;压轴题.【分析】连OB,OC,由AB切⊙O于点B,根据切线的性质得到OB⊥AB,在Rt△OBA中,OA=2,AB=3,利用三角函数求出∠BOA=60°,同时得到OB=OA=,又根据平行线的性质得到∠BOA=∠CBO=60°,于是有∠BOC=60°,最后根据弧长公式计算出劣弧BC的长.【解答】解:连OB,OC,如图,∵AB切⊙O于点B,∴OB⊥AB,在Rt△OBA中,OA=2,AB=3,sin∠BOA===,∴∠BOA=60°,∴OB=OA=,又∵弦BC∥OA,∴∠BOA=∠CBO=60°,∴△OBC为等边三角形,即∠BOC=60°,∴劣弧BC的弧长==.故选:A.【点评】本题考查了弧长公式:l=.也考查了切线的性质和特殊角的三角函数值.15.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组【考点】相似三角形的应用;解直角三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EF D可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.【点评】本题考查相似三角形的应用和解直角三角形的应用,解答这道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.16.某中学为迎接建党九十周年,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年級同学获得前两名的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,九年級同学获得前两名的有2种情况,∴九年級同学获得前两名的概率是=.故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m【考点】相似三角形的应用;比例的性质.【专题】应用题.【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:设小刚举起的手臂超出头顶是xm根据同一时刻物高与影长成比例,得,x=0.5.故选:A.【点评】能够根据同一时刻物高与影长成比例,列出正确的比例式,然后根据比例的基本性质进行求解.18.如果不等式组的解集是x<2,那么m的取值范围是()A.m=2 B.m>2 C.m<2 D.m≥2【考点】解一元一次不等式组;不等式的解集.【专题】计算题.【分析】先解第一个不等式,再根据不等式组的解集是x<2,从而得出关于m的不等式,解不等式即可.【解答】解:解第一个不等式得,x<2,∵不等式组的解集是x<2,∴m≥2,故选D.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是()A.7.5cm2B.5.1cm2C.5.2cm2D.7.2cm2【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据图形折叠前后图形不发生大小变化,得出AE=A′E,再利用勾股定理得出A′E2+A′D2=ED2,从而求出x,进而得出DE的长,再求出△DEF的面积.【解答】解:∵按如图方式折叠,使顶点B和点D重合,折痕为EF,∵AB=3cm,BC=5cm,∴A′D=AB=3cm,假设AE=x,则A′E=xcm,DE=5﹣x(cm),∴A′E2+A′D2=ED2,∴x2+9=(5﹣x)2,解得:x=1.6,∴DE=5﹣1.6=3.4(cm),∴△DEF的面积是:×3.4×3=5.1(cm2).故选B【点评】此题主要考查了折叠问题,得出AE=A′E,根据勾股定理列出关于x的方程是解决问题的关键.20.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x+2C.y=﹣x2﹣x+1 D.y=﹣x2+x+2【考点】待定系数法求二次函数解析式.【专题】压轴题.【分析】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解.当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【解答】解:A、由图象可知开口向下,故a<0,此选项错误;B、抛物线过点(﹣1,0),(2,0),根据抛物线的对称性,顶点的横坐标是,而y=﹣x2﹣x+2的顶点横坐标是﹣=﹣,故此选项错误;C、y=﹣x2﹣x+1的顶点横坐标是﹣,故此选项错误;D、y=﹣x2+x+2的顶点横坐标是,并且抛物线过点(﹣1,0),(2,0),故此选项正确.故选D.【点评】本题考查抛物线与系数的关系与及顶点横坐标的计算公式,是开放性题目.一般式:y=a (x﹣x1)(x﹣x2)(a,b,c是常数,a≠0).二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)21.方程(x﹣1)(x+2)=2(x+2)的根是x1=﹣2,x2=3 .【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,提公因式法因式分解求出方程的根.【解答】解:(x﹣1)(x+2)﹣2(x+2)=0(x+2)(x﹣1﹣2)=0(x+2)(x﹣3)=0x+2=0或x﹣3=0∴x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解可以求出方程的根.22.化简的结果是.【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=••=.故答案为:.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.23.如图,AB为⊙O的直径,弦CD⊥AB于点H,连接OC,AD,若BH:CO=1:2,AD=4,则⊙O的周长等于8π.【考点】圆周角定理;勾股定理;垂径定理.【分析】已知BH:CO=1:2,即BH=OH=OC;在Rt△OCH中,易求得∠COH=60°;由于弧BC=弧BD(垂径定理),利用圆心角和圆周角的关系可求得∠DAB=30°;在Rt△ADH中,可求得DH的长;也就求出了CH的长,在Rt△COH中,根据∠COH的正弦值和CH的长,即可求出OC的半径,进而可求出⊙O的周长.【解答】解:∵半径OB⊥CD,∴,CH=DH;(垂径定理)∵BH:CO=1:2,∴BH=OH=OC;在Rt△OCH中,OH=OC,∴∠COH=60°;∵,∴∠DAH=∠COH=30°;(圆周角定理)在Rt△AHD中,∠DAH=30°,AD=4,则DH=CH=2;在Rt△OCH中,∠COH=60°,CH=2,则OC=4.∴⊙O的周长为8π.【点评】本题考查的是圆周角定理、垂径定理、锐角三角函数等知识的综合应用.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.24.某市广播电视局欲招聘播音员一名,对A、B两名候选人进行了两项素质测试,两人的两项测试成绩如表所示.测试项目测试成绩A B面试90 95综合知识测试85 80根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 B (填A或B)将被录用.【考点】加权平均数.【专题】压轴题.【分析】将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,所以利用加权平均数的公式即可分别求出A、B的成绩,进而求出答案.【解答】解:A的成绩=(90×3+85×2)÷5=88(分),B的成绩=(95×3+80×2)÷5=89(分).因此B将被录用.故填B.【点评】本题利用广播电视局招聘播音员这一情境,重点考查了加权平均数在现实中的应用.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批玩具每套的进价是x元,则第一批进的件数是:,第二批进的件数是:,再根据等量关系:第二批进的件数=第一批进的件数×1.5可得方程;(2)设每套售价是y元,利润=售价﹣进价,根据这两批玩具每套售价相同,且全部售完后总利润不低于25%,可列不等式求解.【解答】解:(1)设第一批玩具每套的进价是x元,×1.5=,x=50,经检验x=50是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;(2)设每套售价是y元,×1.5=75(套).50y+75y﹣2500﹣4500≥(2500+4500)×25%,y≥70,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.【点评】本题考查理解题意的能力,关键是根据价格做为等量关系列出方程,根据利润做为不等辆关系列出不等式求解.26.如图,在平面直角坐标系xOy中,反比例函数(x>0)的图象与一次函数y=﹣x+b的图象的一个交点为A(4,m).(1)求一次函数的解析式;(2)设一次函数y=﹣x+b的图象与y轴交于点B,P为一次函数y=﹣x+b的图象上一点,若△OBP 的面积为5,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把点A(4,m)代入反比例函数(x>0)得到m=1,确定了A点坐标,再把A (4,1)代入一次函数y=﹣x+b求出b的值,从而确定一次函数的解析式;(2)先确定B点坐标,设P点的横坐标为x P,根据三角形面积公式有,求出x P=±2,然后分别代入y=﹣x+5中,即可确定P点坐标.【解答】解:(1)∵点A(4,m)在反比例函数(x>0)的图象上,∴,∴A点坐标为(4,1),将A(4,1)代入一次函数y=﹣x+b中,得 b=5.∴一次函数的解析式为y=﹣x+5;(2)由题意,得 B(0,5),∴OB=5.设P点的横坐标为x P.∵△OBP的面积为5,∴,∴x P=±2.当x=2,y=﹣x+5=3;当x=﹣2,y=﹣x+5=7,∴点P的坐标为(2,3)或(﹣2,7).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式.也考查了三角形面积公式.27.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质;矩形的性质.【专题】证明题;压轴题;动点型.【分析】(1)本题需先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证出OP=OQ.(2)本题需先根据已知条件得出∠A的度数,再根据AD=8厘米,AB=6厘米,得出BD和OD的长,再根据四边形PBQD是菱形时,即可求出t的值,判断出四边形PBQD是菱形.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O为BD的中点,∴OB=OD,在△POD与△QOB中,∵∴△POD≌△QOB(ASA),∴OP=OQ;(2)解:PD=8﹣t,∵四边形PBQD是菱形,∴PD=BP=8﹣t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,解得:t=,即运动时间为秒时,四边形PBQD是菱形.【点评】本题主要考查了矩形的性质,在解题时要注意与全等三角形、矩形的知识点结合起来是解本题的关键.28.如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD 的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=3,求CD的长.。
2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。
1.的计算结果是()A.4 B.﹣4 C.±4 D.82.下列二次根式中,最简二次根式是()A.B.C.D.3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD4.以下运算错误的是()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)7.能使等式=成立的条件是()A.x≥0 B.﹣3<x≤0 C.x>3 D.x>3或x<08.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>﹣4 C.x>2 D.x>﹣29.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+310.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4 D.811.直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是()A.﹣1 B.0 C.1 D.212.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥313.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()A.2 B.4 C.D.214.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共5小题,只要求填写最好结果)16.计算:=.17.如果P(﹣2,a)是正比例函数y=﹣2x图象上的一点,那么P点关于y轴对称点的坐标为.18.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.19.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.20.若不等式组有解,则a的取值范围是.三、简单题(本大题共7小题,解答应写出必要的文字说明、证明过程或演算步骤)21.解不等式,并把它的解集在数轴上表示出来.22.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.23.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.24.如图所示,x轴所在直线是一条东西走向的河,A(﹣2,3)、B(4,5)两个村庄位于河的北岸,现准备在河上修建一净水站P,并利用管道为两个村庄供水(单位:千米).(1)欲使所修管道最短,应该把净水站P修在什么位置,作出正确图形(用尺规作图),求出P点坐标及PB所在直线解析式;(2)若管道每米费用需要200元,求修管道的最低费用.25.如图,点E、F分别在正方形ABCD的边CD与BC上,∠EAF=45°.(1)求证:EF=DE+BF;(2)作AP⊥EF于点P,若AD=10,求AP的长.2015春•肥城市期末)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费累计购物130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?2015•泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷参考答案与试题解析一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。
山东省泰安市2015届中考数学模拟试题七一、选择题(本题共20个小题,在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超出一个均记0分)1.的平方根是()A.2 B.±2C.D.±2.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A. B. C. D.3.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A.21×10﹣4千克 B.2.1×10﹣6千克C.2.1×10﹣5千克D.2.1×10﹣4千克4.不等式的解集是()A.x≥3 B.x≥2 C.2≤x≤3D.空集5.下列运算正确的是()A. =﹣5 B.(﹣)﹣2=16 C.x6÷x3=x2D.(x3)2=x56.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数y=﹣的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y37.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53° B.37° C.47° D.123°8.某班6名同学参加体能测试的成绩如下(单位:分):75,95,75,75,80,80.关于这组数据的表述错误的是()A.众数是75 B.中位数是75 C.平均数是80 D.极差是209.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为()A.B.C.D.10.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.211.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.2512.化简的结果是()A.B.C.D.13.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.14.如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.15.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.16.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.817.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米18.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CE交AD于E,点F是AB的中点,则S△AEF:S四边形BDEF为()A.3:4 B.1:2 C.2:3 D.1:319.已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠2D.k≥且k≠220.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;…;依次作下去,则第n个正方形A n B n C n D n的边长是()A.B.C.D.二、填空题:(本大题共4小题,共12分,只要求填写最后结果,每小题填对得3分.)21.分解因式:x3﹣6x2+9x= .22.已知x1、x2是方程2x2+14x﹣16=0的两实数根,那么的值为.23.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为.24.如图,点A在双曲线y=上,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当OA=4时,则△ABC周长为.三、解答题:(本大题共5小题,共48分.解答要写出必要的文字说明、证明过程或演算步骤.)25.(1)计算:|﹣2|+(﹣1)2012×(π﹣3)0﹣+(﹣2)﹣2(2)化简求值:÷•,其中a=﹣2.26.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?27.如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.(1)判断直线AG与⊙O的位置关系,并说明理由.(2)求线段AF的长.28.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.29.如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P 是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.2015年山东省泰安市中考数学模拟试卷(七)参考答案与试题解析一、选择题(本题共20个小题,在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超出一个均记0分)1.的平方根是()A.2 B.±2C.D.±【考点】算术平方根;平方根.【专题】常规题型.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵ =2,∴的平方根是±.故选D.【点评】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.2.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A. B. C. D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.3.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A.21×10﹣4千克 B.2.1×10﹣6千克C.2.1×10﹣5千克D.2.1×10﹣4千克【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000021=2.1×10﹣5;故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.不等式的解集是()A.x≥3 B.x≥2 C.2≤x≤3D.空集【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.【解答】解:,解①得:x≥2,解②得:x≥3.则不等式组的解集是:x≥3.故选A.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.5.下列运算正确的是()A. =﹣5 B.(﹣)﹣2=16 C.x6÷x3=x2D.(x3)2=x5【考点】二次根式的性质与化简;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂.【专题】计算题.【分析】根据=|a|对A进行判断;根据负整数指数的意义对B进行判断;根据同底数的幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、=|﹣5|=5,所以A选项不正确;B、(﹣)﹣2=16,所以B选项正确;C、x6÷x3=x3,所以C选项不正确;D、(x3)2=x6,所以D选项不正确.故选B.【点评】本题考查了二次根式的性质与化简: =|a|.也考查了幂的乘方、同底数的幂的除法以及负整数指数的意义.6.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数y=﹣的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣3<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<x2<0,∴A、B两点在第二象限,C点在第三象限,∴y2>y1>y3.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53° B.37° C.47° D.123°【考点】平行四边形的性质.【分析】设EC于AD相交于F点,利用直角三角形两锐角互余即可求出∠EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出∠BCE的度数.【解答】解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选B.【点评】此题主要考查了平行四边形的性质和对顶角相等,根据题意得出∠E=90°和的对顶角相等是解决问题的关键.8.某班6名同学参加体能测试的成绩如下(单位:分):75,95,75,75,80,80.关于这组数据的表述错误的是()A.众数是75 B.中位数是75 C.平均数是80 D.极差是20【考点】极差;算术平均数;中位数;众数.【分析】根据平均数,中位数,众数,极差的概念逐项分析.【解答】解:(1)75出现的次数最多,所以众数是75,A正确;(2)把数据按大小排列,中间两个数为75,80,所以中位数是77.5,B错误;(3)平均数是80,C正确;(4)极差是95﹣75=20,D正确.故选B.【点评】此题考查学生对平均数,中位数,众数,极差的理解.属于基础题,比较简单.9.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小亮选到同一社区参加实践活动的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为: =.故选B.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2【考点】相似多边形的性质;翻折变换(折叠问题).【分析】可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.【解答】解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.【点评】考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.11.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【专题】计算题.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.【点评】本题考查了等腰直角三角形和方位角,根据方位角求出三角形各角的度数是解题的关键.12.化简的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先利用分式的加法法则计算括号内的式子,然后把除法转化成乘法,即可求解.【解答】解:原式=•=.故选A.【点评】本题考查了分式的混合运算,正确理解运算顺序,理解运算法则是关键.13.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】根据二次函数图象开口方向与对称轴判断出a、b的正负情况,再根据二次函数图象与y轴的交点判断出c=0,然后根据一次函数图象与系数的关系,反比例函数图象与系数的关系判断出两图象的大致情况即可得解.【解答】解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c过第二四象限且经过原点,反比例函数y=位于第二四象限,纵观各选项,只有C选项符合.故选C.【点评】本题考查了二次函数图象,一次函数图象,反比例函数图象,根据二次函数图象判断出a、b、c的情况是解题的关键,也是本题的难点.14.如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案.【解答】解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过AD段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.【点评】本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案.15.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.16.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.8【考点】线段垂直平分线的性质;勾股定理;矩形的性质.【专题】计算题.【分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.17.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=DC﹣BC=20构造方程关系式,进而可解,即可求出答案.【解答】解:∵在直角三角形ADB中,∠D=30°,∴=tan30°∴BD==AB∵在直角三角形ABC中,∠ACB=60°,∴BC==AB∵CD=20∴CD=BD﹣BC=AB﹣AB=20解得:AB=10.故选A.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.18.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CE交AD于E,点F是AB的中点,则S△AEF:S四边形BDEF为()A.3:4 B.1:2 C.2:3 D.1:3【考点】相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.【分析】由题意可推出△ADC为等腰三角形,CE为顶角∠ACD的角平分线,所以也是底边上的中线和高,因此E为AD的中点,所以EF为△ABD的中位线,这样即可判断出S△AEF:S四边形BDEF的值.【解答】解:∵DC=AC,∴△ADC是等腰三角形,∵∠ACB的平分线CE交AD于E,∴E为AD的中点(三线合一),又∵点F是AB的中点,∴EF为△ABD的中位线,∴EF=BD,△AFE∽△ABD,∵S△AFE:S△ABD=1:4,∴S△AFE:S四边形BDEF=1:3,故选D.【点评】本题主要考查等腰三角形的判定和性质、三角形中位线的定义和性质、相似三角形的判定和性质,解题的关键在于求证EF为中位线,S△AFE:S△ABD=1:4.19.已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠2D.k≥且k≠2【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据方程有两个不相等的实数根,可知△>0,据此列出关于k的不等式,解答即可.【解答】解:∵方程为一元二次方程,∴k﹣2≠0,即k≠2,∵方程有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k﹣2)2>0,∴(2k+1﹣2k+4)(2k+1+2k﹣4)>0,∴5(4k﹣3)>0,k>,故k>且k≠2.故选C.【点评】本题考查了根的判别式和一元二次方程的定义,根据一元二次方程的定义判断出二次项系数不为0是解题的关键.20.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;…;依次作下去,则第n个正方形A n B n C n D n的边长是()A.B.C.D.【考点】等腰直角三角形;正方形的性质.【专题】压轴题;规律型.【分析】过O作OM垂直于AB,交AB于点M,交A1B1于点N,由三角形OAB与三角形OA1B1都为等腰直角三角形,得到M为AB的中点,N为A1B1的中点,根据直角三角形斜边上的中线等于斜边的一半可得出OM为AB的一半,由AB=1求出OM的长,再由ON为A1B1的一半,即为MN的一半,可得出ON 与OM的比值,求出MN的长,即为第1个正方形的边长,同理求出第2个正方形的边长,依此类推即可得到第n个正方形的边长.【解答】解:过O作OM⊥AB,交AB于点M,交A1B1于点N,如图所示:∵A1B1∥AB,∴ON⊥A1B1,∵△OAB为斜边为1的等腰直角三角形,∴OM=AB=,又∵△OA1B1为等腰直角三角形,∴ON=A1B1=MN,∴ON:OM=1:3,∴第1个正方形的边长A1C1=MN=OM=×=,同理第2个正方形的边长A2C2=ON=×=,则第n个正方形A n B n D n C n的边长.故选:B【点评】此题考查了等腰直角三角形的性质,以及正方形的性质,属于一道规律型的题,熟练掌握等腰直角三角形的性质是解本题的关键.二、填空题:(本大题共4小题,共12分,只要求填写最后结果,每小题填对得3分.)21.分解因式:x3﹣6x2+9x= x(x﹣3)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.22.已知x1、x2是方程2x2+14x﹣16=0的两实数根,那么的值为﹣.【考点】根与系数的关系.【分析】利用一元二次方程根与系数的关系求得x1+x2=﹣7,x1•x2=﹣8;然后将所求的代数式转化为含有x1+x2、x1•x2形式,并将其代入求值即可.【解答】解:∵x1、x2是方程2x2+14x﹣16=0的两实数根,∴根据韦达定理知,x1+x2=﹣7,x1•x2=﹣8,∴==﹣.故答案是:﹣.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.23.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为.【考点】圆周角定理;勾股定理;垂径定理;锐角三角函数的定义.【分析】首先构造直径所对圆周角,利用勾股定理得出BD的长,再利用cosC=cosD=求出即可.【解答】解:连接AO并延长到圆上一点D,连接BD,可得AD为⊙O直径,故∠ABD=90°,∵⊙O的半径为5,∴AD=10,在Rt△ABD中,BD===8,∵∠ADB与∠ACB所对同弧,∴∠D=∠C,∴cosC=cosD===,故答案为:.【点评】此题主要考查了勾股定理以及锐角三角函数的定义和圆周角定理,根据已知构造直角三角形ABD是解题关键.24.如图,点A在双曲线y=上,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当OA=4时,则△ABC周长为.【考点】反比例函数综合题.【分析】根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:设A(a,b),则OC=a,AC=b.∵点A在双曲线y=上,∴b=,即ab=6;∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故答案是:2.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC,即可解决问题.三、解答题:(本大题共5小题,共48分.解答要写出必要的文字说明、证明过程或演算步骤.)25.(1)计算:|﹣2|+(﹣1)2012×(π﹣3)0﹣+(﹣2)﹣2(2)化简求值:÷•,其中a=﹣2.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义及零指数幂法则计算,第三项化为最简二次根式,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2+1﹣2+=﹣2;(2)原式=••=,当a=﹣2时,原式=.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.26.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?【考点】分式方程的应用.【分析】首先设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程×0.8=,解方程即可.【解答】解:设九年级学生有x人,根据题意,列方程得:×0.8=,整理得:0.8(x+88)=x,解之得:x=352,经检验x=352是原方程的解,答:这个学校九年级学生有352人.【点评】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.27.如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.(1)判断直线AG与⊙O的位置关系,并说明理由.(2)求线段AF的长.【考点】切线的判定;等边三角形的判定与性质;垂径定理;解直角三角形.【专题】计算题;证明题.【分析】(1)求出弧AB=弧AE=弧EC,推出OA⊥BE,根据AG∥BE,推出OA⊥AG,根据切线的判定即可得出答案;(2)求出等边三角形AOB,求出BD、AD长,求出∠EBC=30°,在△FBD中,通过解直角三角形求出DF即可.【解答】解:(1)直线AG与⊙O的位置关系是AG与⊙O相切,理由是:连接OA,∵点A,E是半圆周上的三等分点,∴弧AB=弧AE=弧EC,∴点A是弧BE的中点,∴OA⊥BE,又∵AG∥BE,∴OA⊥AG,∴AG与⊙O相切.(2)∵点A,E是半圆周上的三等分点,∴∠AOB=∠AOE=∠EOC=60°,又∵OA=OB,∴△ABO为正三角形,又∵AD⊥OB,OB=1,∴BD=OD=,AD=,又∵∠EBC=∠EOC=30°(圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半),在Rt△FBD中,FD=BD•tan∠EBC=BD•tan30°=×=,∴AF=AD﹣DF=﹣=.答:AF的长是.【点评】本题考查了解直角三角形,垂径定理,切线的判定等知识点的应用,能运用定理进行推理和计算是解此题的关键,注意:垂径定理和解直角三角形的巧妙运用,题目比较好,难度也适中.28.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【考点】翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.【解答】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.。
2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。
1.的计算结果是()A. 4 B.﹣4 C.±4D. 82.下列二次根式中,最简二次根式是()A.B.C.D.3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A. AB=CD B. AD=BC C. AB=BC D. AC=BD4.以下运算错误的是()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A. A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B. A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C. A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D. A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)7.能使等式=成立的条件是()A.x≥0B.﹣3<x≤0C. x>3 D. x>3或x<08.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A. x>4 B. x>﹣4 C. x>2 D. x>﹣29.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A. y=2x+3 B. y=x﹣3 C. y=2x﹣3 D. y=﹣x+310.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F 为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A. 2B. 4C. 4 D. 811.直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是()A.﹣1 B. 0 C. 1 D. 212.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥313.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()A. 2 B. 4 C.D. 214.实数a在数轴上的位置如图所示,则化简后为()A. 7 B.﹣7 C. 2a﹣15 D.无法确定15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共5小题,只要求填写最好结果)16.计算:= .17.如果P(﹣2,a)是正比例函数y=﹣2x图象上的一点,那么P点关于y轴对称点的坐标为.18.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.19.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.20.若不等式组有解,则a的取值范围是.三、简单题(本大题共7小题,解答应写出必要的文字说明、证明过程或演算步骤)21.解不等式,并把它的解集在数轴上表示出来.22.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃) 35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.23.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.24.如图所示,x轴所在直线是一条东西走向的河,A(﹣2,3)、B(4,5)两个村庄位于河的北岸,现准备在河上修建一净水站P,并利用管道为两个村庄供水(单位:千米).(1)欲使所修管道最短,应该把净水站P修在什么位置,作出正确图形(用尺规作图),求出P点坐标及PB所在直线解析式;(2)若管道每米费用需要200元,求修管道的最低费用.25.如图,点E、F分别在正方形ABCD的边CD与BC上,∠EAF=45°.(1)求证:EF=DE+BF;(2)作AP⊥EF于点P,若AD=10,求AP的长.2015春•肥城市期末)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费累计购物130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?2015•泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷参考答案与试题解析一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。
2015年山东省泰安市中考数学模拟试卷(三)一、选择题:本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上.1.计算的结果是()A.6 B. C.2 D.2.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n3.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a2+a3=a6D.a2﹣a3=a4.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.用科学记数法表示0.00012,其正确的是()A.12×10﹣5B.0.12×10﹣3C.1.2×10﹣4D.1.2×10﹣56.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米7.在数轴上表示不等式组的解集,正确的是()A.B.C.D.8.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.59.把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+2)cm B.(10+)cm C.22cm D.18cm10.体育文化用品商店购进篮球和排球共7个,进价和售价如表,全部销售完后共获利润85元.则所有购进篮球和排球售价的众数、中位数是()篮球排球进价(元/个)80 50售价(元/个)95 60A.60,60 B.60,95 C.50,80 D.50,5011.二元一次方程组的解是()A.B.C.D.12.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣213.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小霞在营地A的()A.北偏东20°方向上B.北偏东30°方向上C.北偏东40°方向上D.北偏西30°方向上14.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm.则OM的长为()A. cm B. cm C.2cm D.3cm15.如图,一扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,贴纸部分的面积为()cm2.A.B.C.800πD.500π16.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0 ②2a+b<0 ③4a﹣2b+c<0 ④>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个18.函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.19.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个20.如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC 于D,设BP=x,则PD+PE=()A.B.C.D.二、填空题:本大题共3小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.21.分解因式x(x+4)+4的结果.22.若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则a+b的值是.23.化简: =.三、解答题(共1小题,满分3分)24.如图,∠AOB=30°,过OA上到点O的距离为1,3,5,7,…的点作OA的垂线,分别与OB 相交,得到图所示的阴影梯形,它们的面积依次记为S1,S2,S3….则(1)S1=;(2)通过计算可得S2009=.三、解答题:本大题共5小题,共48分.解答时将文字说明、证明过程或演算步骤写在答题纸相应的位置上.25.如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.26.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.27.如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.28.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.29.已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0),C(0,﹣2).(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.2015年山东省泰安市中考数学模拟试卷(三)参考答案与试题解析一、选择题:本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上.1.计算的结果是()A.6 B. C.2 D.【考点】二次根式的加减法.【分析】根据二次根式加减的一般步骤,先化简,再合并.【解答】解:=2﹣=,故选:D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.2.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n【考点】整式的加减.【分析】根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.【解答】解:原式=m﹣n﹣m﹣n=﹣2n.故选:C.【点评】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.3.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a2+a3=a6D.a2﹣a3=a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项的法则;对各选项分析判断后利用排除法求解.【解答】解:A、应为a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,正确;C、a2与a3不是同类项,不能合并,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选B.【点评】本题综合考查了合并同类项、同底数幂的乘法、幂的乘方,熟练掌握法则和性质是解题的关键;需要注意不是同类项的一定不能合并.4.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看得到的平面图形即可.【解答】解:左视图从左往右2列正方形的个数依次为3,1,故选A.【点评】考查简单组合几何体的三视图知识;用到的知识点为:左视图是从几何体左面看得到的平面图形.5.用科学记数法表示0.00012,其正确的是()A.12×10﹣5B.0.12×10﹣3C.1.2×10﹣4D.1.2×10﹣5【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 12=1.2×10﹣4.故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【考点】相似三角形的应用.【专题】应用题.【分析】由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B【点评】本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.7.在数轴上表示不等式组的解集,正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【解答】解:解不等式组得分别表示在数轴上为:故选C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得BC=AD=6,CD=AB=4,AD∥BC,得∠ADE=∠DEC,又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=4,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=4,∴BE=BC﹣EC=2.故选:A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.9.把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+2)cm B.(10+)cm C.22cm D.18cm【考点】等腰梯形的性质.【分析】根据剪去的三角形的面积可得矩形的宽,利用勾股定理即可求得等腰梯形的腰长,根据折叠可得梯形其余边长,相加即为梯形的周长.【解答】解:∵剪掉部分的面积为6cm2,∴矩形的宽为2,易得梯形的下底为矩形的长,上底为(8÷2﹣3)×2=2,腰长为=,∴打开后梯形的周长是(10+2)cm.故选:A.【点评】此题主要考查了学生对等腰梯形的性质及翻折掌握情况,解决本题的关键是根据折叠的性质得到等腰梯形的各边长.10.体育文化用品商店购进篮球和排球共7个,进价和售价如表,全部销售完后共获利润85元.则所有购进篮球和排球售价的众数、中位数是()篮球排球进价(元/个)80 50售价(元/个)95 60A.60,60 B.60,95 C.50,80 D.50,50【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:设购买篮球x个,排球y个,由题意得,,解得:,即购买篮球3个,排球4个,故众数为:60,中位数为:60.故选A.【点评】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.二元一次方程组的解是()A.B.C.D.【考点】解二元一次方程组.【专题】计算题.【分析】此题可用加减消元法做.【解答】解:在方程组中,两方程相加得:3x=9,∴x=3.把x=3代入x+y=10中得:3+y=10,∴y=7.所以原方程组的解为.故选A.【点评】此类选择题可直接求解,亦可用排除法选择.12.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2【考点】二次函数图象与几何变换.【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,故选:A.【点评】本题考查了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.13.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小霞在营地A的()A.北偏东20°方向上B.北偏东30°方向上C.北偏东40°方向上D.北偏西30°方向上【考点】方向角;特殊角的三角函数值.【专题】压轴题.【分析】根据方位角的概念及已知转向的角度结合三角函数的知识求解.【解答】解:A点沿北偏东70°的方向走到B,则∠BAD=70°,B点沿北偏西20°的方向走到C,则∠EBC=20°,又∵∠BAF=90°﹣∠DAB=90°﹣70°=20°,∴∠1=90°﹣20°=70°,∴∠ABC=180°﹣∠1﹣∠CBE=180°﹣70°﹣20°=90°.∵AC=1000m,BC=500m,∴sin∠CAB=500÷1000=,∴∠CAB=30°,∴∠DAC=∠BAD﹣∠CAB=40°.故小霞在营地A的北偏东40°方向上.故选:C.【点评】解答此类题需要从运动的角度,再结合三角函数的知识求解.本题求出∠ABC=90°是解题的关键.14.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm.则OM的长为()A. cm B. cm C.2cm D.3cm【考点】垂径定理;勾股定理.【分析】过⊙O内一点M的最长的弦为直径,最短的弦是垂直于直径的弦.根据垂径定理和勾股定理求解.【解答】解:过⊙O内一点M的最长的弦为直径,最短的弦是垂直于直径的弦.则半径为3cm,根据勾股定理可得,OM==cm.故选B.【点评】此题根据题意判断“最长的弦为直径,最短的弦是垂直于直径的弦”是难点.15.如图,一扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,贴纸部分的面积为()cm2.A.B.C.800πD.500π【考点】扇形面积的计算.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为30cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:设AB=R,AD=r,则有=πR2﹣πr2S贴纸=π(R2﹣r2)=π(R+r)(R﹣r)=(30+10)×(30﹣10)π=π(cm2).故选A.【点评】本题主要考查了扇形面积的计算,熟悉扇形的面积公式是解题的关键.16.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.【点评】此题考查三角形相似判定定理的应用.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0 ②2a+b<0 ③4a﹣2b+c<0 ④>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线对称轴在y轴的右侧得a、b异号,即b>0,由抛物线与y轴的交点在x轴上方得c>0,所以abc<0;根据抛物线对称轴的位置得到﹣<1,又a<0,则根据不等式性质即可得到2a+b<0;由于x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;根据抛物线与x轴有2个交点得到b2﹣4ac>0,即4ac﹣b2<0,又a<0,则根据有理数除法法则得到>0.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,故①错误;∵﹣<1,a<0,∴2a+b<0,故②正确;∵当x=﹣2时,y<0,∴4a﹣2b+c<0,故③正确;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即4ac﹣b2<0,又∵a<0,∴>0,故④正确.综上所述,正确结论有3个;故选:B.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.18.函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.【考点】二次函数的图象;一次函数的性质.【专题】压轴题.【分析】本题可先由一次函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:∵函数y=ax+b的图象经过一、二、三象限∴a>0,b>0,∵a>0时,抛物线开口向上,排除D;∵a>0,b>0时,对称轴x=﹣<0,排除A、C.故选B.【点评】解决此类问题时,可先根据a、b的正负画出一次函数的草图,然后再确定二次函数图象的位置.19.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【考点】用样本估计总体.【专题】应用题.【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.20.如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC 于D,设BP=x,则PD+PE=()A.B.C.D.【考点】相似三角形的判定与性质;勾股定理.【分析】先根据勾股定理求得BC的长,再根据相似三角形的判定得到△CDP∽△CAB,△BPE∽△BCA,利用相似三角形的边对应成比例就不难求得PD+PE了.【解答】解:∵在Rt△ABC中,AB⊥AC,AB=3,AC=4,∴由勾股定理得BC=5,∵AB⊥AC,PE⊥AB,PD⊥AC,∴PE∥AC,PD∥AB∴△CDP∽△CAB,△BPE∽△BCA∴,∴PD=,PE=,∴PD+PE=+=+3.故选A.【点评】本题考查勾股定理,三角形相似的判定和性质,其中由相似列出比例式是解题关键.二、填空题:本大题共3小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.21.分解因式x(x+4)+4的结果(x+2)2.【考点】因式分解-运用公式法.【分析】先将多项式展开,再利用完全平方公式进行因式分解.【解答】解:x(x+4)+4,=x2+4x+4,=(x+2)2.【点评】本题主要考查利用完全平方公式分解因式,先利用单项式乘多项式的法则整理成多项式一般形式是解题的关键.22.若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则a+b的值是11.【考点】配方法的应用.【分析】先将代数式配成完全平方式,然后再判断a、b的值.【解答】解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故a+b=11.故答案为:11.【点评】此题考查配方法的运用,能够熟练运用完全平方公式,是解答此类题的关键.23.化简: =.【考点】分式的加减法.【专题】计算题;压轴题.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.三、解答题(共1小题,满分3分)24.如图,∠AOB=30°,过OA上到点O的距离为1,3,5,7,…的点作OA的垂线,分别与OB 相交,得到图所示的阴影梯形,它们的面积依次记为S1,S2,S3….则(1)S1=;(2)通过计算可得S2009=5356.【考点】解直角三角形;含30度角的直角三角形;直角梯形.【专题】压轴题;规律型.【分析】(1)分析知奇数的通式为:2n﹣1(n为正整数),设阴影梯形的上底和下底距点O的长分别为a和b,则可以表达出Sn的表达式,将每个梯形的上底和下底距点O的长代入,求解即可;(2)第2009个梯形前面已有2008×2个奇数,2009个梯形上底距点O的距离为第2008×2+1个奇数,下底为第2008×2+2个奇数.【解答】解:(1)设阴影梯形的上底和下底距点O的长分别为a和b,则上底长为atan∠AOB,下底长为btan∠AOB,∴S n=b×btan∠AOB﹣a×atan∠AOB=(b2﹣a2),又∵梯形1距离点O的距离a=1,b=3,∴S1=(32﹣12)=;(2)第2009个梯形前面已有2008×2个奇数,2009个梯形上底距点O的距离为第2008×2+1个奇数,下底为第2008×2+2个奇数,∴第2009个梯形的两边长分别为:a=2×(2008×2+1)﹣1=8033,b=2×(2008×2+1)+1=8035,故S2009=(80352﹣80332)=5356.故答案为,5356.【点评】本题考查了解直角三角形,直角三角形的性质以及学生分析、探究问题及运用规律解决问题的能力,有一定难度.三、解答题:本大题共5小题,共48分.解答时将文字说明、证明过程或演算步骤写在答题纸相应的位置上.25.如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.【考点】勾股定理的应用.【专题】压轴题.【分析】先过A作AD⊥BE于D,再根据30°和60°判断出∠BAC也是30°,所以AC=BC=500m,在Rt△ADC中,因为∠ACD=60°,所以∠CAD=30°,所以AC=2CD,因此可以求出江宽.【解答】解:能.过点A作BE的垂线,垂足为D,∵∠CBA=30°,∠ECA=60°,∴∠CAB=30°,∴CB=CA=500m,在Rt△ACD中,∠ECA=60°,∴∠CAD=30°,∴CD=CA=250m.由勾股定理得:AD2+2502=5002,解得AD=250m,则河流宽度为250m.【点评】本题主要考查:30°所对的直角边是斜边的一半和勾股定理.26.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.【考点】分式方程的应用.【专题】工程问题.【分析】这是工程问题.工作效率:设原来每天加固x米,则提高效率后每天加固2x米;工作量:分别是600米,(4800﹣600)米;工作时间表示为:,共用9天完成.即:加固600米用的时间+加固(4800﹣600)米用的时间=9,建立方程.【解答】解:设原来每天加固x米.根据题意得:.去分母得:1200+4200=18x.(或18x=5400)解得:x=300.检验:当x=300时,2x≠0(或分母不等于0).∴x=300是原方程的解.答:该地驻军原来每天加固300米.【点评】找到合适的等量关系是解决问题的关键.把这个工程问题分成两个时间段:原效率完成600米,提高效率完成剩下的(4800﹣600)米,这样他们用的时间和是9天,就可以建立等量关系了.27.如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.【考点】二次函数综合题;正方形的性质;相似三角形的判定与性质.【专题】代数几何综合题.【分析】(1)这两个三角形中,已知的条件有∠A=∠B=90°,那么只要得出另外两组对应角相等即可得出两三角形相似,因为∠DEA+∠FEB=180﹣90=90°,而∠ADE+∠DEA=90°,因此∠ADE=∠FEB,同理可得出∠BFE=∠AED,那么就构成了两三角形相似的条件;(2)可用x表示出BE的长,然后根据(1)中三角形ADE和FEB相似可得出关于AD,AE,BE,BF的比例关系式,然后就能得出一个关于x,y的函数关系式.根据函数的性质即可得出y的最大值及相应的x的值.【解答】(1)证明:∵ABCD是正方形,∴∠DAE=∠FBE=90°.∴∠ADE+∠DEA=90°.又∵EF⊥DE,∴∠AED+∠FEB=90°,∴∠ADE=∠FEB,∴△ADE∽△BEF.(2)解:由(1)△ADE∽△BEF,AD=4,BE=4﹣x,得:,得:y=(﹣x2+4x)= [﹣(x﹣2)2+4]=﹣(x﹣2)2+1,所以当x=2时,y有最大值,y的最大值为1.【点评】本题考查了正方形的性质,相似三角形的性质以及二次函数的应用等知识点.28.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】(1)由于∠AEF是直角,则∠BAE和∠FEC同为∠AEB的余角,由此得证;(2)根据正方形的性质,易证得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定两个三角形全等;(3)在Rt△ABE中,根据勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面积为AE2的一半,由此得解.【解答】(1)证明:∵∠AEF=90°,∴∠FEC+∠AEB=90°;在Rt△ABE中,∠AEB+∠BAE=90°,∴∠BAE=∠FEC;(2)证明:∵G,E分别是正方形ABCD的边AB,BC的中点,∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;又∵CF是∠DCH的平分线,∠ECF=90°+45°=135°;在△AGE和△ECF中,;∴△AGE≌△ECF;(3)解:由△AGE≌△ECF,得AE=EF;又∵∠AEF=90°,∴△AEF是等腰直角三角形;∵AB=a,E为BC中点,∴BE=BC=AB=a,根据勾股定理得:AE==a,∴S△AEF=a2.【点评】此题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等;综合性较强,难度适中.29.已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0),C(0,﹣2).(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知抛物线过C(0,﹣2)点,那么c=﹣2;根据对称轴为x=﹣1,因此﹣=﹣1,然后将A点的坐标代入抛物线中,通过联立方程组即可得出抛物线的解析式.(2)本题的关键是确定P点的位置,由于A是B点关于抛物线对称轴的对称点,因此连接AC与抛物线对称轴的交点就是P点.可根据A,C的坐标求出AC所在直线的解析式,然后根据得出的一次函数的解析式求出与抛物线对称轴的交点即可得出P点的坐标.(3)△PDE的面积=△OAC的面积﹣△PDC的面积﹣△ODE的面积﹣△AEP的面积△OAC中,已知了A,C的坐标,可求出△OAC的面积.△PDC中,以CD为底边,P的横坐标的绝对值为高,即可表示出△PDC的面积.△ODE中,可先用m表示出OD的长,然后根据△ODE与△OAC相似,求出OE的长,根据三角形的面积计算公式可用m表示出△ODE的面积.△PEA中,以AE为底边(可用OE的长表示出AE),P点的纵坐标的绝对值为高,可表示出△PEA的面积.由此可表示出△ODE的面积,即可得出关于S,m的函数关系式.然后根据函数的性质求出三角形的最大面积以及对应的m的值.【解答】解:(1)由题意得,解得,。
山东省肥城市汶阳镇初级中学2014届九年级中考模拟数学试题一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的答案写在下面的答题栏中) 1.∣-1∣的平方根是A .1B .±1C .-1D .不存在 2.如图所示的几何体的左视图...是3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为A .19.4×109B .0.194×1010C .1.94×1010D .1.94×109 4.下列图形中既是中心对称图形,又是轴对称图形的是A .B .C .D .5.下列运算中,正确的是A.134=-a aB. 2222)(b a ab =C.23633a a a =÷D. 32a a a =⋅6.已知点M (1-2m ,m -1)关于x 轴的对称点...在第一象限,则m 的取值范围在数轴上表示正确的是7. 现有3 cm ,4 cm ,7 cm ,9 cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是A . 1个B . 2个C . 3个D .4个8.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 且交BC 于E ,AD=6cm ,题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 81 1920答案10 0.5 10 0.5 10 0.5 10 0.5 A . B . C . D .A. B. C. D.正面A B第14题则OE 的长为A.6cmB.4 cmC.3 cmD.2 cm9. 某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩x 与方差S 2如上表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是 A.甲 B.乙 C.丙 D.丁10.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是 A .180 B . 220 C . 240 D .30011. 某市为处理污水需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10米,结果提前20天完成任务.设原计划每天铺设管道x 米,则可得方程A.204000104000=--x xB. 201040004000=--x xC.204000104000=-+x xD. 201040004000=+-x x12. 如图,双曲线y = m x 与直线y =kx +b 交于点M 、N ,并且点M 的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x 的方程 mx =kx +b 的解为A .-3,1B .-3,3C .-1,1D .-1,313. 如图,O 是△ABC的内心,过点O作EF ∥AB,与AC 、BC分别交于点E、F,则甲 乙 丙 丁x8 9 9 8 S 2111.21.3α β第10题A .EF >AE+BFB .EF<AE+BFC .EF=AE+BFD .EF≤AE+BF14.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子 A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短15. 在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为A .2(2)2y x =++ B.2(2)2y x =-- C.2(2)2y x =-+D.2(2)2y x =+-16. 如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是A .m +3B .m +6C .2m +3D .2m +617. 如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =2,BC =6,∠B =60°,则梯形ABCD的周长是A .12B .14C .16D .1818. 已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm19. 一元二次方程()22x x x -=-的根是 A.-1 B. 2 C. 1和2D. -1和220. 如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形D C B A ''''与正方形ABCD 是以AC 的中点O '为中心的位似图形,已知AC =23,若点A '的坐标为(1,2),则正方形D C B A ''''与正方形ABCD 的相似比是A .61 B .31 C .21 D .32第16题m +3m3xy B′D′CAB(O)DA′C′第20题二、填空题(请将答案直接填写在横线上)21.如图,将矩形纸片ABCD 折叠,使点A 与C 重合,若∠CEB=45°,∠CFE =________.22.无论a 取什么实数,点P (a -1,2a -3)都在直线l 上,Q (m ,n )是直线上的点,则(2m -n +3)2的值等于 。
2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
2015年山东省泰安市中考数学模拟试卷(十二)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)B3223.(3分)(2010•泰安)下列图形其中,既是轴对称图形,又是中心对称图形的个数是()4.(3分)(2010•泰安)函数y=2x+1与函数的图象相交于点(2,m),则下列各点不在函数的图象上的是(),5.(3分)(2010•泰安)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()6.(3分)(2010•泰安)如图,数轴上A、B两点对应的实数分别为a,b,则下列结论不正确的是()7.(3分)(2010•泰安)如图是某几何体的三视图,则该几何体的全面积是()8.(3分)(2010•泰安)下列函数:①y=﹣3x;②y=2x﹣1;③;④y= 29.(3分)(2010•泰安)如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()10.(3分)(2010•泰安)如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()B11.(3分)(2010•泰安)若关于x的不等式的整数解共有4个,则m的取值范12.(3分)(2010•泰安)如图,矩形ABCD的两对角线AC、BD交于点O,∠AOB=60°,设AB=xcm,矩形ABCD的面积为Scm2,则变量s与x间的函数关系式为()B二、填空题(本大题共7小题,满分21分.只要求填写最后结果,每小题填对得3分)13.(3分)(2010•泰安)分解因式:2x3﹣8x2y+8xy2=.14.(3分)(2010•泰安)将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.15.(3分)(2010•泰安)如图,将矩形ABCD纸片沿EF折叠,使D点与BC边的中点D′重合,若BC=8,CD=6,则CF=.16.(3分)(2010•泰安)如图,一次函数y=ax(a为常数)与反比例函数(k为常数)的图象相交于A、B两点,若A点的坐标为(﹣2,3),则B点的坐标为.17.(3分)(2010•泰安)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有个.18.(3分)(2010•泰安)如图,直线AB与半径为2的⊙O相切于点C,点D、E、F是⊙O上三个点,EF∥AB,若EF=2,则∠EDC的度数为度.19.(3分)(2010•泰安)如图,△ABC经过一定的变换得到△A′B′C′,若△ABC上一点M 的坐标为(m,n),那么M点的对应点M’的坐标为.三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20.(11分)(2010•泰安)(1)先化简,再求值:,其中(2)解方程:(3x+2)(x+3)=x+14.21.(8分)(2010•泰安)某中学为了了解本校初三学生体育成绩,从本校初三1200名学生中随机抽取了部分学生进行测试,将测试成绩(满分100分,成绩均取整数)进行统计,绘(1)m=,n=;(2)补全频数分布直方图;(3)指出这组数据的“中位数”落在哪一组(不要求说明理由);(4)若成绩80分以上的学生为优秀,请估计该校初三学生体育成绩优秀的人数.22.(8分)(2010•泰安)某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?23.(8分)(2010•泰安)如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C.(1)求证:∠AED=∠ADC,∠DEC=∠B;(2)求证:AB2=AE•AC.24.(8分)(2010•泰安)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?25.(10分)(2010•泰安)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.26.(10分)(2010•泰安)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.2015年山东省泰安市中考数学模拟试卷(十二)参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)B的倒数是,的倒数是.3223.(3分)(2010•泰安)下列图形其中,既是轴对称图形,又是中心对称图形的个数是()4.(3分)(2010•泰安)函数y=2x+1与函数的图象相交于点(2,m),则下列各点不在函数的图象上的是(),5.(3分)(2010•泰安)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()6.(3分)(2010•泰安)如图,数轴上A、B两点对应的实数分别为a,b,则下列结论不正确的是()7.(3分)(2010•泰安)如图是某几何体的三视图,则该几何体的全面积是()8.(3分)(2010•泰安)下列函数:①y=﹣3x;②y=2x﹣1;③;④y= 2③9.(3分)(2010•泰安)如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()10.(3分)(2010•泰安)如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()B所以概率是=11.(3分)(2010•泰安)若关于x的不等式的整数解共有4个,则m的取值范12.(3分)(2010•泰安)如图,矩形ABCD的两对角线AC、BD交于点O,∠AOB=60°,设AB=xcm,矩形ABCD的面积为Scm2,则变量s与x间的函数关系式为()BxAB=x=二、填空题(本大题共7小题,满分21分.只要求填写最后结果,每小题填对得3分)13.(3分)(2010•泰安)分解因式:2x3﹣8x2y+8xy2=2x(x﹣2y)2.14.(3分)(2010•泰安)将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=﹣90.15.(3分)(2010•泰安)如图,将矩形ABCD纸片沿EF折叠,使D点与BC边的中点D′重合,若BC=8,CD=6,则CF=.C=;.16.(3分)(2010•泰安)如图,一次函数y=ax(a为常数)与反比例函数(k为常数)的图象相交于A、B两点,若A点的坐标为(﹣2,3),则B点的坐标为(2,﹣3).17.(3分)(2010•泰安)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有186个.18.(3分)(2010•泰安)如图,直线AB与半径为2的⊙O相切于点C,点D、E、F是⊙O上三个点,EF∥AB,若EF=2,则∠EDC的度数为30度.;,EOM==EDC=∠19.(3分)(2010•泰安)如图,△ABC经过一定的变换得到△A′B′C′,若△ABC上一点M 的坐标为(m,n),那么M点的对应点M’的坐标为(m+4,n+2).三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20.(11分)(2010•泰安)(1)先化简,再求值:,其中(2)解方程:(3x+2)(x+3)=x+14.;;21.(8分)(2010•泰安)某中学为了了解本校初三学生体育成绩,从本校初三1200名学生中随机抽取了部分学生进行测试,将测试成绩(满分100分,成绩均取整数)进行统计,绘(1)m=24,n=0.4;(2)补全频数分布直方图;(3)指出这组数据的“中位数”落在哪一组(不要求说明理由);(4)若成绩80分以上的学生为优秀,请估计该校初三学生体育成绩优秀的人数.22.(8分)(2010•泰安)某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?23.(8分)(2010•泰安)如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C.(1)求证:∠AED=∠ADC,∠DEC=∠B;(2)求证:AB2=AE•AC.,得到24.(8分)(2010•泰安)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?根据题意得(件)∴四月份每件盈利25.(10分)(2010•泰安)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.DP=AP=AB26.(10分)(2010•泰安)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.FAE===.参与本试卷答题和审题的老师有:MMCH;caicl;nyx;lanchong;星期八;nhx600;zhangCF;zxw;CJX;Linaliu;HLing;心若在;疯跑的蜗牛;郭静慧;Liuzhx;蓝月梦;117173;bjy;zhxl(排名不分先后)菁优网2015年9月30日。
山东省泰安市2015年中考数学模拟试题二一、选择题(满分60分)1.下列计算正确的是()A. B. C.D.2.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限 B.第三象限 C.第二象限 D.第一象限3.已知﹣4x a y+x2y b=﹣3x2y,则a+b的值为()A.1 B.2 C.3 D.44.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣25.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.6.一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11 B.11或12 C.13 D.11和137.如图是一个几何体的三视图,则这个几何体的表面积为()A.50π B.100πC.150πD.175π8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④ B.②③ C.①④ D.①②③9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率10.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x <kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<011.如图,已知AB是半圆O的直径,∠BAC=32°,D是的中点,那么∠DAC的度数是()A.25° B.29° C.30° D.32°12.两圆的半径之比为2:3,当两圆内切时,圆心距为4.则当两圆外切时,圆心距为()A.5 B.11 C.14 D.2013.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒14.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为()A.B. C.3 D.15.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则的值为()A.2 B.4 C. D.16.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若)17.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.18.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62° B.38° C.28° D.26°19.如图1,水平地面上有一面积为30π平方厘米的灰色扇形OAB,其中OA的长度为6厘米,且与地面垂直.若在没有滑动的情况下,将图1的扇形向右滚动至OB垂直地面为止,如图2所示,则O 点移动()厘米.A.20 B.24 C.10π D.30π20.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2二、填空题(满分12分)21.已知y=y1+y2,y1与x2成正比例,y2与x﹣1成反比例,且当x=0时,y=1;当x=﹣1时,y=2,则当x=时,y的值是.22.关于x的一元二次方程x2﹣mx+2m=0的一个根为1,则方程的另一根为.23.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是.24.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2的长为.三、解答题(满分48分)25.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.26.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间人数 (1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)27.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?28.如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B .(1)点P 在运动时,线段AB 的长度也在发生变化,请写出线段AB 长度的最小值,并说明理由; (2)在⊙O 上是否存在一点Q ,使得以Q ,O ,A ,P 为顶点的四边形是平行四边形?若存在,请求出Q 点的坐标;若不存在,请说明理由.29.已知:如图一次函数y=x+1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y=x 2+bx+c 的图象与一次函数y=x+1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0). (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.2015年山东省泰安市中考数学模拟试卷(二)参考答案与试题解析一、选择题(满分60分)1.下列计算正确的是()A. B. C.D.【考点】二次根式的乘除法;二次根式的性质与化简.【分析】根据二次根式的化简、开平方及二次根式的乘法法则,分别进行各项的判断即可.【解答】解:A、=2,原式计算错误,故本选项错误;B、=2,原式计算正确,故本选项正确;C、=2,原式计算错误,故本选项错误;D、×=,原式计算错误,故本选项错误;故选B.【点评】本题考查了二次根式的乘法及二次根式的化简运算,属于基础题,掌握基本的运算法则是关键.2.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】点的坐标.【专题】计算题.【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选C.【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.已知﹣4x a y+x2y b=﹣3x2y,则a+b的值为()A.1 B.2 C.3 D.4【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:由已知﹣4x a y+x2y b=﹣3x2y,可知﹣4x a y与x2y b是同类项,可知a=2,b=1,即a+b=3,故选C.【点评】本题考查了合并同类项,理解同类项的概念,正确地进行合并同类项是解题的关键.4.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2【考点】根与系数的关系;一元二次方程的解.【分析】根据根与系数的关系可得出两根的积,即可求得方程的另一根.【解答】解:设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【点评】熟练掌握一元二次方程根与系数的关系是解答此类题的关键.5.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.【点评】只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.6.一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11 B.11或12 C.13 D.11和13【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:由(x﹣2)(x﹣4)=0解得x=2或4,由三角形三边关系定理得6﹣3<x<6+3,即3<x<9,因此,本题的第三边应满足3<x<9,所以x=4,即周长为3+4+6=13.故选C.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7.如图是一个几何体的三视图,则这个几何体的表面积为()A.50π B.100πC.150πD.175π【考点】由三视图判断几何体.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,判断出几何体的形状,再根据三视图的数据,求出几何体的表面积即可.【解答】解:根据三视图可得这个几何体是圆柱,底面积=π×52所=25π,侧面积为=10π•10=100π,则这个几何体的表面积=25π×2+100π=150π;故选:C.【点评】此题考查了由三视图判断几何体,用到的知识点是三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④ B.②③ C.①④ D.①②③【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.【点评】二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【考点】利用频率估计概率.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是: =≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.10.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x <kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<0【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.【解答】解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.11.如图,已知AB是半圆O的直径,∠BAC=32°,D是的中点,那么∠DAC的度数是()A.25° B.29° C.30° D.32°【考点】圆周角定理;圆内接四边形的性质.【分析】连接BC,根据圆周角定理及等边对等角求解即可.【解答】解:连接BC,∵AB是半圆O的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°﹣32°=58°,∴∠D=180°﹣∠B=122°(圆内接四边形对角互补),∵D是的中点,∴∠DAC=∠DCA=(180°﹣∠D)÷2=29°,故选B.【点评】本题利用了圆内接四边形的性质,直径对的圆周角是直角求解.12.两圆的半径之比为2:3,当两圆内切时,圆心距为4.则当两圆外切时,圆心距为()A.5 B.11 C.14 D.20【考点】圆与圆的位置关系.【分析】只需根据两圆的半径比以及两圆外切时,圆心距等于两圆半径之和,列方程求得两圆的半径;再根据两圆内切时,圆心距等于两圆半径之差求解.【解答】解:设大圆的半径为R,小圆的半径为r,则有r:R=2:3;又∵R﹣r=4,解得R=12,r=8,∴当它们外切时,圆心距=12+8=20.故选D.【点评】此题考查了两圆的位置关系与数量之间的联系.解题的关键是正确的求出两个半径.13.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒【考点】点与圆的位置关系.【专题】应用题.【分析】过点A作AC⊥ON,求出AC的长,当火车到B点时开始对A处有噪音影响,直到火车到D 点噪音才消失.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.【点评】本题考查的是点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,难度适中.14.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为()A.B. C.3 D.【考点】勾股定理.【分析】根据题意作出图形,设CD=x,在直角三角形ACD中,根据勾股定理表示出AC的长,再在直角三角形ABC中,根据勾股定理求出x的值,从而可得AC的长.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故选:A.【点评】本题考查了解直角三角形,利用勾股定理是解题的关键,正确设出未知数方可解答.15.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则的值为()A.2 B.4 C. D.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】首先过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,继而求得答案.【解答】解:过点N作NG⊥BC于G,∵四边形ABCD是矩形,∴四边形CDNG是矩形,AD∥BC,∴CD=NG,CG=DN,∠ANM=∠CMN,由折叠的性质可得:AM=CM,∠AMN=∠CMN,∴∠ANM=∠AMN,∴AM=AN,∴四边形AMCN是平行四边形,∵AM=CM,∴四边形AMCN是菱形,∵△CDN的面积与△CMN的面积比为1:4,∴DN:CM=1:4,设DN=x,则AN=AM=CM=CN=4x,AD=BC=5x,CG=x,∴BM=x,GM=3x,在Rt△CGN中,NG==x,在Rt△MNG中,MN==2x,∴=2.故选D.【点评】此题考查了折叠的性质、矩形的判定与性质、菱形的判定与性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合与方程思想的应用.16.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若)A.甲B.乙C.丙D.丁【考点】一次函数的应用.【专题】压轴题.【分析】题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.【解答】解:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.【点评】本题考查了一次函数的应用,读懂题意,找好题中的等量关系是解题的关键.17.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.【考点】概率公式;专题:正方体相对两个面上的文字.【专题】压轴题.【分析】让朝上一面上的数恰好等于朝下一面上的数的的情况数除以总情况数即为朝上一面上的数恰好等于朝下一面上的数的的概率.【解答】解:根据图看出只有6和3是对面,1和4是对面,2和5是对面;并且只有3在上面时6在下面,朝上一面上的数恰好等于朝下一面上的数的,抛掷这个立方体,朝上一面上的数恰好等于3的概率是.故选A.【点评】本题考查了统计与概率中概率的求法,要善于观察把图折成立方体时各个面是什么数字.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62° B.38° C.28° D.26°【考点】等腰直角三角形;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣62°=28°.故选C.【点评】熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半.19.如图1,水平地面上有一面积为30π平方厘米的灰色扇形OAB,其中OA的长度为6厘米,且与地面垂直.若在没有滑动的情况下,将图1的扇形向右滚动至OB垂直地面为止,如图2所示,则O 点移动()厘米.A.20 B.24 C.10π D.30π【考点】弧长的计算;旋转的性质.【专题】应用题.【分析】点O移动的距离为扇形的弧长,根据弧长公式计算即可.【解答】解:点O移动的距离为扇形的弧长,根据面积公式求出弧长,即30π=×l×6,解得l=10π.故选C.【点评】此题考查了旋转的性质,弧长的计算,关键是理解点O移动的距离为扇形的弧长,然后根据面积公式求出弧长即可.20.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2【考点】规律型:数字的变化类.【分析】由数表中数据排列规律可知第n行第n列交叉点上的数正好是对角线上的数,它们分别是连续的奇数.【解答】解:根据分析可知第n行第n列交叉点上的数应为2n﹣1.故选:A.【点评】此题考查了数字的排列规律,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.二、填空题(满分12分)21.已知y=y1+y2,y1与x2成正比例,y2与x﹣1成反比例,且当x=0时,y=1;当x=﹣1时,y=2,则当x=时,y的值是2﹣.【考点】待定系数法求反比例函数解析式.【分析】根据题意设出y1=k1x2,y2=,(k1≠0,k2≠0),再表示出函数解析式y=k1x2+,然后利用待定系数法把当x=0时,y=1;当x=﹣1时,y=2代入,计算出k1,k2的值,进而得到解析式,算出y的值.【解答】解:∵y1与x2成正比例,y2与x﹣1成反比例,∴设y1=k1x2,y2=,(k1≠0,k2≠0),∴y=k1x2+,当x=0时,y=1;当x=﹣1时,y=2时,,解得:,∴y=x2﹣,当x=时,y=3﹣﹣1=2﹣.故答案为:2﹣.【点评】此题主要考查了待定系数法求函数解析式,关键是理清正比例与反比例函数解析式的表示方法.22.关于x的一元二次方程x2﹣mx+2m=0的一个根为1,则方程的另一根为﹣2 .【考点】根与系数的关系.【分析】将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出另一根的值.【解答】解:设方程的另一根为x1,又∵x=1,则,解方程组可得.故答案为:﹣2.【点评】本题考查了一元二次方程根与系数的关系,列方程组时要注意各系数的正负,避免出错.23.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20 .【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.【解答】解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.【点评】本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.24.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2的长为2±.【考点】相交两圆的性质.【专题】压轴题.【分析】利用连心线垂直平分公共弦的性质,构造直角三角形利用勾股定理及有关性质解题.【解答】解:如图,∵⊙O1与⊙O2相交于A、B两点,∴O1O2⊥AB,且AD=BD;又∵AB=2,∴AD=1,∵⊙O1和⊙O2的半径分别为2和3,∴在Rt△AO1D中,根据勾股定理知O1D==;在Rt△AO2D中,根据勾股定理知O2D==2,∴O1O2=O1D+O2D=+2;同理知,当小圆圆心在大圆内时,解得O1O2=2﹣.故答案是:2±.【点评】本题主要考查了圆与圆的位置关系,勾股定理等知识点.注意,解题时要分类讨论,以防漏解.三、解答题(满分48分)25.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【考点】菱形的判定;线段垂直平分线的性质;平行四边形的判定.【专题】证明题.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF 是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF 是菱形.【点评】本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.26.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇时间人数 (1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数) 【考点】加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图. 【专题】压轴题;图表型.【分析】(1)先求出喝红茶的百分比,再乘总数. (2)先让总数减其它三种人数,再根据数值画直方图. (3)用加权平均公式求即可.【解答】解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;(2)补全频数分布直方图如右图所示.(3)(小时). 答:九年级300名同学完成家庭作业的平均时间约为1.8小时.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)有两个等量关系:帐篷件数+食品件数=320,帐篷件数﹣食品件数=80,直接设未知数,列出二元一次方程组,求出解;(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;(3)分别计算每种方案的运费,然后比较得出结果.【解答】解:(1)设该校采购了x件小帐篷,y件食品.根据题意,得,解得.故打包成件的帐篷有120件,食品有200件;(2)设甲种货车安排了z辆,则乙种货车安排了(8﹣z)辆.则,解得2≤z≤4.则z=2或3或4,民政局安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;。
二〇一五年初中学业考试九年级数学一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)一、选择题:(本大题共20题,每小题3分,共60分.在每小题给出的代号为ABCD 四个选项中,只有一项是符合题目要求的) 1.3--的值为 A. 3B. -3C.31D. -31 2.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是AB CD3.在电子显微镜下测得一个圆球体细胞的直径是5×105-cm ,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310-D .cm 410-4.将右图所示的直角梯形绕直线l 旋转一周,得到的立体图形是A B C D5.自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是C.7109.14⨯ D.71049.1⨯6.下列运算正确的是 A .22a a a =⋅B .33)(ab ab =C .632)(a a = D .5210a a a=÷7.如图,将一副三角板按图中的方式叠放,则角α等于A .75B .60C .45D .308.如果33-=-b a ,那么代数式b a 35+-的值是 A .0 B .2 C .5 D .89 A .3 B .3- C .3± D .910.右图是由五个完全相同的小正方体组合成的一个立体图形,则它的俯视图...是11.不等式组32>2(4)x xx +⎧⎨--⎩≥1的解集在数轴上表示正确的是12.方程(5)x x x -=的解是 A .0x =B .0x =或5x =C .6x =D .0x =或6x =13.如图,正六边形螺帽的边长是2cm ,这个扳手的 开口a 的值应是A .cmBC cmD .1cm14.从1-9这九个自然数中任取一个,是2的倍数的概率是A .92B .94 C .95 D .32 15.已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是A .(-2,1)B .(1,-2)C .(-2,-2)D .(1,2)16.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB CD = B .AD BC = C .AB BC =D .AC BD =17.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A .7B .8C .9D .1018.手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相同,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是A B C D 19.右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于 该班40名同学一周参加体育锻炼时间 的说法错误..的是 A .极差是3 B .中位数为8 C .众数是8D .锻炼时间超过8小时的有21人20.如右图是夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距 离x 的变化而变化,那么表示y 与x 之间的函数关二、填空题(每小题3分,满分12分请将答案直接填在题中横线上)21.已知抛物线2y x bx c =++的对称轴为2x =,点A ,B均在抛物线上,且AB 与x 轴平行,其中点A 的坐标 为(0,3),则点B 的坐标为 .22.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是CmA 异于点C 、A 的一点,若∠ABO =°32,则∠ADC 的度数是 .23.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .24.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x 个,五彩绳y 个,根据题意,可列出的方程组应为 . 三、解答题(本大题共5个小题)25.(本题满分8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.26.(本题满分10分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)当△ABC满足什么条件时,四边形BFCE是菱形?27.(本题满分10分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.28.(本题满分10分)如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?29.(本题满分10分)我市是世界有机蔬菜基地,数10种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克在我市收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售.(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.(2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?参考答案一、选择题:二、填空题:21.(4,3) 22.°29 23.5 24.20,4372x y x y +=⎧⎨+=⎩三、解答题25.解:设原来每天加固x 米,根据题意,得926004800600=-+x x ……………………………………………………4分 去分母,得 1200+4200=18x (或18x =5400)解得 300x =检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.………………………………………8分 26.解:(1)证明:∵D 是BC 的中点,∴BD =CD∵CE ∥BF ,∴∠DBF =∠DCE又∵∠BDF =∠CDE ,∴△BDF ≌△CDE ………………………………3分(2)当△ABC 是等腰三角形,即AB =AC 时,四边形BFCE 是菱形………4分证明:∵△CDE ≌△BDF ,∴DE =D F∵BD =CD ,∴四边形BFCE 是平行四边形…………………………………7分 在△ABC 中,∵AB =AC ,BD =CD ,∴AD ⊥BC ,即EF ⊥BC ∴四边形BFCE 是菱形……………………………………………………10分27.解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--解得:5x =∴35355175x =⨯=(人) 答:该校八年级参加社会实践活动的人数为175人.………4分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175,320400(4)1500y y y y +-⎧⎨+-⎩≥≤………………………………………7分 解这个不等式组,得11144y ≤≤2.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2. ∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.………………10分28.(1)证明:∵AD =CD ∴∠DAC =∠DCA∴∠BDC =2∠DAC 又∵DE 是∠BDC 的平分线 ∴∠DAC =∠BDE ∴DE ∥AC ………………………………………………………………3分(2)解:分两种情况:①若△BME ∽△CNE ,必有∠MBE =∠NCE 此时BD =DC ∵DE 平分∠BDC ∴DE ⊥BC ,BE =EC 又∠ACB =90° ∴DE ∥AC∴BE BD BC AB =即152BD AB == ∴AD=5…………………………………………………………………7分 ②若△BME ∽△ENC ,必有∠EBM =∠CEN 此时NE ∥MC ∵CD ⊥NE ,∴CD ⊥AB∴8cos 6 4.810BC AD AC A AC AB =⋅=⋅=⨯=∴当AD =5或AD =4.8时,以B ,M ,E 为顶点的三角形与以C ,E ,N 为顶点的三角形相似…………………………………………………………………………10分 29.解:(1)由题意得y 与x 之间的函数关系式为y =()()100.520006x x +-=2394020000x x -++(1≤x ≤110)……………………………………3分(2)由题意得:2394020000x x -++-10×2000-340x =22500解方程得:1x =50;2x =150(不合题意,舍去)经销商想获得利润2250元需将这批蔬菜存放50天后出售. ………………6分 (3)设最大利润为W ,由题意得W =2394020000x x -++-10 ×2000-340x23(100)30000x =--+ ∴当100x =时,30000W 最大=100天<110天∴存放100天后出售这批香菇可获得最大利润30000元.………………10分。