经济数学(不定积分习题与答案)
- 格式:doc
- 大小:727.50 KB
- 文档页数:23
不定积分习题答案不定积分习题答案在学习数学的过程中,不定积分是一个重要的概念。
它是求函数的原函数的逆运算,也被称为反导数。
不定积分习题是我们在学习不定积分的过程中经常遇到的问题,解答这些习题可以帮助我们更好地理解不定积分的概念和运算规则。
一、基本不定积分基本不定积分是指可以通过运用基本积分公式直接求解的不定积分。
这些公式是我们在学习不定积分时需要掌握的基础知识。
以下是一些常见的基本不定积分公式:1. 常数函数的不定积分公式:∫kdx = kx + C,其中k为常数,C为常数。
2. 幂函数的不定积分公式:∫x^ndx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1,C为常数。
3. 指数函数的不定积分公式:∫e^xdx = e^x + C,其中e为自然对数的底,C为常数。
4. 三角函数的不定积分公式:∫sinxdx = -cosx + C,∫cosxdx = sinx + C,其中C为常数。
二、常见的不定积分习题1. 求解∫(2x^3 - 5x^2 + 3x - 1)dx。
解答:根据基本不定积分公式,我们可以将这个不定积分分解为每一项的不定积分求解,即:∫(2x^3 - 5x^2 + 3x - 1)dx = ∫2x^3dx - ∫5x^2dx + ∫3xdx - ∫1dx根据幂函数的不定积分公式,我们可以得到:= (1/4)x^4 - (5/3)x^3 + (3/2)x - x + C其中C为常数。
2. 求解∫(3e^x + 2sinx)dx。
解答:根据基本不定积分公式,我们可以得到:∫(3e^x + 2sinx)dx = 3∫e^xdx + 2∫sinxdx根据指数函数和三角函数的不定积分公式,我们可以得到:= 3e^x - 2cosx + C其中C为常数。
三、不定积分的性质不定积分具有一些特定的性质,这些性质在解答不定积分习题时可以发挥重要的作用。
1. 线性性质:对于任意的实数a和b,以及任意的可积函数f(x)和g(x),有∫(af(x) + bg(x))dx = a∫f(x)dx + b∫g(x)dx。
不定积分 (A)1、求下列不定积分1)⎰2xdx 2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+221 5)⎰⋅-⋅dxxxx32532 6)dxxxx⎰22sincos2cos7)dxxe x32(⎰+ 8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23( 2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos 6)⎰-+xx eedx7)dxxx)cos(2⎰ 8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx 12)dxx⎰3cos13)⎰xdxx3cos2sin 14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+211 2)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx 6)⎰+xdx217)⎰-+21xxdx 8)⎰-+211xdx4、求下列不定积分(分部积分法) 1)inxdxxs⎰ 2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan2 6)⎰xdxx cos27)⎰xdx2ln 8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dxxx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx (B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
经济数学基础形考任务四计算题答案1.设x,求y。
解:根据题意无法确定具体的解法。
2.已知y,求dy/dx。
答案:dy/dx = (y-3-2x)/(2y-x)。
解:对方程两边关于x求导。
3.计算不定积分。
答案:(2+x)^2/3 + C。
分析:将积分变量x变为2+x,利用凑微分方法将原积分变形为(2+x)^2/3 dx,再由基本积分公式进行直接积分。
4.计算不定积分。
正确答案:-2xcos(x^2/2) + 4sin(x^2/2) + C。
分析:这是幂函数与正弦函数相乘的积分类型,所以考虑用分部积分法。
5.计算定积分。
正确答案:e^-e/2.分析:采用凑微分法,将原积分变量为:-ln(x)/x,再用基本积分公式求解。
6.计算定积分。
正确答案:(e^2+1)/2(e+1)^4.分析:本题为幂函数与对数函数相乘的积分类型。
可考虑用分部积分法。
7.设A,求I-A的逆矩阵。
解:根据题意无法确定具体的解法。
8.设矩阵A,向量B,求解矩阵方程XA=B。
解:根据题意无法确定具体的解法。
9.求齐次线性方程组的一般解。
解:原方程的系数矩阵变形过程为无法确定。
10.求解线性方程组的解及无解情况。
解:将方程组的增广矩阵化为阶梯形矩阵:begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$由于第三行形如 $0x + 0y + 0z + 1w = k$,其中 $k$ 为常数,显然当 $k \neq 0$ 时,该方程组无解。
当 $k = 0$ 时,该方程组有解。
因此,当 $k = 0$ 时,该方程组的解为:begin{cases} x = -7w - 5z \\ y = -4w - 3z \\ z = z \\ w = w\end{cases}$其中 $z$ 和 $w$ 为自由未知量。
不定积分一、填空题(每小题3分,共15分) 1. 如果xe-是函数()f x 的一个原函数,则()f x dx =⎰。
2. 若()2cos 2xf x dx C =+⎰,则()f x = 。
3. 设1()f x x=,则()f x dx '=⎰ 。
4.()()f x df x =⎰ 。
5. sin cos x xdx =⎰。
二、单项选择题(每小题3分,共15分)1. 设3()ln sin 44f x dx x C =+⎰,则()f x =( )。
A . cot 4xB . cot 4x -C . 3cos4xD . 3cot 4x2. ln x dx x =⎰( )。
A . 21ln 2x x C + B .21ln 2x C + C . ln x C x+ D .221ln xC x x-+ 3. 若()f x 为可导、可积函数,则( )。
A . ()()f x dx f x '⎡⎤=⎣⎦⎰B . ()()d f x dx f x ⎡⎤=⎣⎦⎰C .()()f x dx f x '=⎰ D . ()()df x f x =⎰4. 下列凑微分式中( )是正确的。
A . 2sin 2(sin )xdx d x = B .d = C . 1ln ()x dx d x = D . 21arctan ()1xdx d x=+ 5. 若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( )。
A . 222(1)x C ++ B . 222(1)x C --+C . 221(1)2x C ++D . 221(1)2x C --+三、计算题(每小题8分,共48分) 1. 2194dx x -⎰2.3. dx x⎰4. arcsin xdx ⎰5. dx x xx ⎰++21arctan6. .)1(21222dx x x x ⎰++四、综合题(本大题共2小题, 总计22分)1.(10分)求⎰'''⋅-'dx x f x f x f x f x f ])()()()()([32的值。
不定积分习题及答案9.求()()()()()dx x f x f x f x f x f ⎰⎥⎦⎤⎢⎣⎡'''-'32。
10.()d x x x ⎰1,,max 23。
第四章 不定积分(A 层次)1.⎰xx dx cos sin解:原式()()⎰⎰+===C tgx tgxtgx d dx tgx x ln sec 2 2.⎰--dx xx 2112解:原式()⎰⎰+---=-----=C x x x dx x x d arcsin 1211122223.()()⎰-+21x x dx解:原式()()[]⎰+--+-=⎪⎭⎫ ⎝⎛--+-=C x x dx x x 2ln 1ln 31211131 C x x +⎪⎭⎫⎝⎛+-=12ln 314.⎰xdx x 7sin 5sin 解:原式()⎰⎰⎰-=--=xdx xdx dx x x 12cos 212cos 212cos 12cos 21C x x +-=12sin 2412sin 41 5.()⎰+dx x x x arctg 1解:原式()()()⎰⎰+==+=C xarctg x arctg d x arctg dx x x arctg 222126.⎰-+21xx dx解:⎰⎰⎰+-++=+=-+dt tt tt t t t t tdt t x x x dx sin cos sin cos sin cos 21cos sin cos sin 12令()()C t t t t t t t d dt +++=+++=⎰⎰cos sin ln 2121cos sin cos sin 2121 ()C x x x ++-+=21ln 21arcsin 21 7.⎰arctgxdx x 2 解:原式()⎪⎭⎫ ⎝⎛+-==⎰⎰dx x x arctgx x x arctgxd 2333113131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 6161318.()⎰dx x ln cos解:原式()()[]⎰+=dx x x x x x 1ln sin ln cos ()()⎰+=dx x x x ln sin ln cos()()()[]⎰-+=x xd x x x x ln sin ln sin ln cos ()()()⎰-+=dx x x x x x x ln cos ln sin ln cos 故()()()[]C x x x x dx x ++=⎰ln sin ln cos 21ln cos 9.⎰--+dx xx x x 3458解:原式()⎰⎰--++++=dx xx x x dx x x 32281⎰⎰⎰--+-+++=dx x dx x dx x x x x 131******** ()()C x x x x x x +--+-+++=1ln 31ln 4ln 821312310.()⎰+dx x x 2831解:原式()()()⎰⎰⎰=+=+=t tdt tgt u u du u x x x d 42224284sec sec 41141141令令 ()⎰⎰+==dt t tdt 2cos 181cos 412C t t ++=2sin 16181C uu u arctgu ++⋅++=221118181 ()C x x arctgx +++=844188111.⎰xdx x 2cos解:原式⎰⎪⎭⎫⎝⎛+=dx x x 22cos 1[]()⎰⎰⎰+=+=x xd x xdx x xdx 2sin 41412cos 212 ⎰-+=xdx x x x 2sin 412sin 41412C x x x x +++=2cos 812sin 4141212.⎰dx e x 3解:令t x =3,则3t x =,dt t dx 23=原式[]⎰⎰⎰-===t d t e e t de t dt t e t t t t 2333222[]⎰⎰--=-=dt e te e t tde e t ttttt 636322C e te e t t t t ++-=6632 ()C x x e x++-=2223332313.⎰xx x dxln ln ln解:原式()()[]()()[]C x x x d x x x d +===⎰⎰ln ln ln ln ln ln ln ln ln ln ln 14.()⎰+21x e dx解:()()()()⎰⎰⎰⎰+-+=+-+=+222111111t dtdt t t t t t t t e e dxx x令 ()()C t t t t t d dt t t ++++=++-⎪⎭⎫ ⎝⎛+-=⎰⎰111ln 111112()C e e x C e e e xxx x x ++++-=++++=111ln 111ln15.()⎰+dx exe xx21解:原式()()⎰⎰⎪⎭⎫⎝⎛+-=++=11112x xx e xd ee xd()()⎰⎰⎪⎭⎫ ⎝⎛+-++-=+++-=x x x x x x x x e d e e e x dx e e e e x 111111()C e e e xx x x++-++-=1ln ln 1()C e e xe x xx++-+=1ln 116.dx x ⎰3sin解:令t x =3,则3t x =,dt t dx 23= 原式⎰⎰-=⋅=t d t dt t t cos 33sin 22⎰⎰+-=⋅+-=t td t t tdt t t t sin 6cos 32cos 3cos 322 ⎰-+-=tdt t t t t sin 6sin 6cos 32 C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3 17.⎰-dx xx 1arcsin解:令u x sin =,则u x 2sin =,udu u dx cos sin 2= 原式⎰=udu u uucos sin 2cos ()⎰⎰--=-=udu u u u d u cos cos 2cos 2C x x x C u u u ++--=++-=2arcsin 12sin 2cos 218.()⎰+dx x x 321ln解:原式()⎰⎪⎭⎫⎝⎛+-=-22211ln x d x()⎰+++-=dx xx x x x 2222122121ln ()()⎰+++-=2222212121ln x x dx x x ()⎰⎪⎭⎫ ⎝⎛+-++-=222221112121ln dx x x x x ()()[]C x x xx ++-++-=22221ln ln 2121ln ()()C x x xx ++-++-=2221ln 21ln 21ln 19.⎰+-dx xx xx sin 2cos 5sin 3cos 7解:原式()()⎰+-++=dx x x x x x x sin 2cos 5sin 5cos 2sin 2cos 5dx x x x x ⎰⎪⎭⎫⎝⎛+-+=sin 2cos 5sin 5cos 21C x x x +++=sin 2cos 5ln 20.()⎰++dx x xx 21ln解:原式()⎰⎪⎭⎫ ⎝⎛+-+=x d x x 11ln⎰+++++-=dx x x x x x 1111ln ⎰+++-=dx x x x x 11ln C x xxx ++++-=ln 1ln 21.⎰xdx x 35cos sin解:原式⎰=xdx x x cos cos sin 25()x d x x sin sin 1sin 25⎰-=C x x +-=86sin 81sin 6122.⎰dx x x tgxsin cos ln解:原式()⎰⎰==tgx d tgx tgxdx xtgxtgx ln cos ln 2 ()()⎰+==C tgx tgx tgxd 2ln 21ln ln 23.dx xx ⎰-2arccos 2110解:原式()⎰-=x d x arccos 21021arccos 2 C C x x ar +-=+-=arccos 2cos 21010ln 211010ln 12124.⎰arctgxdx x 2 解:原式()⎰=331x arctgxd ⎪⎭⎫⎝⎛+-=⎰dx x x arctgx x 2331131 dx xxx x arctgx x ⎰+-+-=23313131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 61613125.⎰-+dx x xx 1122解:令t x 1=,dt tdx 21-=原式dt t t t t ⎰⎪⎭⎫ ⎝⎛--+=222111111⎰⎰⎰----=-+-=dt tt tdt dt tt 2221111C t t +-+-=21arcsinC xx x+-+-=11arcsin 2 26.dx x a x ⎰+222 解:令atgt x =,tdt a dx 2sec = 原式dt t a ttg a t a ⎰=222sec sec ⎰⎰+==dt tt tt t t dt cos sin cos sin cos sin 2222dt tttdt ⎰⎰+=2sin cos sec C t tgt t +-+=sin 1sec lnC xx a a x a x a ++-++=2222lnC x a x a x ++-++=2222ln 27.()dx tgx e x 221⎰+解:原式()⎰+=dx tgx x e x 2sec 22 ⎰⎰+=tgxdx e xdx e x x 2222sec ⎰⎰+=tgxdx e dtgx e x x 222dx tgx e dx e tgx tgx e x x x ⎰⎰+⋅-=22222C t g xe x +=2 28.()()()⎰+++321x x x xdx解:原式⎥⎦⎤⎢⎣⎡+-+-+=⎰⎰⎰3312421x dx x dx x dx()()()[]C x x x ++-+-+=1ln 3ln 32ln 421()()()C x x x ++++=34312ln2129.()⎰+xx dxsin cos 2解:令t x tg =2,则arctgt x 2=,212t dt dx +=,212sin t tx +=,2211cos t t x +-=,于是原式()⎰++=dt tt t 3122⎰⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=dt t t t 313322()⎰⎰+++=dt tt t d 131333122 ()C t t ++=3ln 313C x tg x tg +⎪⎭⎫⎝⎛+=232ln 31330.dx xxx x ex⎰-23sin cos sin cos 。
第一单元 原函数的概念一、学习目标通过本节课的学习,理解原函数的概念.二、内容讲解这节课我们讲原函数的概念,先来看什么是原函数. 已知 求 总成本函数 边际成本 C (x ) C '(x )‖( ) MC( )' = MC求 已知已知总成本C (x ),求边际成本C '(x ),就是求导数.反之如果已知边际成本,用MC 表示,要求总成本,这就是我们要讨论的问题,也就是要知道哪一个函数的导数等于MC .我们引进一个概念:定义1.1——原函数若对任何x ∈D ,F '(x )=f (x ),则称F (x )为f (x )的原函数. 我们来看具体的问题:例如(x 3)' =3x 2 [F (x ) f (x )];∴x 3是3x 2的原函数.大家用自己的方法把它搞清楚,不要和导数的概念搞混了. 先考虑这样一个问题:x 2的原函数是哪个?由原函数的概念我们就要看哪个函数的导数是x 2,即它使得x 2)(='成立,我们在下列函数中进行选择:12,ln ,4,1,222+-+xx x x 经验证知21x +和42-x 是2x 的原函数.通过这个过程应该弄清,求已知函数的原函数,就是看哪个函数的导函数是已知函数,这个函数就是所求的原函数.另外,2x 的原函数不唯一.它告诉我们原函数不止一个. 再从另一方面提出问题:x sin 为哪个函数的原函数?x x cos )(sin =',说明x sin 是x cos 的原函数.同样x x cos )3(sin ='+,说明3sin +x 是x cos 的原函数.事实上,c x +sin 都是x cos 的原函数,说明原函数有无穷多个.那怎样求出一个函数的所有原函数呢?这是下面要讨论的.若)(,)(x G x F 都是)(x f 的原函数,则c x F x G +=)()( 证:设)()()(x G x F x H -=0)()()()()(=-='-'='x f x f x G x F x H可知c x H -=)(,即c x F x G +=)()(这个结论非常重要,我们已经知道,若)(x F 是)(x f 的原函数,则c x F +)(都是)(x f 的原函数.而这个结论告诉我们任意两个原函数之间差一个常数.所以只要求出一个原函数,就能得到所有原函数.问题思考1:如果一个函数)(x f 有原函数,它可能有多少个原函数? 答案有无穷多个原函数.问题思考2:)(x F 是)(x f 的原函数,c x F +)(是否包含了)(x f 的所有原函数? 答案是,因为)(x f 的任一原函数)(x G 都可表示为c x F +)(的形式.三、例题讲解例1求x 1的全体原函数.分析:先求一个原函数,再将这个原函数加任意常数就得到全体原函数.求原函数就是看哪个函数的导数是x 1.解:因为x x 1)(ln =',所以x ln 是x 1的一个原函数.故x1的全体原函数为x ln +c 。
不定积分100题(附答案)容易题1—60,中等题61—105,难题106—122. 1.设⎰-=1tan cos 2x x dxI , 则=I ( ). (C).;)1(tan 221C x +-2.设⎰-=12x xdx I ,则=I ( )。
(D).C x+-1arcsin. 3.设⎰=x dxI sin ,则=I ( ). (B).C x c x +-tan csc ln4.设⎰=axdx I 2 ,则=I ( )。
(A).C ax+2; 5.设⎰++=dx e e I xx 113,则=I ( ). (B).C x e e x x ++-2216.设⎰=xdx I tan ,则( ). (D).C x +-sin ln . 7.设⎰=xdx I ln 则( )。
(D).C x x x I +-=ln 8.设⎰=xdx I arctan , 则=I ( ). (B).C x x x ++-1ln arctan 29.设 ⎰=xdx x I cos sin ,则( ). (A).C x I +-=2cos 4110.设⎰+=21x dx I , 则=I ( ). (B)C x x +++21ln11.设211)(xx f -=,则的一个原函数=)(x F ( )。
(A).x x -+11ln 21 12.设)(x f 为可导函数,则( )。
(C).⎰=')())((x f dx x f13.设⎰=xdx I arcsin ,则( ). (C).C x x x +-+21arcsin14.=+⎰x x dx sin 2)2sin(( ) (B )c x x ++|2tan |ln 412tan 812 15.=-⎰)4(x x dx ( ) (C )c x+2arcsin2 16.=-⎰dx x x 21ln ( ) (B )c xx+-ln17.设x xsin 为)(x f 的一个原函数,且0≠a ,则⎰dx a ax f )(=( ) (A )xa ax 3sin19.欲使⎰⎰=dx x f dx x f )()(λλ,对常数λ有何限制?( ) 0≠λ。
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。
不定积分练习题带答案题目一计算以下不定积分:$$ \\int (3x^2 - 4x + 2)dx $$解答:首先,根据不定积分的性质,我们可以将不定积分的运算符号移到每个项上,然后分别对每个项进行积分。
$$ \\int (3x^2 - 4x + 2)dx = \\int 3x^2dx - \\int 4xdx +\\int 2dx $$对每个项分别进行积分运算:$$ \\int 3x^2dx = \\frac{3}{3}x^3 + C_1 = x^3 + C_1 $$$$ \\int 4xdx = 4 \\cdot \\frac{1}{2}x^2 + C_2 = 2x^2 + C_2 $$$$ \\int 2dx = 2x + C_3 $$将每个项的积分结果相加,得到最终的答案:$$ \\int (3x^2 - 4x + 2)dx = x^3 + 2x^2 + 2x + C $$这里的C是常数,表示积分常数,它可以任意取值。
题目二计算以下不定积分:$$ \\int \\frac{1}{x}dx $$解答:对于这个不定积分,我们可以使用换元积分法来计算。
令$ u = \ln|x| $,则 $ du = \frac{1}{x}dx $。
将 $ u = \ln|x| $ 代入原积分,得到:$$ \\int \\frac{1}{x}dx = \\int du = u + C = \\ln|x| + C $$这里的C是常数,表示积分常数,它可以任意取值。
题目三计算以下不定积分:$$ \\int e^x dx $$解答:这个不定积分是一个基本的指数函数积分。
根据指数函数的性质,对于任意实数 $ a $,有 $ \int e^{ax} dx =\frac{1}{a}e^{ax} + C $。
将原积分与上述性质进行对比,可以看出 a=1,所以:$$ \\int e^x dx = \\frac{1}{1} e^x + C = e^x + C $$这里的C是常数,表示积分常数,它可以任意取值。
第五章不定积分习题 5-11. 1. 验证在(-∞,+∞)内, 221sin , cos 2, cos 2x x x--都是同一函数的原函数.解221(sin )'(cos 2)'(cos )'sin 22x x x x=-=-=因为221sin ,cos 2,cos sin 22x x x x --所以都是的原函数.2. 2. 验证在(-∞,+∞)内, 2222(),() 2()x x x x x xe e e e e e ---+-+都是的原函数.解2222[()]'[()]'=2()x x x x x xe e e e e e ---+=-+因为2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数3.已知一个函数的导数是211x -,并且当x = 1时, 该函数值是32π,求这个函数.解设所求函数为f (x ),则由题意知'()f x ='(arcsin )x =因为'()()d arcsin f x f x x x C===+⎰所以又当x = 1时,3(1)2f π=,代入上式, 得C = π 故满足条件的函数为()f x =arcsin x π+.3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程.解设曲线方程为()y f x =, 则由题意知''()2y f x x == 因为2()'2x x = 所以2'()d 2d y f x x x x x C===+⎰⎰又因为曲线过点(1, 2), 代入上式, 得C = 1故所求曲线方程为21y x =+.5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程.解设y = cos x 积分曲线方程为()y f x =因为'(sin )cos x x = 所以()cos d sin f x x x x C==+⎰又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与C 2 = -1. 故满足条件的积分曲线分别为()sin 1f x x =+与()sin 1f x x =-.6. 已知f (x ) = k tan2x 的一个原函数是2ln cos 23x ,求常数k .解因为2ln cos 23x 是f (x )的一个原函数 所以'2214(ln cos 2)(2sin 2)tan 2()33cos 23x x x f x x =⋅⋅-=-=4tan 2tan 234.3x k xk -==-即 故7. 已知1(1)d x f x x xe C++=+⎰, 求函数f (x ).解因为由不定积分的性质, 有'111(1)d (1)(1)x x x f x x f x e xe x e +++⎡⎤+=+=+=+⎢⎥⎣⎦⎰所以, 令t = x+1,有(),().t x f t te f x xe ==即8. 设f (x ) 是(-∞,+∞)内的连续的奇函数, F (x )是它的一个原函数, 证明: F (x )是偶函数.证由已知F (x )是f (x )的一个原函数, 则'()()F x f x =又因为f (x ) 是(-∞,+∞)内的连续的奇函数, 则[]''()()()()F x F x f x f x -=--=--=于是[]'()[()]'F x F x =-即()()F x F x C =-+,故F (x )是偶函数.9.设1sin ()f x x 是的原函数, 求'()f x . 解因为1sin ()f x x 是的原函数, 则'2211111sin cos ()cos ()f x x x x x x ⎛⎫=⋅-=-⋅= ⎪⎝⎭'322321111()cos (sin )()1111(2cos sin ).f x x x x x xx x x x =⋅--⋅-=-所以习题 5-21. 求下列不定积分:2324222(1) (21)d (2)(2)(3) 1)d (4) d331(5) d (6) d11x x xxx xxx x xx x x x+--+-++++⎰⎰⎰⎰⎰23262(7) (13)d (8) d3cos2(9) cos d (10) d2sin cos1sin(11) d (12) cot(csinx xx xxe x xx xx xx xxx xx--+-⎰⎰⎰⎰⎰22sc sin)d1cos1(13) (1 (14)dcos21x x xxx xxx-+-+⎰⎰⎰解4233(1)(21)d.4x x x x x C+-=+-+⎰3122111322222323222222422(2) d2.2(3) 1)d(11)d.3(2)14442(4) d d ln.111(5) d d(1)d arctan.111331(6)1x x x x Cx x x x x x Cxx x x Cx xx x x xx xx x x x x C x x xx xx---==-++-=+--=-+-⎛⎫=-+=+-+⎪⎝⎭+-==-=-+ ++++++⎰⎰⎰⎰⎰⎰⎰⎰⎰2321d(3)d arctan.1x x x x x Cx=+=+++⎰(7) (13)d(3)dx x x xe x e e x⎡⎤-=-⎣⎦⎰⎰211 (3)(3).ln 31ln 3622112(8) d 2()d 2()3ln 2ln 2ln 333212 ().ln 2ln 2ln 331cos 11(9)cos d d sin 2222x x x x x x x x x xx xxx e e C e e C ex x C C xx x x x x C =-+=--++-⎡⎤=-=⋅-⋅+⎢⎥-⎣⎦=-+⋅+==++⎰⎰⎰⎰()()()22322.cos 2cos sin (10)d d cos sin d sin cos sin cos sin cos .1sin (11)d =csc sin d cot cos .sin (12) cot (csc sin )d cot csc cot sin d xx x x x x x x x xx x x x C xx x x x x x C xx x x x x x x x x-==-++=++--=-++-=⋅-⋅⎰⎰⎰⎰⎰⎰⎰3571444422222csc sin .14(13) (1d 4.7cos 1cos 11(14) d d (1sec )d cos 2122cos 11 22x x C x x x x x x C x x x x x x x x xx --=--+⎛⎫ ⎪-=-=++ ⎪⎝⎭++==++=+⎰⎰⎰⎰⎰tan .x C +2. 21, 0() , ()d .21, 0x x f x f x x x x -≤⎧⎪=⎨+>⎪⎩⎰已知求. 解21, 0()2 1 , 0x x f x x x -≤⎧⎪=⎨+>⎪⎩由已知当0x ≤时,21()d (1)d 2f x x x x x x C=-=-+⎰⎰当x >0时, 222()d (21)d 3f x x x x x x C=+=++⎰⎰故221, 02()d 2, 03x x C x f x x x x C x ⎧-+≤⎪⎪=⎨⎪++>⎪⎩⎰.3. 设某企业的边际收益是'()1000.01R x x =- (其中x 为产品的产量),且当产量x = 0时,收益R = 0. 试求收益函数R (x ) 和平均收益函数.解由已知边际收益是'()1000.01R x x =- 所以在上式两端积分, 得2()(1000.01)d 1000.005R x x x x x C=-=-+⎰将0,0x R ==代入上式, 得C = 0故收益函数为2()1000.005R x x x =-平均收益函数为()1000.005R x x =-.4. 某商品的需求量Q 为价格P 的函数. 已知需求量的变化率为'1()1000ln 3()3pQ p =-⋅且该商品的最大需量为1000.求该商品的需求函数.解由已知需求量的变化率为'1()1000ln 3()3pQ p =-⋅ 所以在上式两端积分, 得'1()()d 1000ln 3()d 31111000ln 3()1000()(ln 3)33p p p Q p Q p p pC C==-⋅=-⋅⋅+=+-⎰⎰又因为该商品的最大需求量为Q =1000(P = 0时),代入上式, 得C = 0故满足条件的需求函数1()1000()3pQ p =. 5. 一种流感病毒每天以 (240 t – 3 t 2 ) / 天的速率增加, 其中 t 是首次爆发后的天数. 如果第一天有50个病人,试问在第10天有多少个人被感染?解设()y t 为t 天被感染上的人数, 则由题意得2d 2403d yt t t =- 所以在上式两端积分, 得223()(2403)d 120y t t t t t t C=-=-+⎰又当1,50t y ==时,代入上式, 得C = -692323()12069(10)120(10)106910931()y t t t y =--=⨯--=故 而 人习题 5-3(1)1. 1. 填空:22(1) d ( )d(3) (2) d ( )d(17)(3) d ( )d (4) d ( )d(12)1(5)d ( )d(2ln ) (6) x x x x x x x x x x x x e x -==-==+=11331d ( )d()3x x xe -=-2(7) sin2d ( )d cos 2 (8) cos(13)d ( )d sin(13)1(9) d ( )d arctan 214x x x x x x x x x x =-=-==+解11111111(1);(2);(3);(4);(5);(6)3;(7);(8);(9);(10)2.37242232----2. 求下列不定积分:(1) (2) cos(51)d x x x+⎰22222tan(21)1(3) d (4)dcos (21)91(5) d (6) (19)d 9425(7) d (8)52x xx x x x x x e x x x x x x +++----+⎰⎰⎰⎰⎰21(9)d (10)d 32(1ln )(11) (12) d 1(13) d (14) ln xxxx xe x xee e x x xx x x x -+++⎰⎰⎰⎰⎰3223211(15)cos d (16) darctan (17) tan sec d (18) d 111(19) d (20) sin cos x xx x e x x x xx x x x xx x x -+⎰⎰⎰⎰d 1cos xx +⎰⎰231(21)(22)d 251(23) sin d (24) d 1xx xxx x x x e-++⎰⎰⎰12121(1)(25)d(25)51(25).10x x x x C -=---=--+⎰解 222221(2) cos(51)d cos(51)d(51)51sin(51).5tan(21)1(3) d =tan(21)d tan(21)2cos (21)1tan (21).41d 1(4) d a 393x x x x x C x x x x x x C x x x x +=++=++++++=++==++⎰⎰⎰⎰⎰222rctan .3d(2)11132(5) d ln 21232943(2)xC x xx C x x x ++==+---⎰⎰⎰22222222222(6) (19)d (3)d 111(3)22ln 3111(3).221ln 3d(52)25(7)d ln 52.5252(8) 2x x x x x x x x e x e e x e e Ce e e C x x x x x x C x x x x x ⎡⎤-=-⎣⎦=-⋅+=-⋅++-+-==-++-+-+=⎰⎰⎰⎰⎰212222.d(32)11(9) d =ln 32.3332321d (10) d arctan .11(11)(12cos 2).2(1ln )1(12) d (1ln )d(1ln )(3x xxx xxx x x xC e e x e C e e e x e C e e ex x C x x x x x -=++=++++==+++=-=-+++=++=⎰⎰⎰⎰⎰⎰⎰31ln ).x C ++122211(13) d d ln ln ln .ln ln 11(14)(23).63x x x C x x xx x C ==+=-=--+⎰⎰333223322311111(15)cos d cos d sin .11(16)d d().33(17)tansec d tand sec (sec 1)d sec 1sec sec .3x x x x C x x x x x x e x e x e C x x x x x x xx x C ---=-=-+=--=-+⋅==-=-+⎰⎰⎰⎰⎰⎰⎰2222arctan 1(18)d arctan d arctan arctan .211sin cos (19)d d sin cos sin cos (tan cot )d ln cos ln sin ln tan .x x x x x C xx xx xx x x xx x x x x Cx C ==+++=⋅=+=-++=+⎰⎰⎰⎰⎰2222221d 1(20)d sec d 1cos 222(1sin )2sec d tan .222(21)22arctan arctan .d(1(22)d 25xx x x x xx x xC x C x x x x ==+-==+==-=-+⎰⎰⎰⎰⎰⎰⎰21)11arctan .22(1)4x C x -=+-+⎰3223(23)sind sin d cos (1cos )d cos 1cos cos .3d(1)1d (24)d ln(1).111x x x x x xx x x x x xx x C e e xx e C e e e -----=-=--=-+++==-=-+++++⎰⎰⎰⎰⎰⎰习题 5-3(2)1. 1. 求下列不定积分:2(1) (3) (4)(5)(6)xx x x ⎰⎰⎰2(7) (8)(9)(11) (12)x xx解2d 11(1)2d 11t t t x t t t +-=++⎰⎰22312(1)d22ln(1)12ln(1.(3)(2)(2)d12(3)d2(3)3t t t CtCtx t ttt t t t C=-=-+++=-++-⋅-=--=--+⎰⎰⎰13221536323211136226(3)(3).36d(3)6d1(1)116d6(1)d112366lnx x Ct t tx t x ttt ttt t t tt tx x x=--+-+==+++-==-+-++=-+-⎰⎰⎰⎰令16(1).x C++221(4) d1d12ln11ttt tt tCtt⋅--==++-⎰⎰.C=+22222222sin(5) sin cot dcot1cos2sin d d21(sin2)22(arcsin2a tx x a t a t ta tta t t a tat t Ca xa=-===-+=⎰⎰⎰令2arcsin.2Ca xCa-+=-+222(6)2sec 2tan d 2(sec 1)d 2tan 22 2arccos .11(7)()d x x t tt t t t t t C C xt txt ===-=-+=+=⋅-⎰⎰令令21 2 .C C =-=-=+=+21(8)()d tt ⋅-1arccos 3313arccos .3t CC x =-=+=+221d 1(9) d 11111ln .212t t tt t t t C C t ⋅=---=+=++⎰⎰222(2)(10)(2)d t t t t -⋅-2435135222 2(44)d 82835828(2)(2)(2).35t t t t t t Cx x x C =--+=-+-+=--+---+⎰2(11)1dln2ln 21 ln 1).(12)x xxxx x Cx C =⎡⎤=+⎢⎣=+=+++=++⎰⎰2122112 (1).x t t C C =-=-=-++=+⎰令2. 若己知()d ()f x x F x C =+⎰. 求:(1)()d f ax b x+⎰(2)22()d x x e f e x--⎰(3)cos 3(sin 3)d xf x x⎰(4)x解(1)因为()d ()f x x F x C =+⎰.11()d ()d()().f ax b x f ax b ax b F ax b C aa +=++=++⎰⎰所以(2)因为()d ()f x x F x C =+⎰2222211()d ()d ().22x x x x x ef e x f ee F e C -----=-=-+⎰⎰所以(3)因为()d ()f x x F x C =+⎰11cos3(sin 3)d (sin 3)dsin 3(sin 3).33xf x x f x x F x C ==+⎰⎰所以(4)因为()d ()f x x F x C =+⎰.x C ==+所以3. 下列不定积分:d d (1) (2)2cos 354sin 2x xx x ++⎰⎰解2222212(1)tan ,sin ,cos ,d 2111x u u duu x x x u u u -====+++令则2222d 12d2cos 3112312d 5tan.xu x u u u u C u x C =⋅+-+⋅++==++=+⎰⎰⎰于是22222222221 (2)tan ,sin ,cos ,d 111d 11d d 254sin 215855411d 5d 945459()1[()]25535u u duu x x x x u u u xu u uxu u u u u uu u -====+++=⋅=+++++⋅+==++++⎰⎰⎰⎰⎰令则于是154154arctan ()arctan (tan )335335u C x C=++=++.习题 5-3(3)1. 1. 下列不定积分:(1)ln d x x x ⎰2(2)ln(1)d x x+⎰ln ln (3)d x x x ⎰2(4)ln d x x⎰(5)arcsin d x x⎰(6)arctan x⎰2(7)sin d x x x ⎰32(8)cos d x x x⎰2(9)d xxe x -⎰(10)x⎰(11)sin 2d x e x x ⎰(12)cos d xe x x -⎰(13)x(14)ln(x x+⎰22(15)cos d 2xx x ⎰22(16)(1)d x x x e x+⎰解222211111(1)ln ln ln 2224x xdx x x x dx x x x Cx =-⋅=-+⎰⎰.22222222(2)ln(1)d ln(1)d 111 ln(1)2d 1 ln(1)2(arctan ).xx x x x x x x x x x x xx x x x C +=+-⋅++-=+-+=+--+⎰⎰⎰ln ln (3)d ln ln d ln 11 ln ln ln ln d ln ln ln ln ln .xx x x xx x x x x xx x x C ==⋅-⋅⋅=⋅-+⎰⎰⎰2221(4)ln d ln 2ln d ln 2ln 2.x x x x x x xxx x x x x C =-⋅⋅=-++⎰⎰122(5)arcsin d arcsin arcsin (1).x x x x x x x C =-=+-+⎰⎰2222(6)arctan arctan 2d 1arctan d 1 arctan arctan arcsin arctan .x t t t t t t ttt t t t C x C ⋅=⋅-+=-++=++⎰⎰⎰22223222222222(7)sin d cos 2cos d cos 2sin 2sin d cos 2sin 2cos .11(8)cos d cos d (sin sin d )221 si 2x x x x x x x x x x x x x xx x x x x C x x x x x x x x x x x =-+=-+-=-+++==-=⎰⎰⎰⎰⎰⎰22222221n cos .211(9)d d 2211.24x x xx x x x C xe x xe e xxe e C -----++=-+=--+⎰⎰222(10)d 3(2d ) 3(22) 6).(11)sin 2d sin 22cos 2d sin 22(cos 22sin 2d t t t t t t x x x x x x x e t t t e te t t e te e C C e x x e x x e xe x e x e x x ⋅=-=-++=-++=-⋅=-+⎰⎰⎰⎰⎰)⎰移项解方程, 得sin 2d (sin 22cos 2)5xx ee x x x x C =-+⎰.(12)cos d cos sin d cos sin cos d x x x x x x e x x e x e x xe x e x e x x------=--=-+-⎰⎰⎰移项解方程, 得1cos d (sin cos ).2x x e x x e x x C --=-+⎰(13)arcsin22.x x xxx C=-=-=+2222(14)ln(ln(1ln(2ln(.1(15)cos d(sin)(sin)d22x x x x x xx xx x Cxx x x x x x x x x+=+-=+-=+-+=+-+⎰⎰⎰⎰32332111sin sin d22311sin cos cos d62x x x x x x xx x x x x x x=+--=++-⎰⎰222222223223222211sin cos sin.62(16)(1)d d d11d d2211()22x x xx xx x xx x x x x x Cx x e x xe x x e xe x x e xe x e e C=++-++=+=+=+-+⎰⎰⎰⎰⎰221.2xx e C=+2. 2.已知()f x的一个原函数是sin x,求'()dxf x x⎰.解因为()f x的一个原函数是sin x, 则()d sinf x x x C=+⎰所以两边求导, 得()cosf x x=于是'()d()()dxf x x xf x f x x=-⎰⎰故'()cos sinxf x dx x x x C=-+⎰.3.已知'()1xf e x=+,求()f x.解设,lnxt e x t==则由已知'()1xf e x=+,则'()1lnf t t=+所以'()()d(1ln)d ln lnf t f t t t t t t t t C t t C==+=+-+=+⎰⎰故()lnf x x x C=+.4. 已知()f x 的一个原函数是ln x x ,求''()xf x dx⎰.解因为()f x 的一个原函数是ln x x ,则()d ln f x x x x C =+⎰所以两边求导,得'1()ln 1,()f x x f x x =+=且于是'''''()()()()()xf x dx xf x f x dx xf x f x C=-=-+⎰⎰故''()d ln xf x x x C=-+⎰.习题 5-4求下列不定积分:21.d32xx x x -+⎰解22(23)1d =d 23232x xx x x x x x x -+-+-+⎰⎰221311ln(2)(1)()d 22211133ln(2)ln(1)ln(2)ln(1)2222(2) 2ln(2)ln(1)ln .1212.d (1)x x xx x x x x x Cx x x C C x x xx =--+---=-+-+---+-=---+=+-+-⎰⎰解222111d 2d 3d 1(1)(1)x x x x x x x +=+---⎰⎰⎰212ln 13.113. d 25x C x x xx x =--+-+-+⎰ 解22211222d d d 22525(1)4x x x x x x x x x x +-=+-+-+-+⎰⎰⎰211ln 25arctan .22x x x C -=-+++224. d (1)(4)xxx x ++⎰解222214(1)(4)(1)(4)x A B C Dx x x x x x =+++++++++因为 222 (1)(4)(4)(1)(4)A x x B x C x x x +++++++=则22, 5154,,,279279d (1)(4)A B C D xxx x ==-=-=-++⎰比较等式两边的系数解之得所以 22511d 5d 4d d 27192749(1)(4)x x xx x x x x =---++++⎰⎰⎰⎰43511541ln 1ln 4.2791279451114ln ().2749145.d 1x x C x x x C x x x x x x=++-++++++=+++++++⎰解4332113(1)113(1)x x x x x x x x x x +=-=+-+++-+因为4322222211d []d 3(1)13(1)1111ln 1d 23311112111ln 1d d 236211x x x x xx x x x x x x xx x x x x x xx x xx +=+-++-++=++--+-=++---+-+⎰⎰⎰⎰⎰所以222221111d ln 1ln 1112362()24111ln 1ln 1.236x x x x x x x x x x C =++--+--+=++--+-+⎰3216. d 1x xx +-⎰解321111x x x x +=+--因为 322111d ()d ln 1.121x x x x x x C x x +=+=+-+--⎰⎰所以2d 7.(1)xx x -⎰解221111=+ 1(1)(1)x x x x x ----因为22d 111[+]d 1(1)(1)11ln ln 1ln .111x x x x x x x x x x C C x x x =----=---+=-+---⎰⎰所以2d 8.(1)(12)xxx ++⎰解221411215125(1)(12)1x x x x x -=-++++因为22222d 41121d d 5125(1)(12)1211ln 12ln 1arctan 555(12)11ln arctan .5519.x x x x x x x xx x x Cxx C x *-=-++++=+-++++=+++⎰⎰⎰所以解321(2),d d 3t x t x t t==-=令 2322331d 1(2)3(33)3d 3d 3232t t t tt t tt t t t t =⋅---+==----⎰⎰⎰于是333231ln 323d 3211111119291332(1)11111d ln 2ln 1993132t t tt t t t t t t t t t Ct t t =--+--=---+--+=--++++--⎰⎰又因为 所以2111ln 2(1)ln(2)ln 1331t tt t Ct =-++--++++故 451ln 2ln 133145 2ln 1.33t t Ct C =-+++++=-+++综合习题五1.选择填空:(1) 设3()d ln sin 44f x x x C=+⎰, 则f(x ) = ( ) .① cot4x ②-cot4x ③ 3cos4 x ④ 3cot4 x(2) 设(1)sin 2d cos 2k x x k x C -=+⎰, 则k = ( ) .①-1②-2 ③ 1 ④ 2 (3) 设11()d x xfx e x e C=+⎰ , 则f(x ) = ( ) .①1x ②1x -③21x ④21x -(4) 如果xe -是函数f(x ) 的一个原函数, 则()d xf x x =⎰( ).①(1)x e x C --+②(1)xe x C --+③(1) x e x C --++ 1 ④(1)xe x C -++(5) 设=⎰-+=⎰dx x xf C x dx x f )1(,)(22则 ( ) .①222(1)x C -+②222(1)x C --+③221(1) 2x C --+④221(1) 2x C -+解 (1)④; (2)①; (3)④; (4)④; (5)③. 2.计算下列不定积分:1(1) (2) d 1x x x e +⎰3cos 2(3) (4) sin d (5) (6)(7) (8) (arcsin )d (9)x x e x xx x x x x ⎰⎰⎰2102 (10) sin d2cos 2sin (11) d (12) d 1sin cos 1sin d (13) (14) (`1)x xe x x xx xx x xxx x x -+++⎰⎰⎰⎰解211(1) )d x x tt t =-⎰令-1arcsin arcsin.d(1)1(2)d d ln1.111(3)2.xxxx x xt t C Cxeex x e Ce e ex x x x xx C----=-=-+=-++==-=-+++++=-=-=-+⎰⎰⎰⎰3cos3cos3cos1(4)sin d d cos.3(5).x x xe x x e x e CC=-=-+==+⎰⎰3222(6)ln)(1ln) .3(7)1ln2x x x Cx x xx C=+=++=+=+++⎰222ln.(8)(arcsin)d(arcsin)2arcsin(arcsin)2arcsinx Cx x x x x xx x x =+++=-=+⎰⎰⎰2241743333222 (arcsin )2arcsin 2.(9)34 d d .73111(10)sin d sin cos d 222222 x x x x x x C x xx xx xx x C xx x e x e e x ---=+-+==-=-+=-+⎰⎰⎰⎰222222221111sin (cos sin d ) 2242222111 sin cos sin d 22821622sin d (cos 4sin ).21722cos 2cos 2d sin 2(11)d 2d 1sin cos 2sin 22x x x x x x x x x x xe e e x x x x e e e x xx x e x e C xx x x x x xx --------=-+--=---=-++==++⎰⎰⎰⎰⎰移项得2sin 2 ln 2sin 2.sin 1(12)d (1)d 1sin 1sin 1sin 1sin d d (1sin )(1sin )cos 1tan cos x x C xx x xx xx x x x x x x xx x C x+=++=-++--=-=-+-=-++⎰⎰⎰⎰⎰.21(13) 1 arcsin 21arcsin arcsin .x x tt t t C C xx =-=--=-+=++=-++令101022221022d 1d (14) 10(`1)(1)11111(1)(1)d 1111()d 101(`1)(1)x t t xx x t t t t t t t x t t t x x t =++=--+++=--+++⎰⎰⎰⎰令因为所以 1010101010101111 ln ln 110101011111ln ln 1101010111[ln ].1011t t C t x x Cx x C x x =-++++=-++++=++++3. 已知x xsin 是f (x )的一个原函数, 求'()d xf x x⎰.解因为x xsin 是f (x ) 的一个原函数, 则sin ()d xf x x C x =+⎰'2sin cos sin ()()x x x xf x x x -==两边求导数,得于是'()d ()()d xf x x xf x f x x =-⎰⎰cos sin sin '()d cos 2sin .x x x xxf x x Cx x x x xC x -=-+-=+⎰所以4.试求函数y = 2x + 1的一条积分曲线, 使此曲线在x =1 处的切线 刚好通过(2, 1)点.解设积分曲线为()y f x =, 则由已知得'()21f x x =+于是2()(21)d f x x x x x C=+=++⎰又曲线在x =1 处的切线刚好通过(2, 1)点,于是曲线的切线方程为13(2)35y x y x -=-=-即于是曲线在x =1的切线方程的纵坐标为-2,代入方程, 得C = -4故满足条件的积分曲线方程为24y x x =+-.5. 设ln(1)(ln ),()d x f x f x x x +=⎰计算. 解由已知ln(1)(ln )x f x x +=令ln t x =,得ln(1)ln(1)(),()t x txe ef t f x e e ++==即()ln(1) ln(1)1 ln(1)1 ln(1)ln 1 x x x xxxxxxxxx x x x f x dx e e dxe e e e dxee ee dxee e e C e ---------=+=-+++=-+++=-+-++=-⎰⎰⎰⎰所以ln(1)ln 1 (1)ln 1x x x x e x e C x e e C-++-++=-+++6.设F (x ) 为f (x ) 的原函数, 且x ≥0,2()()2(1)xxe f x F x x =+已知F (0) = 1, F (x ) > 0, 试求f (x ) .解因为F (x ) 为f (x )的原函数,'()()F x f x ='222()()()()2(1)111()d d 2212(1)x x x xe f x F x F x F x x xe F x x xe x x ==+==-++⎰⎰11 [d ][]211211 21x x x xx xxe e xe xe x e Cx x x e Cx +=--=--++++=++⎰2()1x e F x Cx =++即又因为F (0)=1,代入上式, 得C = 0232().2(1)x xe f x x =+所以7.设当x ≠0 时,)('x f 连续,求2'()(1)()d xxf x x f x xx e-+⎰.22'2222'()(1)()'()(1)()d d d ()(1)()1()()d d ()()(1)()()d d xxxxxxx x x x xxf x x f x f x x f x x x xx exe x ef x x f x f x x xxe xex ef x e xe x f x f x x x xe x e x e -++=-+=---++=--⎰⎰⎰⎰⎰⎰⎰解22()(1)()(1)()d d ().x x xx f x x f x x f x x x xe x e x e f x C xe ++=+-=+⎰⎰2118.()(),()(),'()(),()()()1, ().4F x f xG x f x F x G x f x f x f f x π=-=+==设且求解'2()()F x G x =因为''222'2()1()()2()()()11()f x f x f x f x f x f x f x +=++=+则 化简得arctan ()()1,04()tan .f x x Cf C f x x π=+===两端边积分, 得将条件 代入上式,得 故9.一公司某产品的边际成本为3x +20, 它的边际收益为44-5x , 当生产与销售80单位产品时的成本为11400元,试求: (1)产量的最佳水平; (2)利润函数; (3)在产量的最佳水平是盈利还是亏损?解(1)因为产量最佳水平满足的条件是边际成本 = 边际收益所以由320405,3x x x +=-=解得 (2)成本函数为23 ()(320)d 20280,(80)11400,200C x x x x x C x C C =+=++===⎰将已知条件代入上式,解得即成本函数为23()202002C x x x =++.收益函数为25()(445)d 4420,(0)0,0R x x x x x Cx R C =-=-+===⎰将已知条件代入上式,解得即收益函数为25()442R x x x =-. 故利润函数为2()()()244200L x R x C x x x =-=--.(3)由(1)知道最佳产量水平是3x =代入利润函数得2(3)24343200164L =⨯-⨯-=-故在最佳水平时亏损164元.。