中考数学第一次模拟习题无解答
- 格式:doc
- 大小:68.50 KB
- 文档页数:4
2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
2024年中考第一次模拟考试(苏州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2 的绝对值是()A .2B .2C .12D .12 【答案】A【分析】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.【详解】解:2 的绝对值是2,即22 .故选:A .2.若分式1x x 有意义,则x 的取值范围是()A .0x B .1x C .1x D .1x 且0x 【答案】B 【分析】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.根据分式的分母不能为0求解即可得.【详解】解:∵分式1x x 有意义,10x ,解得1x ,故选:B .3.下列计算正确的是()A .342a a a B . 339a a C .33()ab a b D .824a a a 【答案】B【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法是解题的关键.根据同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法可进行排除选项.【详解】A .34a a a ,原计算错误,故不符合题意;B . 339a a ,原计算正确,故符合题意;C .333()ab a b ,原计算错误,故不符合题意;D .826a a a ,原计算错误,故不符合题意;故选:B .4.某轮滑队所有队员的年龄只有12,13,14,15,16(岁)五种情况,其中部分数据如图所示,若队员年龄的唯一的众数与中位数相等,则这个轮滑队队员人数最少是()A .10B .11C .12D .13【答案】C 【分析】本题考查了条形统计图,中位数,众数,熟悉条形统计图,掌握中位数,众数的相关概念是解答本题的关键.根据题目,利用众数和中位数的定义,得到这组数据的中位数为:14,众数是14,由此得到答案.【详解】解:由题图中数据可知:小于14的人有4人,大于14的人也有4人,这组数据的中位数为:14,∵队员年龄的唯一的众数与中位数相等,众数是14,即年龄为14的人最多,14岁的队员最少有4人,故选:C .5.如图,在ABC 中,以顶点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧在ABC 内部交于点P ,过点P 作射线BP 交AC 于点D ,过点D 作DE BC ∥,交AB 于点E ,若65A ,195 ,则ADE ()A .85°B .75°C .60°D .55°【答案】D 【分析】本题考查作图-基本作图、平行线的性质,㠇练掌握平行线的性质是解答本题的关键.由题意可得BP 为ABC 的角平分线,DE BC ∥,则,,,ABD CBD AED ABC EDB EBD 可得,ABD CBD EDB 根据三角形外角性质可得2AED EDB ,平角性质可得18095,ADE EDB 再结合三角形内角和定理可列出方程,进而可得出答案.【详解】由题意可得BP 为ABC 的角平分线,DE BC ∥,,,,ABD CBD AED ABC EDB BDC ,ABD CBD EDB 2AED ABC EDB ,65A ∵,195 ,18095,ADE EDB 65218095180A AED ADE EDB EDB30,EDB 180953055ADE ,故选:D .6.一个圆锥的底面半径为3,侧面展开图是半圆,则圆锥的侧面积是()A .9B .18C .27D .36【答案】B【分析】本题考查了求圆锥侧面积;利用圆锥侧面展开图的弧长 底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积 底面周长 母线长2 .【详解】解:底面半径为3,则底面周长6 ,侧面展开图是半圆,则母线长6226 ,圆锥的侧面积是16π618π2故选:B .7.如图在平面直角坐标系中,OA AB ,且90OAB , 13A ,则点B 的坐标是()A .(14),B .(24),C .(34),D .(44),【答案】B【分析】本题主要考查了全等三角形的判定和性质.过点B 作BC y 轴于点C ,过点A 作AD x 轴于点D ,AD 、BC 相交于点E ,证明 AAS ODA AEB ≌,据此求解即可.【详解】解:过点B 作BC y 轴于点C ,过点A 作AD x 轴于点D ,AD 、BC 相交于点E.∵ 13A ,,∴13OD AD ,,∵90BAO ,∴19023 ,在ODA V 和AEB △中,9031OA AB ODA E,∴ AAS ODA AEB ≌,∴31BE AD OD AE ,,∴134312DE BC ,,∴点B 的坐标是 24,,故选:B .8.如图,四边形ABCD 是菱形,边长为45A .点P 从点A 出发,沿A D C 个单位长度的速度运动,同时点Q 沿射线BA 的方向以每秒1个单位长度的速度运动,当点P 运动到达点C 时,点Q 也立刻停止运动,连接PQ .APQ △的面积为y ,点P 运动的时间为()08x x 秒,则能大致反映y 与x 之间的函数关系的图像是()A .B .C .D .【答案】B【分析】本题考查函数的图象与解析之间的联系,解决问题的关键在于弄清图形的变化情况,结合勾股定理,给出面积的表达式,即可解题.【详解】解:①当P 在AD 上时,作PE AQ ,如图所示:由题知AP ,AQ x ,45A ∵,45APE A ,PE AE ,则222222AE PE PE x ,解得PE x ,故 2122APQ x xS x 04x ,②当P 在D 上时,即4x 时,14482APQ S △,③当P 在CD 上不与D 重合,且Q 在AB 上时,作DF AQ ,如图所示:45A ∵,AD 4DF ,AP x ∵则 1422APQ S x x 4x ,④当Q 在AB 延长线上时,1422APQ S x x △8x .故选:B .第Ⅱ卷二、填空题(本大题共8个小题,每小题3分,共24分)9.稀土是制造国防、军工等工业品不可或缺的原料.据有关数据表明,我国已探明稀土储量约4400万吨,居世界第一位,将数4400万用科学记数法可表示为.【答案】74.410 【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ,其中110a ,n 的值为整数位数少1.【详解】解:4400万即44000000大于1,用科学记数法表示为10n a ,其中 4.4a ,7n ,∴4400万用科学记数法表示为74.410 ,故答案为:74.410 .10.比较大小:7227 (填“ ”“ ”或“ ”)【答案】【分析】此题主要考查了有理数大小,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:77||22 ,22||77,∵7227,2772 .故答案为: .11.分解因式321025x x x.【答案】 25x x 【分析】题目主要考查因式分解,熟练掌握提取公因式及完全平方公式分解因式是解题关键.【详解】解: 32225.1025(1025)x x x x x x x x 故答案为: 25x x .12.如图,一次函数y ax b 与y mx n 的图象交于点(1,2)P ,则关于x 的方程ax b mx n 的解是.【答案】1x = 【分析】本题考查了一次函数与一元一次方程,根据图象的交点的横坐标就是方程ax b mx n 的解即可求解,熟练掌握基础知识是解题的关键.【详解】解:由图象得:方程ax b mx n 的解是1x = ,故答案为:1x = .13.中国邮政集团公司曾发行《二十四节气》特殊版式小全张(图1),其中的24枚邮票大小相同,上面绘制了代表二十四节气风貌的图案,这24枚邮票组成了一个圆环,传达了四季周而复始、气韵流动的理念和中国传统文化中圆满、圆融的概念,以“大雪”节气单枚邮票为例(图2),该邮票的“上圆弧”的长为l ,“直边长”为d ,“下圆弧”的长为x ,则x (用含l ,d 的式子表示).【答案】π12l d 【分析】本题考查弧长公式,根据题意,作出图形,数形结合,利用弧长公式表示出l ,d ,找到两者之间的关系即可得到答案,熟记弧长公式是解决问题的关键.【详解】解:根据题意,作出图形,如图所示:3601524BOC,15π2π36012l OC OC ; 15π2π36012x OC d OC d , πππ121212x OC d l d ,故答案为:π12l d.14.如图,已知3AB AC DC DE ,180A D ,ABC 与CDE 的面积和为10,则BE 的长为.【答案】【分析】本题考查三角形的面积,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.如图,过点A 作AH BC 于点H ,过点D 作DK CE 于点K .证明 AAS AHC AKD ≌,推出,AH CK CH DK ,设AH CK x ,CH DK y ,构建方程组求出x y ,可得结论.【详解】解:如图,过点A 作AH BC 于点H ,过点D 作DK CE 于点K .3AB AC DC DE ∵,,AH BC DK CE ,1122BH CH BC CK KE CE ,,12BAH CAH BAC ,12CDK EDK CDE ,180BAC CDE ∵,90CAH CDK ,90CAH ACH ∵,ACH CDK ,又,90AC CD AHC CKD ∵,AAS AHC CKD ≌,,AH CK CH DK ,设,AH CK x CH DK y ,22BC y,CE xABC ∵ 与CDE 的面积和为10,即1111·····2··2·102222BC AH CE DK y x x y ,5xy ,在Rt CDK △中,222CK DK CD ,即229x y ,则有2259xy x y ,x y ,22BE BC CE CH CK x y .故答案为:15.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点M ,则cos BMD 的值为.【分析】本题考查了求余弦,连接,CE DE ,根据勾股定理和勾股定理逆定理,推出45DCE ,再证明四边形ACEB 是平行四边形,则45BMD DCE ,即可求解.【详解】解:连接,CE DE ,∵CD DE CE ,∴222CD DE CD DE CE ,,∴90CDE ,∴45DCE ,∵1,AC BE AC BE ∥,∴四边形ACEB 是平行四边形,∴AB CE ∥,∴45BMD DCE ,∴cos cos 452BMD,故答案为:22.16.如图,已知二次函数223y x x 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,P 点为该图象在第一象限内的一点,过点P 作直线BC 的平行线,交x 轴于点M .若点P 从点C 出发,沿着抛物线运动到点B ,则点M 经过的路程为.【答案】92【分析】根据题意,可以先求出点、、A B C 的坐标,从而可以得到直线BC 的解析式,再根据PM BC ∥,点P 在抛物线上,可以写出点P 的坐标和对应的直线PM 的解析式,再根据题意,可以得到点M 横坐标的最大值,从而可以得到点M 经过的路程.【详解】解:∵二次函数 22331y x x x x ,∴当0y 时1213x x ,,,当0x 时,3y ,∴点A 的坐标为 10 ,,点B 的坐标为 3,0,点C 的坐标为 0,3,设直线BC 的函数解析式为y kx b ,31303b k k b b ,解得,即直线BC 的函数解析式为3y x ,∵PM BC ∥,点P 在抛物线上且在第一象限,∴设点P 的坐标为223m m m (,),设直线PM 的解析式为y x c ,223m m m c ,解得233c m m ,∴直线PM 的解析式为233y x m m ,令223323x m m x x 且Δ0 ,解得32m ,此时直线PM 的解析式为214y x,当0y 时214x ,∴点M 横坐标最大值是214,∴点M 经过的路程为:2193242 ,故答案为:92.三、解答题(本大题共11个小题,共82分.解答应写出文字说明,证明过程或演算步骤)(4分)17.计算:036(20231)|2| .【详解】原式18123212421(4分)18.解方程:31122x x .【详解】解:31122x x,去分母,化为整式方程得: 321x ,即321x ,解得6x ,经检验,6x 是原分式方程的解.(8分)19.解方程组和不等式组,并把不等式组的解集在数轴上表示出来:(1)321022x y x y (2)解不等式组 2142115x x x【详解】(1)解:321022x y x y①②,2 ②得:424x y ③,①+③得:714x ,解得:2x ,把2x 代入②得:42y ,解得:=2y ,∴原方程组的解为:22x y ;(2)解: 2142115x x x①②解不等式①,得,3x 解不等式②,得2x把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为23x .(8分)20.某校为了解本校七年级学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图,根据图中信息,解答下列问题:(1)此次调查中样本容量为_______;在扇形统计图中,“非常重视”所占的圆心角的度数为_______;(2)补全条形统计图;(3)该校七年级共有学生400人,请估计该校七年级学生对视力保护“比较重视”的学生人数.【详解】(1)解:由题知,1620%80 (人),48036018,故答案为:80,18 .(2)解:804361624 (人),(3)解:3640018080(人),答:七年级学生对视力保护“比较重视”的学生人数约为180人.(8分)21.北京时间2023年12月27日14时50分,我国在酒泉卫星发射中心使用快舟一号甲运载火箭,成功将天目一号气象星座19-22星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功.小明和小亮对航天知识都非常感兴趣,他们在中国载人航天网站上了解到,航天知识分为“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”等模块.他们决定从“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”四个模块中各自随机选择一个进行学习,设这四个模块依次为A 、B 、C 、D .(1)小明选择学习“梦圆天路”模块的概率为_____;(2)请用画树状图或列表的方法,求小明和小亮选择不同模块的概率.【详解】(1)解:小明选择学习“梦圆天路”模块的概率为14P ,故答案为:14;(2)树状图如下:共有16种等可能的结果,其中小明和小亮选择不同模块的结果有12种,小明和小亮选择不同模块的概率123164.(8分)22.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD的对角线BD 上.(1)求证:BG DE ;(2)若E 为AD 中点,=2AB ,求FH 的长.【详解】(1)∵四边形EFGH 是矩形,EH FG ,EH FG ∥,GFH EHF .180BFG GFH ∵,180DHE EHF ,BFG DHE .∵四边形ABCD 是菱形,AD BC ∥,GBF EDH ,(AAS)BGF DEH △△,BG DE ;(2)连接EG ,∵四边形ABCD 是菱形,AD BC ,AD BC ∥.E ∵为AD 中点,AE ED .BG DE ∵,AE BG ,AE BG ∥,四边形ABGE 是平行四边形,AB EG .∵四边形EFGH 是矩形,EG FH ,2AB ,2FH .(8分)23.如图,反比例函数2y x的图象与一次函数y kx b 的图象交于点A 、B ,点A 、B 的横坐标分别为1,2 ,一次函数图象与y 轴的交于点C ,与x 轴交于点D .(1)求一次函数的解析式;(2)对于反比例函数2y x,当1y 时,写出x 的取值范围;(3)点P 是第三象限内反比例图象上的一点,若点P 满足S △BDP =12S △ODA ,请求出点P 的坐标.【详解】(1)解:∵反比例函数2y x的图象与一次函数y kx b 的图象交于点A 、B ,点A 、B 的横坐标分别为1,﹣2;∴A 1,2,B 2,1 ;把A 、B 的坐标代入y kx b 得221k b k b;解得11k b;∴一次函数的解析式为1y x .(2)∵ 2,1B ;由图象可知,当20x 时,1y .(3)∵一次函数为1y x ;∴D 1,0 ;∵A 1,2,∴1212ODA S V ;∴1122BDP ODA S S V V ,设点P 的坐标为:2,x x,0x ;∴ON x ,2PN x;当P 在直线下方时,如图1,则;121211=1212112222BDP BDM PDNBMNP S S S S x x x x 梯形;解得x ∴点P .当P 在直线AB 的上方时,如图2,则;1211112211122222BDF BDM PDNBMNP S S S S x x x x 梯形;解得1x ;∴点P 1 ;综上可得:点P的坐标为:或 1.(8分)24.如图,AB 是O 的直径,点C 在O 上,点M 在O 外,连接MC ,若MCA B;(1)求证:CM 是O 的切线;(2)已知,点D 是OA 的中点,过点D 作DE AB ,交CM 于点E ,若O 的半径为10,3tan 4A,求CE 的长.【详解】()证明:连接OC ,∵AB 是O 的直径,∴90BCA ,∴90BAC ABC ,∵OC OA ,∴OCA OAC ,∵MCA B ,∴90OCA MCA ,即90OCM ,∵OC 是半径,∴CM 是O 的切线;(2)解:设AC 与DE 相交于点F ,过点E 作EG AC 于点G ,如图所示:∵DE AB ,10OA ,点D 是OA 的中点,∴90,5,20ADE OD DA AB ,∴90A DFA A B GFE GEF ,∵,GFE AFD MCA B ,∴,GEF A GFE MCA B ,∴CE EF ,由3tan 4A 可设3,4BC x AC x ,根据勾股定理可知5AB x ,∴520x ,即4x ,∴12,16BC AC ,∴3sin sin 5AC A GEF AB ,∴15tan 4DF AD A,∴25sin 4DF AF A ,∴394CF AC AF,∵,CE EF EG AC ,∴13928CG GF CF,∴65sin 8GF EF CE GEF .(8分)25.杭州亚运会于2023年9月23日至10月8日举行,作为今年我国举办的最为盛大的赛事,是向世界展示中国形象、传播中国文化的重要窗口.宁夏枸杞作为几千年来备受推崇、药食同源的滋补上品,小小的红果凝聚和传承着宁夏这片土地上,珍贵的历史记忆和宝贵的精神财富,已然成为宁夏独特的地域符号、主导产业和文化象征,不但为宁夏社会经济发展作出了积极贡献,也为助力“健康中国”跑出了“加速度”.在宁夏一特产专卖店销售某种枸杞,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种枸杞要想平均每天获利2240元,请回答:(1)为尽可能让利于顾客,赢得市场,每千克枸杞应降价多少元?(2)根据市场需求,该店将售价定为多少出售,每天可获取最大利润,最大利润是多少?【详解】(1)解:设每千克枸杞应降价x 元,根据题意,得 60401002022402x x,化简,得210240x x ,解得1246x x ,.∵为尽可能让利于顾客,赢得市场,6x ,答:每千克枸杞应降价6元;(2)设每千克枸杞应降价x 元,每天获得利润为y 元,根据题意得:2260401002010100200010522502()()()x y x x x x ,100∵ ,当5x 时,y 有最大值,最大值为2250,此时售价为60555( 元),该店将售价定为55元出售,每天可获取最大利润,最大利润是2250元.(8分)26.已知抛物线212y x bx c与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x 经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF 时,求PDF 的正切值;②如果:3:5PD DE ,求点P 的坐标.【详解】(1)解:∵直线6y x 经过点A 与点C则当06x y ,;06y x ,∴ 6060A C ,,,∴60186c b c ,,解得62c b 21262y x x ;(2)解:①如图:∵ 6060A C ,,,,且C F 、两点关于抛物线21262y x x 的对称轴对称,∴6F c y y ,221222b x a 则4F x ∵DF CF∴DF y ∥轴则FDC OCA∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB,则PDF OCB∵21262y x xx 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x ∴6x ,2x ∴ 20B ,∵PDF OCB则PDF 的正切值等于21tan 63OB OCB OC ;②设21262P p p p,,BC 的解析式为y mx n ∴把 0620C B ,,,代入y mx n 得602n m n解得63n m ∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E ∴设PE 的解析式为3y x b把21262P p p p,代入3y x b 得2162p p b ∴21623y x p p 令0x ,2162p p y即21062E p p,当261362y x y x p p 解得21184x p p 则把21184x p p 代入21623y x p p 得211684y p p ∴22111168484D p p p p,∵过点P 作PM y 轴,过点D 作DN y轴,∴EDN EPM∽∴EN DE EM EP∵:3:5PD DE ∴58EN EM ∶∶∵21062E p p ,,22111168484D p p p p ,,21262P p p p ,∴222111336628484EN p p p p p p,2211626322EM p p p p p ∴23358348p p p ∶∶解得1103p p ,∵点P 在线段AC 下方的抛物线上,∴10p (舍去)∴3p .把3p 代入21262y p p∴19241592362222y ∴点P 的坐标1532,(10分)27.【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,在ABC 中,60BAC ,D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的右侧,连接AE ,你能得到哪些结论呢?①小明说:“在点D 的运动过程中,只要保证BE 在边AB 的右侧,BAE 的度数是固定的,我能求出BAE 的度数”;小强说:“在点D 的运动过程中,只要保证BE 在边AB 的右侧,我能得到从点A 发出的三条线段,,AB AE AD 的数量关系”.②小涛说:“我利用60BAC ,如图2,在AD 上截取AF AB ,连接BF ,再利用旋转的性质,就可以得到小明和小强的结论”.请你根据小涛的思路,求BAE 的度数,并探究线段,,AB AE AD 的数量关系.【类比分析】(2)李老师发现同学们都利用了转化的思想,转化角,转化线段,为了帮助同学们更好地感悟转化思想,李老师将图1进行变换,并提出下面问题,请你解答.如图3,在ABC 中,60,BAC D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的左侧,连接AE ,过B 作BG AD 于点G ,求证:2AD AE AG .【学以致用】(3)如图4,在ABC 中,60,BAC D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的右侧,连接,AE DE ,过B 作BM AD 于M ,线段DE 的中点为N ,连接MN ,若4,AB MN ABDE 的面积.【详解】解:(1)在AD 上截取AF AB ,连接BF .如图1,60,BAC AB AF ∵.ABF 是等边三角形,,60AB BF ABF AFB .∵线段BD 绕点B 逆时针旋转60 得到线段BE ,60,B BD E BD E ,ABF EBD ,ABE EBF FBD EBF ,即ABE FBD .在ABE 和FBD 中,AB BF ABE FBD BE BD,(SAS)ABE FBD △≌△.,BAE BFD AE FD ,60AFB∵120BFD .120BAE .=AD AF FD ∵,AD AB AE .(2)证明:在AC 上截取AH AB ,连接BH .如图2,60,BAC AB AH ∵.ABH 是等边三角形,,60AB BH ABH .∵线段BD 绕点B 逆时针旋转60 得到线段BE ,,60BD BE DBE .ABE ABD ABD HBD ,即ABE HBD在ABE 和HBD △中,,,,AB HB ABE HBD BE BDSAS ABE HBD △≌△,AE HD .又ABH ∵△为等边三角形BG AH ,2AH AG .AH AD DH AD AE ∵,2AG AD AE .(3)解:连接BN ,如图3.∵线段BD 绕点B 逆时针旋转60 得到线段BE .,60BD BE DBE ,BDE 是等边三角形.60BEN ,N Q 为DE 中点,1,302BN DE EBN EBD .在Rt BNE 中,sin sin602BN BEN BE ,60BAC ∵,BM AC 于M .sin sin 60BM BAM AB,BN BM BE AB.又906030ABM ∵,ABM EBNABE EBM EBM MBN ,即ABE MBN ,ABE MBN △∽△,MN BM AE AB MN ∵2AE .在AD 上截取AH AB ,由(1)得ABH 是等边三角形,ABE HBD △≌△.4,2,120AH AB AE DH BAE BHD ,6AD AH DH .过E 作EQ AD 于Q ,120,60BAE BAC∵60EAQ .sin 602EQ AE2BM AB ∵,4AB ,BM四边形ABDE 的面积1111662222ADE ADB S S AD EQ AD BM △△。
2022年上海市中考数学第一次模拟试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分数中,最简分数是( )A .69B .24C .46D .292、下列说法中,正确的是( ) A .整数包括正整数和负整数 B .自然数都是正整数C .一个数能同时被2、3整除,也一定能被6整除D .若0.3m n ÷=,则n 一定能整除m3、下列四条线段为成比例线段的是 ( )A .a =10,b =5,c =4,d =7B .a =1,bc,dC .a =8,b =5,c =4,d =3D .a =9,bc =3,d4、关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( ) A .1a ≥ B .1a ≤- C .1a ≥- D .0a ≥ ·线○封○密○外5、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A.B.C.D.6、下列说法中正确的是()A.符号相反的两个数互为相反数B.0是最小的有理数C.规定了原点、方向和单位长度的射线叫做数轴D.0既不是正数,也不是负数〈〉=,不超过7的素数有2、3、5、7共4 7、x是正整数,x〈〉表示不超过x的素数的个数.如:74〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉的值是()个,那么2395134188A.9 B.10 C.11 D.128、下列命题正确的有几个()①如果整数a能被整数b(不为0)除尽,那么就说a能被b整除;②任何素数加上1都成为偶数;③一个合数一定可以写成几个素数相乘的形式;④连续的两个正整数,它们的公因数是1.A.0 B.1 C.2 D.39、下列哪个数不能和2,3,4组成比例()A .1B .1.5C .223D .6 10、下面分数中可以化为有限小数的是( ) A .764 B .730 C .7172 D .1272 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、若3423x =,则x =______. 2、一个扇形面积等于这个扇形所在圆面积的25,则这个扇形的圆心角是______. 3、若23a b =,则a a b =+________. 4、13小时=________分钟. 5、求比值:125克:0.5千克=_______________ 三、解答题(5小题,每小题10分,共计50分) 1、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值 2、计算:1743.51 1.252 3.84105⨯+⨯-÷. 3、一条公路长1500米,已修好900米,还需修全长的几分之几? 4、将6本相同厚度的书叠起来,它们的高度为14厘米,再将15本这样相同厚度的书叠在上面,那么这叠书的总高度是多少厘米? 5、求19962的末三位是多少.-参考答案- 一、单选题·线○封○密○外1、D【分析】根据最简分数是分子,分母只有公因数1的分数即可得出答案.【详解】∵622142=== 934263,,,∴29是最简分数,故选:D.【点睛】本题主要考查最简分数,掌握最简分数的定义是解题的关键.2、C【分析】根据整数的分类,自然数的定义,倍数与约数,可得答案.【详解】解:A、整数包括正整数、零和负整数,故A错误;B、自然数都是非负整数,故B错误;C、一个数能同时被2、3整除,也一定能被6整除,故C正确;D、m÷n=整数,则n一定能整除m,故D错误;故选:C.【点睛】本题考查了有理数,整数包括正整数、零和负整数,注意自然数都是非负整数.3、B【详解】A .从小到大排列,由于5×7≠4×10,所以不成比例,不符合题意; B1=,所以成比例,符合题意; C .从小到大排列,由于4×5≠3×8,所以不成比例,不符合题意; D故选B . 【点睛】 本题考查线段成比例的知识.解决本类问题只要计算最大最小数的积以及中间两个数的积,判断是否相等即可,相等即成比例,不相等不成比例. 4、C 【分析】 先求出方程的解,然后根据题意得到含参数的不等式求解即可. 【详解】 解:由5264x a a x -=+-,方程的解为1x a =+, ∴10a +≥,即1a ≥-. 故选C . 【点睛】 本题主要考查一元一次方程的解及一元一次不等式的解,熟练掌握运算方法是解题的关键. 5、D 【分析】 观察两图象,分别确定,a c 的取值范围,即可求解. 【详解】·线○封○密○外解:A 、抛物线图象,开口向下,即0a < ,而一次函数图象自左向右呈上升趋势,则0a > ,相矛盾,故本选项错误,不符合题意;B 、抛物线图象与y 轴交于负半轴,即0c < ,而一次函数图象与y 轴交于正半轴,0c > ,相矛盾,故本选项错误,不符合题意;C 、抛物线图象,开口向上,即0a > ,而一次函数图象自左向右呈下降趋势,即0a < ,相矛盾,故本选项错误,不符合题意;D 、抛物线图象,开口向下,即0a < ,一次函数图象自左向右呈下降趋势,即0a < ,两图象与y 轴交于同一点,即c 相同,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了二次函数、一次函数的图象和性质,熟练掌握二次函数20y ax bx c a ++≠=() a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点位置是解题的关键.6、D【分析】根据有理数的相关概念直接进行排除选项即可.【详解】A 、符号相反的两个数不一定是相反数,如4和-3,故错误;B 、0不是最小的有理数,还有负数比它小,故错误;C 、规定了原点、正方向和单位长度的直线叫做数轴,故错误;D 、0既不是正数也不是负数,故正确.故选D .【点睛】本题主要考查相反数、数轴及零的意义,熟练掌握各个知识点是解题的关键.7、C【分析】根据题意所给定义新运算及素数与合数的概念直接进行求解.【详解】解:23〈〉表示不超过23的素数有2、3、5、7、11、13、17、19、23共九个,则23=9〈〉;95〈〉表示不超过95的素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89共24个,则有95=24〈〉, 由1=0〈〉可得134188=0〈〉⨯〈〉⨯〈〉; 2395134188=33=11∴〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉〈〉; 故选C . 【点睛】 本题主要考查素数与合数,熟练掌握素数与合数的概念是解题的关键. 8、C 【分析】 ①除尽是指被除数除以除数(除数≠0),除到最后没有余数,就说一个数能被另一个数除尽;而整除是指一个整数除以一个非0整数,得到的商是整数还没有余数,就说一个数能被另一个数整除; ②根据质数的定义,2为最小的质数,但是2+1=3,3为质数; ③根据合数的定义:一个数除了1和它本身以外还有别的因数,这样的数叫做合数,分解质因数就是把一个合数写成几个质数的连乘积形式,所以任何一个合数都可以写成几个质数相乘的形式; ④相邻的两个正整数是互质数,互质数的公因数是1,由此即可解答. 【详解】 ①根据“整除”和“除尽”概念的不同,可知能被b 除尽的数不一定能被b 整除. 如:15÷2=7.5,15能被2除尽,但不能被2整除,故①错误; ②由于2为最小的质数,2+1=3,3为奇数,所以任何质数加1都成为偶数的说法是错误的,故②错误;·线○封○密○外③任何一个合数都可以写成几个质数相乘的形式,故③正确;④根据相邻的两个自然数是互质数,互质数的公因数是1,故④正确;综上,正确的是③和④,共2个.故选:C.【点睛】本题考查了数的整除,合数的定义以及分解质因数的意义,因数、公因数的概念,解题的关键是理解“整除”和“除尽”的意义以及两个数互质,最大公因数是1,最小公倍数是它们的积.9、A【分析】根据比例的基本性质,两内项之积等于两外项之积逐一分析即可.【详解】解:根据比例的基本性质,两内项之积等于两外项之积,则:A.1423⨯≠⨯,不可以组成比例;B.1.5423⨯=⨯,可以组成比例;C.223243⨯=⨯,可以组成比例;D.2634⨯=⨯,可以组成比例;故选:A.【点睛】本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键.10、A【分析】根据题意可直接进行分数化简小数,然后排除选项即可.【详解】A 、7=0.10937564,故符合题意;B 、7=0.2330,故不符合题意; C 、71=1.097272,故不符合题意; D 、72=2.58312,故不符合题意; 故选A .【点睛】 本题主要考查分数化小数,熟练掌握分数化小数是解题的关键. 二、填空题 1、89 【分析】 根据等式的基本性质解方程即可. 【详解】 解:3423x = 34232233x ⨯=⨯ 89x = 故答案为:89. 【点睛】 此题考查的是解方程,掌握等式的基本性质是解题关键. ·线○封○密○外2、144°【分析】由题意可知:扇形面积占圆面积的25,则其圆心角也占圆的度数的25,而整圆是360°,所以就能求出圆心角是多少度.【详解】解:360°×25=144°故答案为:144°.【点睛】此题主要考查圆的面积的计算方法以及在同圆或等圆中,扇形面积与圆面积的比等于扇形圆心角与圆周角度数的比.3、2 5【分析】根据23ab=,得到23a b=,代入式子计算即可.【详解】解:∵23ab=,∴23a b =,∴2233232553aa b b bb bb+===+,故答案为:25.【点睛】此题考查分式的求值以及比例式恒等变形能力,掌握等式的性质变形得到23a b =是解题的关键. 4、20 【分析】 根据1小时等于60分钟换算即可.【详解】 13小时=160=203⨯分钟, 故答案为:20. 【点睛】 本题主要考查单位的换算,掌握小时和分钟之间的换算是解题的关键. 5、14 【分析】 先统一单位,再用比的前项除以比的后项,据此解答. 【详解】 解:125克:0.5千克 =125克:500克 =125÷500 =14 故答案为:14. 【点睛】 本题主要考查了求比值方法的掌握情况,注意要先统一单位. ·线○封○密○外三、解答题1、152【分析】根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x .【详解】解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=, 即33(5)2()2a a x +=⋅+ 31532a a x +=+ 解得152x =. 【点睛】本题考查比的性质.化简过程中注意内项之积等于外项之积.2、3【分析】把分数统一成小数,除法运算转化成乘法运算,再利用乘法分配律计算.【详解】1743.51 1.252 3.84105⨯+⨯-÷ 3.5 1.25 1.25 2.7 3.8 1.25=⨯+⨯-⨯1.25(3.52.73.8)=⨯+-1.252.4=⨯3=. 【点睛】 本题考查了有理数的加减乘除混合运算,运用乘法分配律能使计算简便. 3、25 【分析】 先求出剩下的米数,再用剩下的米数除以公路的总长度即可. 【详解】 解:(1500-900)÷1500, =600÷1500, =25, 答:还需修全长的25. 【点睛】 本题属于求一个数是另一个数几分之几,只要找准对应量,用除法计算即可.4、49厘米【分析】先算出每本书的厚度,再乘以书的总本数即可得到解答.【详解】 解:由题意得:()14615496⨯+=,∴这叠书的总高度是49厘米, 答:这叠书的总高度是49厘米. 【点睛】 ·线○封○密·○外本题考查乘除法的综合应用,根据不同的问题情境采用不同的列式计算方法是解题关键.5、336.【分析】末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336,依此即可求解.【详解】解:末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336.故答案为:336.【点睛】本题主要考查了数字类规律探索,解题的关键是从简单的乘方运算开始,通过运算找出规律解决问题.。
2024年中考第一次模拟考试(贵州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个数:0,﹣0.5,﹣2,3中,最小的数是()A.0B.﹣2C.﹣0.5D.3解:∵﹣2<﹣0.5<0<3,∴最小的数是﹣2.故选:B.2.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.解:该几何体的俯视图是:.故选:C.3.中国信息通信研究院测算:2020~2025年,中国5G商用带动的消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108解:10.6万亿=10600000000000=1.06×1013.故选:B.4.如图:AD∥BC,BD平分∠ABC,若∠ADB=35°,则∠A的度数为()A.35°B.70°C.110°D.120°解:∵BD平分∠ABC,∴∠ABC=2∠CBD,∵AD∥BC,∴∠CBD=∠ADB=35°,∠A+∠ABC=180°,∴∠ABC=2×35°=70°,∴∠A=180°﹣70°=110°.故选:C.5.无论a取何值,下列分式中,总有意义的是()A.B.C.D.解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.6.已知一组数据26,36,36,2■,41,42,其中一个两位数的个位数字被墨水涂污,则关于这组数据下列统计量的计算结果与被涂污数字无关的是()A.平均数B.方差C.中位数D.众数解:这组数据的平均数、方差和众数都与被涂污数字有关,而这组数据的中位数为36与36的平均数,与被涂污数字无关.故选:C.7.如图,在△ABC中,DE是AB的垂直平分线,交AB于点D,交BC于点E,连接AE,已知BD=2cm,△ACE的周长为8cm,则△ABC的周长是()A.8cm B.10cm C.12cm D.14cm解:∵DE是AB的垂直平分线,∴AE=BE,AD=BD,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=8cm,∴△ABC周长=AC+BC+AB=AC+BC+2BD=8+4=12(cm).故选:C.8.一个暗箱中放有a个除颜色外其他完全相同的球,这a个球中只有2个红球,每次将球搅拌均匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到红球的频率稳定在20%,那么可以估算a的值是()A.15B.10C.4D.3解:根据题意得:2÷20%=10(个),答:可以估算a的值是10;故选:B.9.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,则可列方程为()A.=﹣9B.+2=C.﹣2=D.=+9解:依题意,得:+2=.故选:B.10.如图,是抛物线y=ax2+bx+c的部分图象,其过点A(x1,0)(﹣2<x1<﹣1),B(0,﹣3),且b=﹣2a,则下列说法错误的是()A.c=﹣3B.该抛物线必过点(2,﹣3)C.当x>2时,y随x增大而增大D.当x>3时,y>0解:∵b=﹣2a,∴抛物线的对称轴为直线x=﹣=1,∵抛物线经过(0,﹣3),∴c=﹣3且抛物线经过(2,﹣3),∴选项A正确,选项B正确.∵抛物线开口向上,对称轴为直线x=1,∴x>1时,y随x的增大而增大,∴选项C正确.∵x=﹣1时,y<0,∴x=3时,y<0,选项D错误.故选:D.11.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是()A.B.C.D.解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∠ABO=60°,∴OB=AB=2,∴OA=OB=∴A(,0),B(0,2),∴D点坐标为(,1).故选:B.12.小华家距离县城15km,星期天8:00,小华骑自行车从家出发,到县城购买学习用品,小华与县城的距离y(km)与骑车时间x(h)之间的关系如图所示.以下结论正确的有()①小华骑车到县城的速度是15km/h;②小华骑车从县城回家的速度是13km/h;③小华在县城购买学习用品用了1h;④B点表示经过h,小华与县城的距离为15km(即小华回到家中).A.①②B.①②③C.②③④D.①②③④解:①15÷1=15km/h,故①是正确的;②15÷(﹣2)=13km/h,故②是正确的;③2﹣1=1(小时),故③是正确的;④B点表示经过h,小华与县城的距离为15km(即小华回到家中),故④是正确的;故选:D.第Ⅱ卷二、填空题(本大题共4个小题,每小题4分,共16分)13.分解因式:m2﹣36=(m﹣6)(m+6).解:m2﹣36=(m﹣6)(m+6),故答案为:(m﹣6)(m+6).14.太原北齐壁画博物馆是中国首座建设于壁画墓葬原址上的专题博物馆,集纳了山西各地出土的北齐壁画精品.该馆于2023年12月20日开馆,让民众得以“一眼看千年”.如图是博物馆平面图局部,若将其放入适当的平面直角坐标系中,入口A,B两点的坐标分别为(﹣2,0)和(2,0),则入口C(正好在坐标系网格点上)的坐标为(0,﹣3).解:如图,;入口C(正好在坐标系网格点上)的坐标为(0,﹣3).故答案为:(0,﹣3).15.若关于x的方程x2﹣x+k=0有两个相等的实数根,则k=.解:∵关于x的方程x2﹣x+k=0有两个相等的实数根,∴Δ=(﹣1)2﹣4×1×k=0,解得:k=.故答案为:.16.在△ABC中,∠C=90°,点P是△ABC的内心,连接BP,AP,延长AP交BC于点D,若BD=5,CD=3,则BP的长为2.解:作PE⊥AB于点E,则∠BED=90°,∵∠C=90°,BD=5,CD=3,∴DC⊥AC,BC=BD+CD=5+3=8,∵点P是△ABC的内心,∴AD平分∠BAC,∴ED=CD=3,∴BE===4,∴==tan∠ABC=,∴AC=BC=×8=6,∴AB===10,作PF⊥AB于点F,PG⊥BC于点G,PH⊥AC于点H,连接PC,则PF=PG=PH,设PF=PG=PH=r,∵S△P AB+S△PBC+S△P AC=S△ABC,∴×10r+×8r+×6r=×6×8,解得r=2,∵∠PGC=∠PHC=∠GCH=90°,∴四边形PGCH是矩形,∵PG=PH,∴四边形PGCH是正方形,∴CG=PG=2,∵∠PGB=90°,BG=BC﹣CG=8﹣2=6,∴BP===2,故答案为:2.三、解答题(本大题共9个小题,共98分.解答应写出文字说明,证明过程或演算步骤)17.(1)计算:.解:原式=﹣1﹣(﹣2)+4÷(﹣2)=﹣1+2+(﹣2)=﹣1.(2).由不等式(a﹣1)x>2(a﹣1)得到x<2,试化简|a﹣1|+|2﹣a|.解:由不等式(a﹣1)x>2(a﹣1)得到x<2,∴a﹣1<0,即a<1,∴|a﹣1|+|2﹣a|=1﹣a+2﹣a=3﹣2a.18.针对春节期间新型冠状病毒事件,八(1)班学生参加学校举行的“珍惜生命.远离病毒“知识竞赛初赛,赛后班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).根据情况画出的扇形图如下:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006请解答下列问题:(1)该班总人数为48人;(2)频数分布表中a=2,并补全频数分布直方图中的“A”和“D”部分;(3)全校共有728名学生参加初赛,估计该校成绩“D”(90≤x<100范围内)的学生有多少人?解:(1)该班总人数为24÷50%=48(人),故答案为:48人;(2)a=48﹣16﹣24﹣6=2(人),b=48﹣24﹣16﹣2=6(人),故答案为:2,6;答:该校成绩90≤x<100范围内的学生有96人.19.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.(1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1520箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了40箱,其它装满,求甲、乙两种货车各有多少辆?解:(1)设乙种货车每辆车可装x箱生姜,则甲种货车每辆车可装(x+20)箱生姜,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=100.答:甲种货车每辆车可装100箱生姜,乙种货车每辆车可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16﹣m)辆,依题意,得:100m+80(16﹣m﹣1)+40=1520,解得:m=14,∴16﹣m=2.答:甲种货车有14辆,乙种货车有2辆.20.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE=AC.(1)求证:AD⊥BC;(2)若∠BAC=72°,则∠CAD的度数为18°.(1)证明:连接AE,,∵AB的垂直平分线EF交BC于点E,∴AE=BE,∵BE=AC,∴AE=AC,∵D为线段CE的中点,∴AD⊥BC;(2)解:∵AE=BE,∴∠B=∠BAE,∴∠AEC=∠B+∠BAE=2∠B,由(1)知,AE=AC,∴∠C=∠AEC=2∠B,∵∠BAC=72°,∠BAC+∠B+∠C=180°,∴∠B=36°,∠C=72°,∵AD⊥BC,∴∠CAD=90°﹣∠C=18°.故答案为:18°.21.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.解:(1)依题意,直线OA过(,20),则直线OA的解析式为y=80x,当x=时,y=120,即A(,120),设双曲线的解析式为y=,将点A(,120)代入得:k=180,∴y=(x≥);(2)由y=得当y=20时,x=9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.22.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)解:∵∠B=45°,AD⊥DB,∴∠DAB=45°,∴BD=AD,设DC=x,则BD=BC+DC=90+x,∴AD=90+x,∴tan58°===1.60,解得:x=150,∴AD=90+150=240(米),答:最高塔的高度AD约为240米.23.如图,在等腰三角形ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为5,BD=4,求CE的长.(1)证明:连接OD,AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC.∵AB=AC,∴BD=CD.∵OA=OB,∴OD为△BAC的中位线,∴OD∥AC.∵DE⊥AC,∴OD⊥DE.∵OD为⊙O的半径,∴EF是⊙O的切线;(2)解:∵⊙O的半径为5,∴AB=AC=10.由(1)知:BD=DC=4,∵AD⊥BC,∴∠CDE+∠ADE=90°.∵DE⊥AC,∴∠DAE+∠ADE=90°,∴∠CDE=∠DAE.∵∠C=∠C,∴△CDE∽△CAD,∴,∴,∴CE=1.6.24.阅读以下材料,完成课题研究任务:【研究课题】设计公园喷水池【素材1】某公园计划修建一个图1所示的喷水池,水池中心O处立着一个高为2m的实心石柱OA,水池周围安装一圈喷头,使得水流在各个方向上都沿形状相同的抛物线喷出,并在石柱顶点A处汇合.为使水流形状更漂亮,要求水流在距离石柱0.5m处能达到最大高度,且离池面的高度为2.25m.【素材2】距离池面1.25米的位置,围绕石柱还修了一个小水池,要求小水池不能影响水流.【任务解决】(1)小张同学设计的水池半径为2m,请你结合已学知识,判断他设计的水池是否符合要求.(2)为了不影响水流,小水池的半径不能超过多少米?解:(1)符合要求,理由如下:由题意可得,顶点为(0.5,2.25),∴设解析式为y=a(x﹣0.5)2+2.25,∵函数过点(0,2),∴代入解析式得,a(0﹣0.5)2+2.25=2,解得a=﹣1,∴解析式为:y=﹣(x﹣0.5)2+2.25,令y=0,则﹣(x﹣0.5)2+2.25=0,解得x=2或x=﹣1(舍去),∴花坛的半径至少为2m;(2)令y=1.25,则﹣(x﹣0.5)2+2.25=1.25,解得x=1.5或x=﹣0.5(舍),∴为了不影响水流,小水池的半径不能超过1.5米.25.已知△ABC.(1)如图1,若三角形的内角∠ABC与∠ACB的平分线交于点O,求证:①∠BOC=180°﹣(∠ABC+∠ACB);②∠BOC=90°+∠A;(2)如图2,若三角形的外角∠DBC与∠ECB的平分线交于点O,试分析∠BOC与∠A有怎样的数量关系,请说明理由;(3)如图3,,若三角形的内角∠ABC与外角∠ACD的平分线交于点O,则∠BOC与∠A的数量关系为∠BOC=∠A.(只写结论,不需证明)(1)①证明:∵∠ABC与∠ACB的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),又∴∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°﹣(∠ABC+∠ACB);②证明:∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°﹣∠A,由①的结论得:∠BOC=180°﹣(180°﹣∠A)=90°+∠A.(2)解:∠BOC与∠A的数量关系是:∠BOC=90°﹣∠A,理由如下:∵三角形的外角∠DBC与∠ECB的平分线交于点O,∴∠OBC=∠DBC,∠OCB=∠ECB,又∵∠DBC=180°﹣∠ABC,∠ECB=180°﹣∠ACB,∴∠OBC=(180°﹣∠ABC)=90°﹣∠ABC,∠OCB=(180°﹣∠ACB)=90°﹣∠ACB∴∠OBC+∠OCB=180°﹣(∠ABC+∠ACB),∵∠ABC+∠ACB=180°﹣∠A,∴∠OBC+∠OCB=180°﹣(180°﹣∠A)=90°+∠A,∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°﹣(∠BOC+∠OBC)=180°﹣(90°+∠A)=90°﹣∠A.(3)解:∠BOC与∠A的数量关系是:∠BOC=∠A,理由如下:设AC,OB交于点E,如图所示:∵三角形的内角∠ABC与外角∠ACD的平分线交于点O,∴∠ABO=∠ABC,∠ACO=∠ACD,∵∠ACD=180°﹣∠ACB,∴∠ACO=(180°﹣∠ACB)=90°﹣∠ACB,∵∠ACO+∠BOC+∠OEC=180°,∠A+∠ABE+∠AEB=180°,又∵∠OEC=∠AEB,∴∠ACO+∠BOC=∠A+∠ABO,∴90°﹣∠ACB+∠BOC=∠A+∠ABC,∴∠BOC=∠A﹣90°+(∠ABC+∠ACB),∴∠ABC+∠ACB=180°﹣∠A,∴∠BOC=∠A﹣90°+(180°﹣∠A)=∠A.。
最新天津市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.12.tan30°的值等于()A.B.C.D.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×1065.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.39.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>1010.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.811.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是;m= ,n= .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.tan30°的值等于()A.B.C.D.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选C.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C上下折叠能重合,是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:148000这个数用科学记数法表示为1.488×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=【分析】观察方程可得最简公分母是:x(x﹣1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以x(x﹣1)得,2x﹣2=3x,解得:x=﹣2.经检验:x=﹣2是原方程的解;故选A.【点评】此题考查了分式方程的解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名【分析】用学生总人数乘以植树量为6棵的百分比即可求解.【解答】解:观察统计图发现植树量为6棵的占30%,故植树量达6棵的人数有260×30%=78人,故选C.【点评】本题考查了用样本估计总体及扇形统计图的知识,解题的关键是从扇形统计题中整理出植树量达6棵所占的百分比,难度不大.8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.3【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题考查了正六边形和圆,掌握外接圆的半径等于正六边形的边长是解此题的关键.9.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>10【分析】将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(﹣2,﹣5),∴﹣5=,解得:k=10,∴反比例函数解析式为y=.当x>0时,反比例函数单调递减,当x=1时,y==10;当x=2时,y==5.∴当1<x<2时,5<y<10.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x 的值即可得出结论.10.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选A.【点评】此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于﹣a6.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a2)3=﹣a6.故答案为:﹣a6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,∴从中任意摸出一个球,是白球的概率是:.故答案为.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴,解得m=2.故答案为:2.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系及其增减性是解答此题的关键.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线x=1 .【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,可以得到它的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,∴抛物线的对称轴为直线x=,故答案为:x=1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的性质,知道二次函数的图象具有对称性.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于3+5 .(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)【分析】(1)根据勾股定理分别求出AB、AC即可解决问题.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,由△AEH∽△ABC,得=,列出方程即可解决.【解答】解:(1)∵AB==,AC==2,BC=5,∴AB+AC+BC=3+5,∴△ABC的周长为3+5.故答案为3+5.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,∵矩形EFGH的周长为8,∴EH=4﹣x,∵EH∥BC,∴△AEH∽△ABC,∴=,∴,∴x=,∴EF=,∵EF∥AM,∴===,∴BE=AB,∴当BE=AB时,矩形EFGH的周长等于线段BP长度的2倍.【点评】本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得x≥﹣1 .(2)解不等式②,得x≤1 .(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为﹣1≤x≤1 .【分析】先根据不等式基本性质求出两个不等式的解集,再将不等式解集表示在数轴上,根据解集在数轴上的表示求其公共解.【解答】解:(1)解不等式①,得:x≥﹣1,(2)解不等式②,得:x≤1,(3)把不等式①和②的解集表示在数轴上,如图:(4)∴原不等式组的解集为:﹣1≤x≤1;故答案为:(1)x≥﹣1;(2)x≤1;(4)﹣1≤x≤1.【点评】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是240 ;m= 24 ,n= 15 .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.【分析】(1)用“舞蹈”类人数除以其占总人数百分比可得总人数,将“武术”类人数占总人数百分比×总人数可得m的值,将“花样滑冰”类人数除以总人数可得其所占百分比;(2)用乒乓球类人数占样本总数的百分比乘以2600可得.【解答】解:(1)被调查的学生总人数是60÷25%=240(人),“武术”类人数m=240×10%=24(人),“花样滑冰”类人数占总人数百分比n=×100=15;(2)×2600=130(人),答:估计全校最喜爱乒乓球的人数约为130人.故答案为:(1)240,24,15.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BC﹣BD=31.45,进而可求出答案.【解答】解:设AB=x米,在Rt△ACB和Rt△ADB中,∵∠C=45°,∠ADB=60°,CD=31.45m,∴CB=x,BD=x,∵CD=BC﹣BD=x﹣x=31.45,解得:x≈74.4.答:塔高AB约为74.4米.【点评】本题考查了解直角三角形的应用﹣仰角俯角;能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形是解决问题的关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.【分析】(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;【解答】解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+57600;当x=15时,W有最大值,W最大=6300+57600=63900;②当15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080;∴x=18时有最大值为:64080元.综上x=18时,有最大利润64080.【点评】本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【分析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握旋转变化与平移变化的性质是解题的关键.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.【点评】本题考查的是二次函数综合题,涉及到二次函数与一次函数的交点问题、二次函数图象上点的坐标特点、平行四边形的判定与性质等知识,难度较大.2016年6月17日。
2023年中考数学第一次模拟考试卷(江苏无锡卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一个选项是符合题目要求的)1.|-2022|的倒数是()A.2022B.12022C.-2022D.-12022品,其文字上方的图案是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义解答即可.【详解】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形,故选:B.【点睛】本题考查中心对称图形的识别,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.在简便运算时,把47249948⎛⎫⨯-⎪⎝⎭变形成最合适的形式是()A.12410048⎛⎫⨯-+⎪⎝⎭B.12410048⎛⎫⨯--⎪⎝⎭C.47249948⎛⎫⨯--⎪⎝⎭D.47249948⎛⎫⨯-+⎪⎝⎭近5个月内每人阅读课外书的数量,数据如下表所示:人数3485课外书数量(本)12131518则阅读课外书数量的中位数和众数分别是()A.13,15B.14,15C.13,18D.15,15【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.5.若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,0【答案】B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.6.一副三角板按如图所示的位置摆放,若BC DE ∥,则∠1的度数是()A .65°B .70°C .75°D .80°【答案】C【分析】由平行线的性质可得∠2=∠B =45°,再由三角形的外角性质可得∠1=∠2+∠D 即可求解.【详解】如图所示:∵BC ∥DE ,∴∠2=∠B =45°,∴∠1=∠2+∠D =45°+30°=75°,故C 正确.【点睛】本题主要考查了平行线的性质,三角形的外角性质,解答的关键是结合图形分析清楚角与角之间的关系.7.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【答案】D【分析】根据平行四边形的判定判断A选项,根据菱形的判定判断B选项,根据矩形的判定判断C选项,根据正方形的判定判断D选项,真命题选择选项说法正确的即可.【详解】解:A选项,一组对边平行且相等的四边形是平行四边形,故A选项错误,不符合题意;B选项,对角线互相垂直的平行四边形是菱形,故B选项错误,不符合题意;C选项,对角线相等的平行四边形是矩形,故C选项错误,不符合题意;D选项,一组邻边相等的矩形是正方形,故D选项正确,符合题意故选D.【点睛】本题考查了真命题、平行四边形的判定、菱形的判定、矩形的判定、正方形的判定的知识点,熟练掌握这些判定是解答本题的关键.9.函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A .B .C .D .【答案】D【分析】先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.【详解】解:函数y =ax 与y =ax 2+a (a ≠0)A.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向下正确,当顶点坐标为(0,a ),应交于y 轴负半轴,而不是交y 轴正半轴,故选项A 不正确;B.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向下正确,当顶点坐标为(0,a ),应交于y 轴负半轴,而不是在坐标原点上,故选项B 不正确;C.函数y =ax 图形可得a >0,则y =ax 2+a (a ≠0)开口方向向上正确,当顶点坐标为(0,a ),应交于y 轴正半轴,故选项C 不正确;D.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向上正确,当顶点坐标为(0,a ),应交于y 轴正半轴正确,故选项D 正确;故选D .【点睛】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.10.如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是()A 33B .22C .13D .3【答案】C【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解.【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°,又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形,∴OA =OB ,设OC =x ,则OB =2OC =2x ,则OB =OA =3x ,∴tan 133OC x OAP OA x ∠===.【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P 点坐标推出特殊角是解题的关键.第Ⅱ卷二、填空题(本大题共8小题,每小题3分,共24分)11.分解因式:am an bm bn +--=_________________【答案】()()m n a b +-【分析】利用分组分解法和提取公因式法进行分解因式即可得.【详解】解:原式()()am an bm bn =+-+()()a m n b m n +-+=()()m n a b +=-,故答案为:()()m n a b +-.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.12.命题:“两直线平行,同位角相等”的逆命题是:___________________________.【答案】同位角相等,两直线平行【分析】将原命题的条件与结论互换即可得到逆命题.【详解】解:∵原命题的条件为:两直线平行,结论是:同位角相等,∴逆命题为:同位角相等,两直线平行,故答案为:同位角相等,两直线平行.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.13.“y的2倍与6的和比1小”用不等式表示为_____________.y+<【答案】261y+再列不等式即可.【分析】根据题干的描述“y的2倍与6的和”可表示为26,y+<【详解】解:“y的2倍与6的和比1小”用不等式表示为:261,y+<故答案为:26 1.【点睛】本题考查的是列不等式,理解题意,注意运算的顺序,再列不等式是解本题的关键.14.我国古代数学家名著《九章算术》记载“米谷粒分”问题:粮仓开仓收粮,有人送来谷米512石,验得其中夹有谷粒.从中抽取谷米一把,共数得256粒,其中夹有谷粒16粒,估计这批谷米内夹有谷粒约是______石.【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.16.如图,在矩形ABCD 中,E 是AD 边上一点,且2AE DE =,BD 与CE 相交于点F ,若DEF 的面积是3,则BCF △的面积是______.【答案】27【分析】根据矩形ABCD 的性质,很容易证明DEF ∽BCF △,相似三角形之比等于对应边比的平方,即可求出BCF △的面积.【详解】解: 四边形ABCD 是矩形,AD BC ∴=,AD BC ∥EDF CBF ∠∠∴=,EFD CFB ∠∠= ,EDF CBF∠∠=DEF ∴ ∽BCF △,2AE DE = ,AD BC =,DE ∴:1BC =:3,DEF S ∴ :2BCF S DE = :2BC ,即3:1BCF S = :9,27BCF S ∴= .故答案为:27.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,综合性比较强,学生要灵活应用.掌握相似三角形的面积比是相似比的平方是解题的关键.17.如图,长方形ABCD 中,34AB BC ==,,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转45︒到EG 的位置,连接FG 和CG ,则CG 的最小值为__.18.如图,已知正比例函数2y x =与反比例函数y x=交于A 、B 两点,点C 是第三象限反比例函数上一点,且点C 在点A 的左侧,线段BC 交y 轴的正半轴于点P ,若PAC △的面积是12,则点C 的坐标是______.【答案】()6,1--【分析】过A 作y 轴的平行线交BC 于点Q ,联立正比例函数32y x =与反比例函数6y x=求得()2,3A --,()2,3B ,得到BC 的解析式为363y x m m=-++,利用PAC △的面积即可求得点C 的坐标【详解】联立326y x y x⎧=⎪⎪⎨⎪=⎪⎩,解得:()2,3A --,()2,3B ,设6,C m m ⎛⎫⎪⎝⎭,BC L :y kx b =+,则236k b mk b m +=⎧⎪⎨+=⎪⎩,解得:3k m =-,63b m =+,BC L ∴:363y x m m=-++过A 作y 轴的平行线交BC 于点Q ,则122,3Q m ⎛⎫-+ ⎪⎝⎭,126AQ m∴=+19.(8分)解方程(1)2230x x --=(2)2620x x +-=20.(8分)解不等式组21132x x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集表示在数轴上.【答案】13x -<≤,数轴见解析【分析】先求解不等式组的解集,然后再数轴上表示即可.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.21.(10分)如图,点C、D在线段AB上,且ACDE=CF.【答案】见解析【分析】只要证明△ADE≌△BCF即可解决问题.【详解】证明:∵AC=BD,∴AC+CD=BD+CD,即:AD=BC,∵AE∥BF,∴∠A=∠B,∵AE=BF,∴△ADE≌△BCF,∴DE=CF.【点睛】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.22.(10分)如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数3456α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:98,81,98,85,98,97,91,100,88,84.八年级10名学生的竞赛成绩在C 组中的数据是93,90,94,93.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数9292中位数94b 众数c 93八年级抽取的学生的竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)填空:=a ___________,b =___________,c =___________;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到90分及以上的学生共有多少名?(1)证明:ADB AED ∆∆ ;(2)若3AE =,5AD =,求AB 的长.点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.【答案】(1)见解析(2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C∴∠=∠AED AEC∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠ ,1802EAC C ∠=︒-∠,ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒,90ABC C ∴∠+∠=︒,90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.26.(10分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)5150y x =-+(2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【分析】(1)根据给定的数据,利用待定系数法即可求出y 与x 之间的函数关系式;(2)根据每件的销售利润×每天的销售量=425,解一元二次方程即可;(3)利用销售该消毒用品每天的销售利润=每件的销售利润×每天的销售量,即可得出w 关于x 的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+≠,根据题意得:91051195k b k b +=⎧⎨+=⎩,解得:5150k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =-+;(2)解:(-5x +150)(x -8)=425,整理得:2383450x x -+=,解得:1213,25x x ==,∵8≤x ≤15,∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;(3)解:根据题意得:()()()851508w y x x x =-=-+-251901200x x =-+-()2519605x =--+∵8≤x ≤15,且x 为整数,当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是找准题目的等量关系,27.(10分)如图在△ABC 和△CDE 中,AC =BC ,CD =CE ,∠ACB =∠DCE ,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上,且∠ACB =∠DCE =45°时,可以得到图中的一对全等三角形,即______≌______;(2)当点D 不在直线BC 上时,如图2位置,且∠ACB =∠DCE =α.①试说明AD =BE ;②直接写出∠EMD 的大小(用含α的代数式表示).【答案】(1)△BCE ,△ACD(2)①见解析;②∠EMD =α.【分析】(1)由“SAS”可证△BCE ≌△ACD ;(2)①由“SAS”可证△BCE ≌△ACD ,可得AD =BE ,②由全等三角形的性质可得∠CAD =∠CBE ,由三角形的内角和定理可求解.【详解】(1)解:∵∠ACB =∠DCE =45°,∴∠ACD =∠BCE ,在△BCE 和△ACD 中,BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD(SAS ),故答案为:△BCE ,△ACD ;(2)①证明:∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE ;②解:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =∠EMD =180°-(180°-α)=α.【点睛】本题考查了全等三角形的判定和性质,证明△ACD ≌△BCE 是解题的关键.28.(10分)如图,抛物线2y ax bx c =++与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为()4,3.(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD 面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.213n n -++。
最新河北省张家口市中考数学一模试卷一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分42分)1.的相反数是()A.﹣B.C.﹣2 D.22.河北省2016年普通高考报名工作已经结束,报名人数为42.31万人.42.31万用科学记数法表示为()A.42.31×106B.4.231×105C.42.31×108D.42.31×1073.下列计算正确的是()A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b24.如图,下列水平放置的几何体中,俯视图是长方形的是()A.B.C.D.5.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20° B.50° C.70°D.110°6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45° B.50° C.60°D.75°8.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④9.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx 的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣410.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.12.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤13.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤214.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.15.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)16.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3b﹣8ab= .18.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积为.19.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE 的长为.20.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是.三、解答题(共6小题,满分66分)21.先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.22.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC 的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.25.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元的门票.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?(2)求一年中进入该公园至少多少次,购买A类年票比较合算.26.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.参考答案与试题解析一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分42分)1.的相反数是()A.﹣B.C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.2.河北省2016年普通高考报名工作已经结束,报名人数为42.31万人.42.31万用科学记数法表示为()A.42.31×106B.4.231×105C.42.31×108D.42.31×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42.31万=423100,用科学记数法表示为:4.231×105.故选:B.3.下列计算正确的是()A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b2【考点】完全平方公式;合并同类项;同底数幂的乘法;同底数幂的除法.【分析】利用合并同类项、同底数幂的乘法、同底数幂的除法以及完全平方公式的知识求解,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、3a﹣2a=a,故本选项错误;B、a4•a6=a10,故本选项错误;C、a2÷a=a,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.4.如图,下列水平放置的几何体中,俯视图是长方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆,故A选项错误;B、圆锥的俯视图是带圆心的圆,故B选项错误;C、三棱柱的俯视图是三角形,故C选项错误;D、长方体的俯视图是长方形,故D选项正确;故选:D.5.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20° B.50° C.70°D.110°【考点】平行线的性质;对顶角、邻补角.【分析】首先根据对顶角相等可得∠1=∠3,进而得到∠3=70°,然后根据两直线平行,同位角相等可得∠2=∠3=70°.【解答】解:∵∠1=70°,∴∠3=70°,∵a∥b,∴∠2=∠3=70°,故选:C.6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm【考点】三角形中位线定理.【分析】由三角形的中位线定理可知,以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.【解答】解:如图,点D、E、F分别是AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∵原三角形的周长为36cm,则新三角形的周长为=18(cm).故选C.7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45° B.50° C.60°D.75°【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.8.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④【考点】全面调查与抽样调查;方差;随机事件;概率的意义.【分析】了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.【解答】解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式,故①错误;②若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故②错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,故③正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件,故④错误.故选:C.9.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx 的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.【解答】解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣=﹣1.故选:C.10.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+25=90%x﹣20,解得x=300.故选C.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.12.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤【考点】反比例函数图象上点的坐标特征.【分析】首先根据当x1<0<x2时,有y1<y2则判断函数图象所在象限,再根据所在象限判断1﹣3m的取值范围.【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.13.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2【考点】不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故选:C.14.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.【考点】算术平方根.【分析】根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.【解答】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.15.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)【考点】坐标与图形性质;正方形的性质.【分析】此题根据坐标符号即可解答.【解答】解:由图中可知,点B在第四象限.各选项中在第四象限的只有C.故选C.16.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.【考点】一元二次方程的应用.【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),而a=1,代入即可得到关于b的方程,解方程即可求出b.【解答】解:依题意得(a+b)2=b(b+a+b),而a=1,∴b2﹣b﹣1=0,∴b=,而b不能为负,∴b=.故选B.二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3b﹣8ab= 2ab(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(a2﹣4)=2ab(a+2)(a﹣2),故答案为:2ab(a+2)(a﹣2).18.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积为24cm2.【考点】菱形的性质.【分析】根据菱形的对角线的长度即可直接计算菱形ABCD的面积.【解答】解:∵菱形的对角线长AC、BD的长度分别为8cm、6cm∴菱形ABCD的面积S=BD•AC=×6×8=24cm2.故答案为:24cm2.19.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE 的长为2.【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形面积是△ABE面积的2倍,求出边长,再在RT△BCE中利用勾股定理即可.【解答】解:设正方形边长为a,∵S△ABE=18,∴S正方形ABCD=2S△ABE=36,∴a2=36,∵a>0,∴a=6,在RT△BCE中,∵BC=6,CE=4,∠C=90°,∴BE===2.故答案为2.20.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是﹣2<b<2 .【考点】反比例函数与一次函数的交点问题.【分析】根据双曲线的性质、结合图象解答即可.【解答】解:如图,∵直线y=﹣x+2与反比例函数y=的图象有唯一公点,双曲线是中心对称图形,∴直线y=﹣x﹣2与反比例函数y=的图象有唯一公点,∴﹣2<b<2时,直线y=﹣x+b与反比例函数y=的图象没有公共点,故答案为:﹣2<b<2.三、解答题(共6小题,满分66分)21.先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.【考点】分式的化简求值;解一元二次方程-因式分解法;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出m的值代入计算即可求出值.【解答】解:原式=﹣÷=﹣•=﹣==,方程m2+(5tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,解得:m=1(舍去)或m=﹣6,当m=﹣6时,原式=﹣.22.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC 的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.【考点】切线的性质;全等三角形的判定;等腰三角形的判定;圆周角定理.【分析】(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,则有∠OCB=30°,再结合CD时切线,可求∠BCD=60°,那么∠DCQ可求,即可得出△CDQ 是等腰三角形;(2)可以假设AB=2,则OB=OA=OC=1,利用勾股定理可得BC=;由于△CDQ≌△COB,那么有CB=CQ,即可求出AQ的长;在直角三角形APQ中,利用30°所对的边等于斜边的一半,又可求AP,而OP=AP﹣OA,即可求OP,BP也就可求,从而得出BP:PO的值.【解答】(1)证明:由已知得∠ACB=90°,∠ABC=30°,∴∠Q=30°,∠BCO=∠ABC=30°;∵CD是⊙O的切线,CO是半径,∴CD⊥CO,∴∠DCQ=∠BCO=30°,∴∠DCQ=∠Q,故△CDQ是等腰三角形.(2)解:设⊙O的半径为1,则AB=2,OC=1,BC=.∵等腰三角形CDQ与等腰三角形COB全等,∴CQ=BC=.∴AQ=AC+CQ=1+,∴AP=AQ=,∴BP=AB﹣AP=,∴PO=AP﹣AO=,∴BP:PO=.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,当CD分为一组时,其实也表明AB在同一组;则小宇与小强两名男同学分在同一组的概率是.24.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.【考点】反比例函数与一次函数的交点问题;平移的性质.【分析】(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(,1)则2m=m+2,求出m的值即可.【解答】解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(,1),∵反比例函数y=的图象经过点A′及M,∴m×2=×1,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.25.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元的门票.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?(2)求一年中进入该公园至少多少次,购买A类年票比较合算.【考点】一元一次不等式的应用.【分析】(1)由题意可知:若直接买票可以买到100÷10=10张;若买A类票,则100<120,买不到;若买B类票,则剩余100﹣60=40元,可以买到40÷2=20张票;若买C类票,则剩余100﹣30=70元,可以买到70÷4≈17张;所以用100元花在公园门票上,买B类票次数最多;(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据购买A类年票才比较合算说明购B和C票花的钱多余购A票花的钱,购B票花的钱为60+2x,购C票花的钱为30+4x,列出不等式组,求出x的取值范围,即可得出答案.【解答】解:(1)①直接买票:100÷10=10张;②A类不够买120>100;③B类÷2=20(张);④C类÷4=,即可买17张.综上所述,用100元购买B类票使你进入该公园的次数最多;(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据题意得:,解得:x>30.答:一年中进入该公园至少31次,购买A类年票比较合算.26.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.【考点】菱形的性质;全等三角形的判定;等腰三角形的判定;解直角三角形.【分析】(1)①△ABN和△ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等.②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由①可得∠MDA=∠ABN,那么M到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可.(2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论.【解答】解:(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠1=∠2.又∵AN=AN,∴△ABN≌△ADN(SAS).②作MH⊥DA交DA的延长线于点H.由AD∥BC,得∠MAH=∠ABC=60°.在Rt△AMH中,MH=AM•sin60°=4×sin60°=2.∴点M到AD的距离为2.∴AH=2.∴DH=6+2=8.在Rt△DMH中,tan∠MDH=,由①知,∠MDH=∠ABN=α,∴tanα=;(2)∵∠ABC=90°,∴菱形ABCD是正方形.∴∠CAD=45°.下面分三种情形:(Ⅰ)若ND=NA,则∠ADN=∠NAD=45°.此时,点M恰好与点B重合,得x=6;(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°.此时,点M恰好与点C重合,得x=12;(Ⅲ)若AN=AD=6,则∠1=∠2.∵AD∥BC,∴∠1=∠4,又∠2=∠3,∴∠3=∠4.∴CM=CN.∵AC=6.∴CM=CN=AC﹣AN=6﹣6.故x=12﹣CM=12﹣(6﹣6)=18﹣6.综上所述:当x=6或12或18﹣6时,△ADN是等腰三角形.2016年6月6日。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.122.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×1033.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4度数为()A. 55°B. 60°C. 65°D. 75°5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a68.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 1709.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=10.关于二次函数y=﹣(x﹣m)2﹣m+1(m为常数),下列描述错误的是( )A. 当m=2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y=﹣x+1的图象上C. 当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≤2D. 当m=0时,函数图象的顶点及函数图象与x轴的两个交点构成的三角形是等腰直角三角形二.填空题(共6小题)11.因式分解:24ab a-=___________________.12.分别写有数字23、5、﹣4、0、﹣2五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____.13.在平面直角坐标系中,点P在直线y=x+b的图象上,且点P在第二象限,P A⊥x轴于点A,PB⊥y轴于点B,四边形OAPB是面积为25的正方形,则直线y=x+b的函数表达式是_____.14.如图,点A,B,C在同一个圆上,∠ACB<90°,弦AB的长度等于该圆半径的2倍,则cos∠ACB的值是_____.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.16.如图,菱形ABCD边长为10,sin A=45,点M为边AD上的一个动点且不与点A和点D重合,点A关于直线BM的对称点为点A',点N为线段CA'的中点,连接DN,则线段DN长度的最小值是_____.三.解答题(共9小题)17.计算:|﹣23|+(2020﹣1)0﹣4sin60°﹣(﹣2)2.18.某校为了做好”营造清洁生活环境”活动宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.21.某公司需要采购A、B两种笔记本,A种笔记本单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.23.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═45x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A 出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.答案与解析一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数据”18.9万”用科学记数法表示为1.89×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,该几何体是()A 直三棱柱 B. 长方体 C. 圆锥 D. 立方体【答案】A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为()A. 55°B. 60°C. 65°D. 75°【答案】C【解析】【分析】根据平行线判定定理得出a∥b,再根据平行线的性质得到结果.【详解】如图:∵∠1=∠2,∴a∥b(同位角相等,两直线平行),∴∠3=∠5(两直线平行,同位角相等),∴∠4=180º-∠5=180º-∠3=180º-115º=65º.故选C.5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩【答案】A【解析】【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2-2,根据等量关系列出方程组即可.【详解】设甲数为x,乙数为y,根据题意可列方程组:722 x yx y+=⎧⎨=-⎩,故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是把已知量和未知量联系起来,找出题目中的相等关系.6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次【答案】D【解析】【分析】直接利用概率的意义分别分析得出答案.【详解】关于”可能性是1%的事件在100次试验中发生的次数”,一定发生一次错误,符合题意.故选:D.【点睛】本题主要考查了概率意义,概率只表示可能性的大小,并不表示事件一定为必然事件.正确掌握概率的意义是解题关键.7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a6【答案】B【解析】【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【详解】解:A、b3÷b3=1,故此选项错误;B、b3•b3=b6,正确;C、a2+a2=2a2,故此选项错误;D、(a3)3=a9,故此选项错误.故选:B.【点睛】此题考查合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.8.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 170【答案】C【解析】【分析】根据众数定义:一组数据中出现次数最多的数据叫众数,可知165出现的次数最多.【详解】这组数据中165出现次数最多,有4次,所以这组数据的众数为165,故选:C.【点睛】此题主要考查了众数,关键是把握众数定义,难度较小.9.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=【答案】D【解析】【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB ,A 、当∠AED=∠B 时,△ABC ∽△AED ,故本选项不符合题意;B 、当∠ADE=∠C 时,△ABC ∽△AED ,故本选项不符合题意;C 、当AD AE =AC AB时,△ABC ∽△AED ,故本选项不符合题意; D 、当AD AB =AE AC 时,不能推断△ABC ∽△AED ,故本选项符合题意; 故选D .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.10.关于二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数),下列描述错误的是( )A. 当m =2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y =﹣x +1的图象上C. 当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≤2D. 当m =0时,函数图象的顶点及函数图象与x 轴的两个交点构成的三角形是等腰直角三角形【答案】C【解析】【分析】根据二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理逐项判断即可.【详解】∵二次函数2()1y x m m =---+(m 为常数)∴当x m =时,y 取得最大值,最大值为1m -+则当2m =时,最大值为211-+=-,选项A 正确∵此抛物线的顶点(,1)m m -+∴将x m =代入直线1y x =-+得:1y m =-+则顶点(,1)m m -+在直线1y x =-+上,选项B 正确由二次函数的性质可知,当x m ≤时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则当12x -<<时,y 随x 的增大而增大,可得m 的取值范围为2m ≥,选项C 错误当0m =时,二次函数的解析式为21y x =-+此函数的顶点坐标为(0,1),与x 轴的交点分别为(1,0)-,(1,0)由等腰三角形的定义、勾股定理的逆定理得:这三个点构成等腰直角三角形,选项D 正确故选:C .【点睛】本题考查了二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理等知识点,熟练掌握二次函数的图象与性质是解题关键.二.填空题(共6小题)11.因式分解:24ab a - =___________________.【答案】(2)(2)a b b +-【解析】【分析】先提公因式a ,再利用平方差公式即可因式分解.【详解】解:224(4)(2)(2)ab a a b a b b -=-=+-,故答案为:(2)(2)a b b +-.【点睛】本题考查了提公因式法和公式法因式分解,解题的关键是灵活运用两种方法,熟悉平方差公式.12.分别写有数字23、4、0的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____. 【答案】25 【解析】【分析】直接利用无理数的定义结合概率求法得出答案.【详解】解:∵在标有23﹣4、0、这2张, ∴从中任意抽取一张,抽到无理数的概率是25, 故答案为:25. 【点睛】此题主要考查了概率公式以及无理数的定义,正确把握相关定义是解题关键.13.在平面直角坐标系中,点P 在直线y =x +b 的图象上,且点P 在第二象限,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,四边形OAPB 是面积为25的正方形,则直线y =x +b 的函数表达式是_____.【答案】y =x +10.【解析】【分析】用正方形的面积,求得正方形的边长,得到PA ,PB 的长度,P 在第二象限,得点P 的坐标,代入直线解析式,可求得值,进而得到直线的表达式.【详解】解:∵四边形OAPB 是面积为25的正方形,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴P A =PB =5,∵点P 在第二象限,∴P (﹣5,5),∵点P 在直线y =x +b 的图象上,∴5=﹣5+b ,∴b =10,∴直线y =x +b 的函数表达式是y =x +10,故答案为:y =x +10.【点睛】本题考查了坐标系中线段长度与坐标之间的转化关系,待定系数法求解析式,求出点P 的坐标是解题的关键.14.如图,点A ,B ,C 在同一个圆上,∠ACB <90°,弦AB 的长度等于该圆半径的2倍,则cos ∠ACB 的值是_____.【答案】22. 【解析】【分析】 作直径AD ,连接BD ,通过同圆中同弧所对的圆周角相等,得ACB ADB ∠=∠,在Rt ABD ∆完成计算即可.【详解】解:作直径AD,连接BD,如图,∵AD为直径,∴∠ABD=90°,∵弦AB的长度等于该圆半径的2倍,∴22 ABAD=,在Rt△ADB中,sin∠ADB=22 ABAD=,∴∠ADB=45°,∴∠ACB=∠ADB=45°,∴cos∠ACB=22.故答案为22.【点睛】本题考查了圆周角定理的应用,直角三角形中三角函数值得计算,将ACB∠利用圆周角定理转化到直角三角形中,是解题的关键.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.【答案】二、四.【解析】【分析】根据函数图象,由1x =时,得到a b c ++的正负,即可得到答案.【详解】解:由二次函数的图象可知,当x =1时,y <0,即a +b +c <0,∴反比例函数y =a b c x++的图象所在的象限是第二、四象限, 故答案为:二、四.【点睛】本题考查了二次函数中a b c ++的正负判断,反比例函数系数对于图象象限的影响,熟练掌握这些知识点是解题的关键.16.如图,菱形ABCD 的边长为10,sin A =45,点M 为边AD 上的一个动点且不与点A 和点D 重合,点A 关于直线BM 的对称点为点A ',点N 为线段CA '的中点,连接DN ,则线段DN 长度的最小值是_____.【答案】65﹣5.【解析】【分析】通过构造三边关系来求DN 的最小值,根据A ,A'关于直线BM 对称,BA ′=10,取BC 的中点K ,NK 是A BC'∆的中位线,NK=5,作DH⊥BC,根据sin A =45可求出DH=8,CH=6,在Rt △DHK 中,由勾股定理求得DK 的值,看△DNK 根据三角形的三边关系即可求出答案.【详解】解:如图,连接BA ′,取BC 的中点K ,连接NK ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AB =BC =CD =AD =10,∠A =∠DCB ,∵A ,A ′关于BM 对称,∴BA′=BA=10,∵CN=NA′,CK=BK,∴NK=12BA′=5,∵sin∠A=sin∠DCH=45=DHCD,∴DH=8,∴CH6,∴CK=KB=5,∴HK=CH=CK=1,∴DK∵DN≥DK﹣NK,∴DN5,∴DN5,5.【点睛】本题考查了线段最值问题,属于压轴题,构造三角形三边关系方法是:①两边为定值,第三边是要求的线段;②往往取特殊点中点构造三角形,解决本题的关键是构造三角形,利用三角形三边关系.三.解答题(共9小题)17.计算:|﹣1)0﹣4sin60°﹣(﹣2)2.【答案】-3【解析】【分析】利用去绝对值,零指数幂,三角函数,乘方运算法则进行计算即可得到答案.【详解】解:|﹣1)0﹣4sin60°﹣(﹣2)2=﹣4×24= 3=﹣3.【点睛】本题考查实数的混合运算,熟练掌握运算法则是解题的关键.18.某校为了做好”营造清洁生活环境”活动的宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.【答案】(1)100;(2)20、7.2;(3)见解析;(4)2450人【解析】【分析】(1)根据”及格”人数及其所占百分比可得总人数;(2)总人数乘以”优秀”对应的百分比可得其人数,再求出”不及格”人数,继而用360°乘以”不合格”人数所占比例即可得;(3)根据以上所求结果即可补全图形;(4)用总人数乘以样本中”优秀”和”良好”人数和所占比例.【详解】(1)抽取的学生总人数为28÷28%=100(人);(2)抽取的学生中,等级为”优秀”的人数为100×20%=20(人),则”不及格”人数为100−(28+50+20)=2(人),所以扇形统计图中等级为”不合格”部分圆心角的度数为360°×2100=7.2°,故答案为:20、7.2;(2)补全条形图如下:(4)估计成绩等级为”优秀”和”良好”的学生共有3500×5020100=2450(人).【点睛】本题考查的是样本估计总体、条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.【答案】20【解析】【分析】根据角平分线的定义和平行四边形的性质证出∠BAE=∠BEA,得出AB=BE=4,求出BC=6,即可得出结论.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=4,∵BE=3,EC=2,∴BC=BE+EC=4+2=6,∴▱ABCD的周长=2(AB+BC)=2(4+6)=20.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.【答案】1 3【解析】【分析】画树状图(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中甲、乙两名学生恰好选择同一场馆的结果数为3,所以甲、乙两名学生恰好选择同一场馆的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.【答案】(1)A种笔记本和B种笔记本的单价各是15元和5元;(2)11.【解析】【分析】(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意列方程即可得到结论;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意列不等式即可得到结论.【详解】解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,30010010 x x=-,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.【答案】(1)证明见解析;(2)32 3233π.【解析】【分析】(1)连接OB,交CA于E,,根据圆周角定理求出∠BOA=60°,根据∠BCA=∠OAC=30°和三角形内角和定理求出∠AEO=90°,即OB⊥AC,根据BD∥AC,得到∠DBE=∠AEO=90°,可得BD是⊙O的切线; (2)根据平行线的性质得到∠D=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【详解】(1)证明:如图示,连接OB ,交CA 于E ,∵∠C =30°,∠C =12∠BOA , ∴∠BOA =60°, ∵∠BCA =∠OAC =30°,∴∠AEO =90°,即OB ⊥AC ,∵BD ∥AC ,∴∠DBE =∠AEO =90°,∴BD 是⊙O 的切线;(2)解:∵AC ∥BD ,∠OCA =90°,∴∠D =∠CAO =30°,∵∠OBD =90°,OB =8,∴BD 3=3,∴S 阴影=S △BDO ﹣S 扇形AOB =12×8×3﹣2608360π⨯=3323π, 故答案为:323233π. 【点睛】本题考查了切线的判定,平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,熟悉相关性质是解题的关键.23.如图,在平面直角坐标系中,直线y =kx +b 与x 轴交于点A (5,0),与y 轴交于点B ;直线y ═45x +6过点B 和点C ,且AC ⊥x 轴.点M 从点B 出发以每秒2个单位长度的速度沿y 轴向点O 运动,同时点N 从点A 出发以每秒3个单位长度的速度沿射线AC 向点C 运动,当点M 到达点O 时,点M 、N 同时停止运动,设点M 运动的时间为t (秒),连接MN .(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.【答案】(1)y=﹣65x+6,点C的坐标为(5,10);(2)t=65;(3)线段CD的长度不变化,CD=12495由见解析【解析】【分析】(1)先求出点C和点B的坐标,再根据待定系数法,即可求得答案;(2)分别用含t的代数式表示OM和AN的长,列出关于t的方程,即可求解;(3)过点D作EF∥x轴,交OB于E,交AC于F,由△BDM∽△ADN,得23DE BMDF AN==,从而得DF的长,由△BDE∽△ADF,得EO=F A=185,从而得CF的长,进而即可求解.【详解】(1)∵AC⊥x轴,点A(5,0),∴点C的横坐标为5,对于y═45x+6,当x=5时,y=45×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),∵直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),∴5k b0b6+=⎧⎨=⎩,解得,6k5b6⎧=-⎪⎨⎪=⎩,∴直线y=kx+b的函数表达式为:y=﹣65x+6,综上所述,直线y=kx+b的函数表达式为y=﹣65x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∵当OM=AN时,OM∥AN,∴四边形EOAF为平行四边形,∴MN∥x轴,∴6﹣2t=3t,解得,t=65,∴当MN∥x轴时,t=65;(3)线段CD的长度不变化,理由如下:过点D作EF∥x轴,交OB于E,交AC于F,∵EF∥x轴,BM∥AN,∠AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=F A,∵BM∥AN,∴△BDM∽△ADN,∴23 DE BMDF AN==∵EF=5,∴DE=2,DF=3,∵BM∥AN,∴△BDE∽△ADF,∴23 BE DEFA DF==,∴23 BEEO=,∵OB=6,∴EO=F A=185,∴CF=AC﹣F A=325,∴CD=22DF CF=12495.【点睛】本题主要考查一次函数的图象和待定系数法,矩形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,添加合适的辅助线,构造相似三角形,是解题的关键.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.【答案】22)①75°;②15°;③证明见解析【解析】【分析】(1)根据题意利用相似三角形的判定与性质通过证明△ABP ∽△CBQ ,可得AB AP BC CQ =; (2)①根据题意由直角三角形的性质可求∠CBQ=75°,即可求解;②根据题意直接由三角形的外角性质进行分析即可求解;③由题意在EF 上截取EH=EB ,连接BH ,由”AAS ”可证△BHF ≌△BEQ ,可得EQ=HF ,进而即可得出结论.【详解】解:(1)∵AC =BC ,∠ACB =90°,∴AB BC ,∠ABC =45°=∠BAC∵将△ABC 绕点B 逆时针方向旋转得到△PBQ ,∴∠ABC =∠PBQ =45°,AB =BP ,BC =BQ ,∴∠ABP =∠CBQ ,AB BP BC BQ==, ∴△ABP ∽△CBQ ,∴AB AP BC CQ=,;(2)①∵QD ⊥BC ,∴∠QDB =90°,且∠BQD =15°,∴∠CBQ =75°,∴旋转角α为75°;②∵∠DBE =∠CBQ ﹣∠PBQ =75°﹣45°=30°,∴∠DEB =60°,∠ABP =75°,∴∠BEQ =120°,∵EF 平分∠BEQ ,∴∠BEF =60°,∵∠ABP =∠F+∠BEF ,∴∠F =75°﹣60°=15°;③如图,在EF 上截取EH =EB ,连接BH ,∵EB=EH,∠BEF=60°,∴△BEH是等边三角形,∴BE=BH=EH,∠BHE=60°,∴∠BHF=∠BEQ=120°,且∠F=∠BQD=15°,BE=BH,∴△BHF≌△BEQ(AAS)∴EQ=HF,∴EQ+EB=HF+EH=EF.【点睛】本题是四边形综合题,考查全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解答本题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.【答案】(1)抛物线的函数表达式为21433y x x =-++;(2)①2518;②13159±. 【解析】【分析】 (1)根据题意首先求出A 、D 的坐标,再利用待定系数法即可解决问题;(2)①如图1,过点Q 作QF ⊥AP 于点F ,则AF =PF =12AP =12(5﹣2t ),AQ =t ,证得OD ∥QF ,得出AO AD AF AQ=,可求出t 的值; ②如图2,过点C 作CM ⊥AQ 于点M ,过点Q 作QN ⊥x 轴于点N ,证明△AOD ∽△CMD ,求出CM ,则S 1可用t 表示,证明△AOD ∽△AQN ,求出QN ,则S 2可用t 表示,则可得出t 的方程,解方程即可得出答案.【详解】解:(1)∵直线3344y x =+与y 轴交于点D , ∴x =0时,y =34, ∴D (0,34), ∵直线3344y x =+与x 轴交于点A , ∴y =0时,3344x +=0, ∴x =﹣1,∴A (﹣1,0),∵抛物线y =ax 2+x+c 经过点A (﹣1,0),C (0,43),∴1043a c c -+=⎧⎪⎨=⎪⎩, 解得:1343a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为21433y x x =-++; (2)①如图1,过点Q 作QF ⊥AP 于点F ,若AQ =PQ ,则AF =PF =12AP =12(5﹣2t ),AQ =t , ∵OD ⊥AP ,QF ⊥AP ,∴OD ∥QF , ∴AO AD AF AQ=, ∵D (0,34),A (﹣1,0), ∴OD =34,AO =1, ∴AD 220A DO +22314⎛⎫+ ⎪⎝⎭54, ∴5141(52)2tt =-, 解得:t =2518.∴t=2518时,△APQ是以AP为底边的等腰三角形.②如图2,过点C作CM⊥AQ于点M,过点Q作QN⊥x轴于点N,∵∠ADO=∠CDM,∠AOD=∠CMD=90°,∴△AOD∽△CMD,∴AD AO CD CM=,∵CD=OC﹣OD=4373412-=,AD=54,OA=1,∴514712CM=,∴CM=7 15,∴S△ACQ=S1=12AQ×CM=17215t⨯⨯=730t,∵OD⊥x轴,QN⊥x轴,∴OD∥QN,∴△AOD∽△AQN,∴AD OD AQ ON=,∴5344t QN =,∴QN=35t,∴S△APQ=S2=12AP×QN=13(52)25t t-=23325t t-,∵S 1+S 2=602675, ∴27336023025675t t t +-=, ∴213395t ⎛⎫-= ⎪⎝⎭,解得:t =139即当S =602675时,t 的值为139±. 【点睛】本题考查二次函数综合题,考查待定系数求函数解析式,等腰三角形的性质,三角形的面积,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质及方程思想是解题的关键.。
2024年中考第一次模拟考试(山西卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.18-的相反数是()A.8B.-8C.18-D.18【答案】D【解析】解:18-的相反数是18,故选:D.2.观察下列图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】解:第一个图案是轴对称图形,不是中心对称图形,故此图案不符合题意;第二个图案是轴对称图形,也是中心对称图形,故此图案符合题意;第三个图案是轴对称图形,不是中心对称图形,故此图案不符合题意;第四个图案不是轴对称图形,也不是中心对称图形,故此图案不符合题意.故选:B.3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.(a+b)(﹣a﹣b)=a2﹣b2【答案】B【解析】解:a3•a2=a5,故选项A错误,不符合题意;(ab3)2=a2b6,故选项B正确,符合题意;(a﹣b)2=a2﹣2ab+b2,故选项C错误,不符合题意;(a+b)(﹣a﹣b)=﹣a2﹣2ab﹣b2,故选项D错误,不符合题意;故选:B.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键,注意完全平方公式的应用.4.“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”这是清朝袁枚所写五言绝句《苔》,这首咏物诗启示我们身处逆境也要努力绽放自己,要和苔花一样尽自己所能实现人生价值.苔花也被称为“坚韧之花”.袁枚所写的“苔花”很可能是苔类孢子体的苞荫,某孢子体的苞荫直径约为0.0000084m,将数据0.0 000084用科学记数法表示为8.4×10n,则n的值是()A.6B.﹣7C.﹣5D.﹣6【答案】D【解析】解:0.0000084=8.4×10﹣6,则n=﹣6,故选:D.5.如图,是一个底部呈球形的蒸馏瓶,球的半径为6cm,瓶内液体的最大深度CD=3cm,则截面圆中弦A B的长为()A.B.C.D.8cm【答案】C【解析】解:由题意得:OC⊥AB,∴AC=BC=AB,∠OCA=90°,∵OA=OD=6cm,CD=3cm,∴OC=OD﹣CD=6﹣3=3(cm),在Rt△OAC中,由勾股定理得:AC===3(cm),∴AB=2AC=6(cm).∴截面圆中弦AB的长为6cm,故选:C.6.如图,将质量为10kg的铁球放在不计重力的木板OB上的A处,木板左端O处可自由转动,在B处用力F竖直向上抬着木板,使其保持水平,已知OA的长为1m,OB的长为x m,g取10N/kg,则F关于x的函数解析式为()A.B.C.D.【答案】A【解析】解:∵g取10N/kg,铁球质量为10kg,∴G=mg=10×10=100(N),∵OA=1m,OB=x m,∴由杠杆平衡原理可得:F×OB=G×OA,即F⋅x=100×1,∴F关于x的函数解析式为.故选:A.7.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=54°.当∠MAC为()度时,AM与CB平行.A.16B.60C.66D.114【答案】C【解析】解:∵AB,CD都与地面l平行,∴AB∥CD,∴∠BAC+∠ACD=180°,∴∠BAC+∠ACB+∠BCD=180°,∵∠BCD=60°,∠BAC=54°,∴∠ACB=66°,∴当∠MAC=∠ACB=66°时,AM∥CB,故选:C.8.已知反比例函数,下列结论不正确的是()A.图象经过点(﹣1,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>1时,y>﹣1【答案】D【解析】解:A、(﹣1,1)代入,得:左边=右边,故本选项正确;B、图象在第二、四象限内,故本选项正确;C、在每个象限内,y随x的增大而增大,故本选项正确;D、当x>1时,﹣1<y<0,故本选项不正确;不正确的只有选项D.故选:D.9.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°,甲、乙两车由A口同时驶入立交桥,均以12m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.甲车从G口出,乙车从F口出B.立交桥总长为252mC.从F口出比从G口出多行驶72mD.乙车在立交桥上共行驶16s【答案】D【解析】解:根据两车运行时间,可知甲车从G口出,乙车从F口出,故A正确;由图象可知,两车通过、、弧时每段所用时间均为3s,通过直行道AB,CG,EF时,每段用时为4s.所以立交桥总长为(3×3+4×3)×12=252m,故B正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为6s,则多走72m,故C正确;根据题意乙车行驶时间为:4×2+3×3=17秒,故D错误;故选:D.10.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n=2030时,正六边形OA2030B2030C2030D2030E2030的顶点D2030的坐标是()A.B.C.D.【答案】B【解析】解:由题意可知:正六边形绕点O顺时针旋转一圈,旋转了8个45°,∵当n=2030时,2030÷8=253……6,∴D2030的坐标与D6的坐标相同,如图所示:过点D6H⊥OE于点H,过点D作DF⊥x轴于点F,∵∠DEO=120°,DE=EO=1,∴∠EDO=∠DOE=30°,∵∠DFO=90°,∴∠FDE=30°,∴在Rt△DFE中,,∴,∴在Rt△ODF中,,∴,∴,∠EOD6=60°,又∵∠D6HO=90°,在Rt△OHD6中,∴,,∴,,又∵点D6在第三象限,∴点D6的坐标为,故选:B.第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:=.【解析】解:原式=(+)×(﹣)×(﹣)=(3﹣2)×(﹣)=﹣.故答案为:﹣.12.化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为1~10时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则庚烷分子结构式中“H”的个数是.【解析】解:由图可得,甲烷分子结构式中“H”的个数是2+2×1=4;乙烷分子结构式中“H”的个数是2+2×2=6;丙烷分子结构式中“H”的个数是2+2×3=8;…,∴第7个庚烷分子结构式中“H”的个数是:2+2×7=16;故答案为:16.13.如图,在△ABC中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交AB,AC于点M,N;②分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;③作射线AP交BC于点D,若AB:AC=2:3,△ABD的面积为2,则△ABC的面积为.【解析】解:过点D作DE⊥AB于点E,作DF⊥AC于点F,由作图可知,射线AP为∠BAC的平分线,∴DE=DF,∵AB:AC=2:3,,,∴S△ABD:S△ACD=2:3,∵△ABD的面积为2,∴△ACD的面积为3,∴△ABC的面积为S△ABD+S△ACD=2+3=5.故答案为:5.14.有甲、乙两把不同的锁和A、B、C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开甲锁,恰好能打开的概率是.【解析】解:因为三把钥匙中只有1把能打开甲锁,所以随机取出一把钥匙开甲锁,恰好能打开的概率是.故答案为:.15.如图,在正方形ABCD中,AB=3,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N.连接NC交BD于点G.若BG:MB=3:8,则NG•CG=.【解析】解:如图,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,∴∠MBH=90°,∠MCH=90°,∵∠CMN=∠CBN=90°,∴M、N、B、C四点共圆,∴∠MCN=45°,∴∠NCH=45°,在△MCG和△HCG中,,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MB=3:8,∴BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为3,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGN∽△CGB,∴,∴CG •NG =BG •MG =.故答案为:.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:()101120222tan452π-⎛⎫---+-︒ ⎪⎝⎭(2)下面是小明同学进行因式分解的过程,请认真阅读并完成相应任务.因式分解:()()2233a b a b +-+解:原式()()22229669a ab b a ab b =++-++第一步2288a b =-第二步()228a b =-第三步任务一:填空:①以上解题过程中,第一步进行整式乘法用到的是___________公式;②第三步进行因式分解用到的方法是___________法.任务二:同桌互查时,小明的同桌指出小明因式分解的结果是错误的,具体错误是______________________.任务三:小组交流的过程中,大家发现这个题可以先用公式法进行因式分解,再继续完成,请你写出正确的解答过程.【解析】(1)解:原式11221=-+-⨯0=.(2)任务一:①以上解题过程中,第一步进行整式乘法用到的是完全平方公式;②第三步进行因式分解用到的方法是提公因式法;任务二:小明因式分解的结果不彻底,22a b -还可以进行因式分解;任务三:原式[(3)(3)][(3)(3)]a b a b a b a b =++++-+(44)(22)a b a b =+-=8()()a b a b +-故答案为:任务一:①完全平方;②提公因式;任务二:因式分解不彻底(或a 2−b 2还可以进行因式分解);任务三:8(a +b )(a −b ).17.(7分)解分式方程:.【解析】解:,去分母得:x﹣4﹣3=3﹣x,解得:x=5,经检验:x=5是分式方程的解.18.(9分)某校在课后服务中,成立了以下社团:A.计算机,B.围棋,C.篮球,D.书法每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D所占扇形的圆心角为150°.请结合图中所给信息解答下列问题:(1)这次被调查的学生共有360人;(2)请你将条形统计图补充完整;(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社团;(4)在书法社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,恰好四位同学中有两名是男同学,两名是女同学.现决定从这四人中任选两名参加全市书法大赛,用画树状图求恰好选中一男一女的概率.【解析】解:(1)∵D所占扇形的圆心角为150°,∴这次被调查的学生共有:(人);故答案为:360.(2)C组人数为:360﹣120﹣30﹣150=60(人),故补充条形统计图如下图:(3)(人),答:这1800名学生中有300人参加了篮球社团,(4)设甲乙为男同学,丙丁为女同学,画树状图如下:∵一共有12种可能的情况,恰好选择一男一女有8种,∴.19.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)2023年学校购买足球的预算为6400元,总共购买100个球且购买A品牌足球的数量不多于B品牌足球数量的2倍,有几种购买方案.【解析】解:(1)设A品牌的足球的单价为x元/个,B品牌的足球的单价为y元/个,根据题意得:,答:A品牌的足球的单价为40元/个,B品牌的足球的单价为100元/个.(2)设购买A品牌足球a个,则购买B品牌足球(100﹣a)个.则,∴a可取60,61,62,63,64,65,66共7种购买方案.答:有7种购买方案.20.(8分)学科综合我们在物理学科中学过:光线从空气射入水中会发生折射现象(如图1),我们把n=称为折射率(其中α代表入射角,β代表折射角).观察实验为了观察光线的折射现象,设计了图2所示的实验,即通过细管MN可以看见水底的物块C,但不在细管MN所在直线上,图3是实验的示意图,四边形ABFE为矩形,点A,C,B在同一直线上,测得BF =12cm,DF=16cm.(1)求入射角α的度数.(2)若BC=7cm,求光线从空气射入水中的折射率n.(参考数据:,,)【解析】解:(1)如图:过点D作DG⊥AB,垂足为G,由题意得:四边形DGBF是矩形,∴DG=BF=12cm,BG=DF=16cm,在Rt△DGB中,tan∠BDG===,∴∠BDG=53°,∴∠PDH=∠BDG=53°,∴入射角α的度数为53°;(2)∵BG=16cm,BC=7cm,∴CG=BG﹣BC=9(cm),在Rt△CDG中,DG=12cm,∴DC===15(cm),∴sinβ=sin∠GDC===,由(1)得:∠PDH=53°,∴sin∠PDH=sinα≈,∴折射率n===,∴光线从空气射入水中的折射率n约为.21.(8分)阅读与思考下面是小宇同学写的一篇数学小论文,请认真阅读并完成相应的任务:由一道习题引发的思考——“十字架模型”的拓展研究在我们教材上,有这样一道习题:如图1,四边形ABCD是一个正方形花园,E,F是它的两个门,要修建两条路BE和AF,且使得BE⊥AF,那么这两条路等长吗?为什么?对于上面问题,我是这样思考的:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°.又∵BE⊥AF,∴∠BEA+∠DAF=∠DAF+∠AFD=90°∴∠BEA=∠AFD,(依据*)∴Rt△ABE≌Rt△DAF,∴BE=AF.有趣的是对于两个端点分别在正方形ABCD一组对边上的线段,若这样的两条线段互相垂直,是否这两条线段仍然相等呢?对此我们可以做进一步探究:如图2,在正方形ABCD中,若点M、N、P、Q分别是AB、CD、BC、AD上的任意四点,且MN⊥PQ,垂足为O,则MN仍然与PQ相等.理由如下:过点M作ME⊥CD,垂足为E,过点P作PF⊥AD,垂足为F.则容易证明四边形AMED和ABPF均为矩形,∴ME=AD,PF=AB.∵AB=AD,∴ME=PF在四边形QOND中,∵∠NOQ=∠D=90°,…任务:根据上面小论文的分析过程,解答下列问题:(1)画横线部分的“依据*”是在等式两边同时加上(或减去)同一个数或同一个式子,等式仍成立.(2)在小论文的分析过程,主要运用的数学思想有:AC.(从下面选项中填出两项).A.转化思想B.方程思想C.由特殊到一般的思想D.函数思想(3)请根据小论文提供的思路,补全图2剩余的证明过程.【解析】解:(1)在等式两边同时加上(或减去)同一个数或同一个式子,等式仍成立;(2)由正方形中的顶点A和顶点B转变成为点M和点N,所以是由特殊到一般的转化思想,所以AC正确.故选为:AC.(3)证明:过点M作ME⊥CD,垂足为E,过点P作PF⊥AD,垂足为F.则容易证明四边形AMED和ABPF均为矩形,∴ME=AD,PF=AB,∵AB=AD,∴ME=PF在四边形QOND中,∵∠NOQ=∠D=90°,∠NOQ+∠D+∠OQD+∠OND=360°,∴∠OQD+∠OND=180°,∵∠FQP+∠OQD=180°,∴∠FQP=∠OND=∠MNE,∵∠FQP+∠QPF=90°,∠MNE+∠NME=90°,∴∠QPF=∠NME,∵∠QPF=∠NME,ME=PF,∠PFQ=∠MEN=90°,∴△MNE≌△PQF(SAS),∴MN=PQ.22.(12分)综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,C F,延长BE交CF于点D.则BE与CF的数量关系:BE=CF,∠BDC=30°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:B F=CF+2AM;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=或.【解析】解:(1)BE=CF,∠BDC=30°,理由如下:如图1所示:∵△ABC和△ADE都是等腰三角形,∴AB=AC,AE=AF,又∵∠BAC=∠EAF=30°,∴△ABE≌△ACF(SAS),∴BE=CF,∴∠ABE=∠ACD,∵∠AOE=∠ABE+∠BAC,∠AOE=∠ACD+∠BDC,∴∠BDC=∠BAC=30°;(2)BE=CF,∠BDC=60°,理由如下:如图2所示:证明:∵∠BAC=∠EAF=120°,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF,又∵△ABC和△AEF都是等腰三角形,∴AB=AC,AE=AF,∴△BAE≌△CAF(SAS)∴BE=CF,∴∠AEB=∠AFC,∵∠EAF=120°,AE=AF,∴∠AEF=∠AFE=30°,∴∠BDC=∠BEF﹣∠EFD=∠AEB+30°﹣(∠AFC﹣30°)=60°;(3)BF=CF+2AM,理由如下:如图3所示:∵△ABC和△AEF都是等腰三角形,∴∠CAB=∠EAF=90°,AB=AC,AE=AF,∴∠CAB﹣∠CAE=∠FAE﹣∠CAE,即:∠BAE=∠CAF,∴△BAE≌△CAE(SAS),∴BE=CF,∵AM⊥BF,AE=AF,∠EAF=90°,∴EF=2AM,∵BF=BE+EF,∴BF=CF+2AM;(4))如图4所示:连接BD,以BD为直径作圆,由题意,取满足条件的点P,P′,则PD=P′D=1.∠BPD=∠BP′D=90°,∴BD=2,∴BP===,连接PA,作AF⊥PB于点F,在BP上截取BE=PD,∵∠PDA=ABE,AD=AB,∴△ADP≌△ABE(SAS),∴AP=AE,∠BAE=∠DAP,∴∠PAE=90°,由(3)可得:PB﹣PD=2AF,∴AF==,∴S△P AB=PB•AF=,同理可得:S△P′AB=,故△ABP的面积为:或.23.(13分)综合与实践如图,抛物线y=x2﹣x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,对称轴为直线l.(1)求点A,B,C的坐标;(2)试探究抛物线上是否存在点E,使OE=EC,若存在,请求出点E的坐标;若不存在,请说明理由;(3)设点F在直线l上运动,点G在平面内运动,若以点B,C,F,G为顶点的四边形是菱形,且BC 为边,直接写出点F的坐标.【解析】解:(1)当y=x2﹣x﹣2=0时,解得:x1=﹣1,x2=4,∴A(﹣1,0),B(4,0);当x=0时,y=x2﹣x﹣2=﹣2,∴C(0,﹣2);(2)∵OE=EC,∴点E在OC的垂直平分线上,∵C(0,﹣2),∴点E的纵坐标为﹣1,将y=﹣1代入抛物线y=x2﹣x﹣2得,x2﹣x﹣2=﹣1,解得x=;∴点E的坐标为(,﹣1)或(,﹣1);(3)∵y=x2﹣x﹣2与x轴交于A(﹣1,0),B(4,0),∴y=x2﹣x﹣2的对称轴为直线x==,设点F的坐标的坐标为(,m),①当BC为边,BF为对角线时,BC=CF,∴BC2=CF2,∴42+22=()2+(m+2)2,解得m=±,∴点F的坐标为(,﹣2)或(,﹣﹣2);②当BC为边,CF为对角线时,BC=BF,∴BC2=BF2,∴42+22=(4﹣)2+m2,解得m=±,∴点F的坐标为(,)或(,﹣);综上所述,点F的坐标为(,﹣2)或(,﹣﹣2)或(,)或(,﹣).。
福建省厦门市2016届中考数学第一次模拟试题
(试卷满分:150分 考试时间120分钟)
一、选择题(每题4分,共40分)
1.如果两个实数a ,b 满足a +b =0,那么a ,b 一定是( )
A .都等于0
B .一正一负
C .互为相反数
D .互为倒数
2.袋子中有10个黑球,1个白球,他们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .摸到黑球、白球的可能性大小一样 B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
3.下列运算结果是a 6
的式子是( ) A .a 2·a 3 B .(-a )6 C .(a 3)3 D . a 12-a 6
4.如图1,下列语句中,描述错误的是( )
A .点O 在直线A
B 上 B .直线AB 与直线OP 相交于点O
C .点P 在直线AB 上
D .∠AOP 与∠BOP 互为补角
图1
5.下列角度中,可以是多边形内角和的是( )
A .450°
B .900°
C .1200°
D .1400°
6.在数学活动课上,老师和同学们判断一个四边形是否为矩形,下面是一个学习小组拟定的方案,其中正确的是( )
A .测量对角线是否互相平分
B .测量两组对边是否分别相等
C .测量对角是否相等
D .测量其中三个角是否都为直角
7.命题“关于x 的一元二次方程x 2
+bx +1=0,必有实数解。
”是假命题。
则在下列选项中,可以作为反例的是( ) A .b =-1 B .b =-2 C .b =-3 D .b =-4
8.在平面直角坐标系中,将y 轴所在的直线绕原点逆时针旋转45°,再向下平移1个单位后得到直线a ,则直线a 对应的函数表达式为( )
A .y =x -1
B .y =-x +1
C .y =x +1
D .y =-x -1
9.如图2,正比例函数y 1=k 1x 的图像与反比例函数y 2=
2k x
的图像相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )
A .x <-2或x >2
B .x <-2或0<x <2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
图2
二、填空题(本大题有10小题,每小题4分,共40分)
11x的取值范围是;
12.计算(x+2)( x-2)=;
13.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分。
若公司分
别赋予面试成绩和笔试成绩6和4的权,则甲的平均成绩是;
14.若反比例函数y=
1
k
x
-
图像在第二、四象限,则k的取值范围是;
15.若函数y=1
x-
(1)当x=-2时,y=;
(2)当-1<x<4时,y的取值范围是;
16.如图3,以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,
5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,
(1)计算CD=;
(2)如果两个扇形的圆弧部分(AB和CD)相交,那么实数a的取值范围是 .
图3
三、解答题(本大题有11小题,共86分)
17.(本题满分7分)计算:()222sin30
-.
18.(本题满分7分) 在平面直角坐标系中,已知点A(—4,1),B(-2,0),C(—3,—1),请在图4上画出△ABC,并画出与△ABC关于y轴对称的图形.
图4
19.(本题满分7分) 解不等式组
22
263
x
x x
>
⎧
⎨
+≤+
⎩
.
20.(本题满分7分) 甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,求这两个小球的号码之和大于4的概率.
21.(本题满分7分)先化简下式,再求值:2211121x x x x +⎛⎫-⨯ ⎪+-+⎝⎭,其中,1x = . 22.(本题满分7分) 某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生
产96个零件比8个工人生产这些零件少用2小时,求这台机器每小时生产多少个零件?
23.(本题满分7分) 如图5,已知AB //CD ,AC 与BD 相交于E ,若CE =2,AE =3,AB =5,BD =
203
,求sinA 的值.
图5
24.(本题满分7分) 如图6,在平面直角坐标系中,已知点A (2,0),P 是函数y =x (x >0)图象上一
点,PQ ⊥AP 交y 轴于点Q .设点P 的横坐标为a ,点Q 的纵坐标为b ,若OP ,求b 的取值范围.
图6
25.(本题满分7分) 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线
叫做这个四边形的和谐线.已知在四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数.(注:已画四边形ABCD 的部分图,请你补充完整,再求解)
图① 图②
图③
26.(本题满分11分) 已知BC 是⊙O 的直径,BF 是弦,点A 在圆上,且AD 过圆心O ,AD ⊥BF ,AE ⊥BC 于E ,
连接FC .
(1)如图7,若OE =2,求CF ;
(2)如图8,连接DE ,并延长交FC 的延长线于G ,连接AG ,请你判断直线AG 与⊙O 的位置关
系,并说明理由.
图7 图8
27.(本题满分12分)已知直线y =kx +m (k <0)与抛物线2y x bx c =++相交于抛物线的顶点P 和另一
点Q .
(1)若点P (2,-c ),Q 的横坐标为—1,求点Q 的坐标;
(2)过点Q 作x 轴的的平行线与抛物线2y x bx c =++的对称轴交于点E ,直线PQ 与y 轴交与点
M ,若PE =2EQ ,24(40)4
b c b -=-<≤,求△OMQ 的面积S 的最大值.。