小学六年级奥数课件:抓住不变量解题共17页
- 格式:ppt
- 大小:1.12 MB
- 文档页数:9
“不变量”解题1.认识不变量2.能用不变量解题1.学会找出有用的不变量2.抓住题目的不变量,把单位“1”往不变量统一一个数量的变化,往往会引起其他数量的变化。
如“某班转走3名女生”,女生人数变了,总人数也跟着变了,男生与女生、女生与总人数之间的倍数关系也变了……只有注意到这些变化,才能防止出错。
但在这些数量变化时,与它们相关的另外一些数量却没有改变。
在分析数量关系时,这种不变量常常会起到非常重要的作用。
抓住不变量进行思考,可以顺利解答一些经典的应用题,能达到事半功倍的效果。
根据不变量的不同,可以将“量不变”应用题分为三种类型:“总量不变”应用题、“相差量不变”应用题和“部分量不变”应用题。
总量不变这类应用题的特点是:题中两个变化的量中,一个量在增加,另一个量减少,但是增加的和减少的同样多,所以两个量的总和保持不变。
解题时,一般把两个量的总和看作单位“1”或者把其中一个量看作是1倍的量。
例1.小丽有故事书108本,小芳有故事书140本,小芳借了若干本故事书给小丽后,小丽的故事书的本数是小芳的3倍。
问小芳借了多少本故事书给小丽?练习1.有一个书架,上层与下层书的数量比是2:3,现从上层拿15本书给下层,这时上层与下层书的数量比是3:7,求原来上、下层各有多少本书?两人拥有故事书的总本数不变,这是本题解题的关键。
例2.某校合唱队人数是舞蹈队人数的23,如果将合唱队队员调10人到舞蹈队,则合唱队人数变为舞蹈队人数的87,原合唱队有多少人?练习1.某校一年级有两个班,一班人数是二班人数的53,从二班调5人到一班后,一班人数是二班的人数的97,求原来一、二班有多少人?关键在于找出总人数是不变量部分不变这类应用题的特点是:两个量中的一个量发生了变化,而另一个量不变。
解题时可以把这个不变的量作为解题突破口,寻找解题方法。
例1.有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖?练习1.有含盐率15%的盐水200千克,要使含盐率降为5%,需要加水多少千克?分析题目找到不变的部分就是解题的关键例2.小军原有的钱数是小明的43,小军用去100元后,这时小军的钱数是两人总钱数的175。
小学六年级奥数思维训练抓“不变量”解题
一、尝试练习
1、
319的分子、分母加上同一个数并约分后得57
,那么加上的数是多少?
2、将
75的分子与分母同时减去同一个数,新的分数约分后是32,减去的数是多少?
二、训练营地
1、将
4361的分子与分母同时加上某数后得79,求所加的这个数。
2、将
5879这个分数的分子、分母都减去同一个数,新的分数约分后是23
,求减去的数是多少?
3、将一个分数的分母加上1得31,分母加上5得51。
原来的分数是多少?
4、将一个分数的分母减去2得45,如果将它的分母加上1,则得23,求这个分数。
六年级奥数——抓“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】437将的分子与分母同时加上某数后得,求所加的这个数。
619解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是7分母的,由此可求出新分数的分子和分母。
”97分母:(61-43)÷(1-)=8197分子:81×=63981-61=20或63-43=20437解法二:的分母比分子多18,的分母比分子多2,因为分数的与分母的差不变,所以6197将的分子、分母同时扩大(18÷2=)9倍。
97①的分子、分母应扩大:(61-43)÷(9-7)=9(倍)9777×963②约分后所得的在约分前是:==98199×9③所加的数是81-61=20答:所加的数是20。
1练习1:9721、分数的分子和分母都减去同一个数,新的分数约分后是,那么减去的数是多少?1815132、分数的分子、分母同加上一个数后得,那么同加的这个数是多少?13535 的分子、分母加上同一个数并约分后得、,那么加上的数是多少?31975824、将这个分数的分子、分母都减去同一个数,新的分数约分后是,那么减去的数是793多少?【例题2】42将一个分数的分母减去2得,如果将它的分母加上1,则得,求这个分数。
534解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得”5523可知,分母比分子的倍还多2。
由“分母加1得”可知,分母比分子的倍少1,432从而将原题转化成一个盈亏问题。
35分子:(2+1)÷(-)=12243分母:12× -1=172解法二:两个新分数在未约分时,分子相同。
六年级奥数第二十一周抓“不变量”解题
专题简析:
一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
例1.
将437的分子与分母同时加上某数后得 619
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,
所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子
7是分母的,由此可求出新分数的分子和分母。
” 9
7分母:(61-43)÷(1-)=81 9
7分子:81×=63 9
81-61=20或63-43=20
437解法二的分母比分子多18,的分母比分子多2,因为分数的与分母的差不变,所以619
7将18÷2=)9倍。
9
7①(61-43)÷(9-7)=9(倍) 9
777×963②约分后所得的在约分前是:=999×981
③所加的数是81-61=20
答:所加的数是20。
练习1:
9721、分数的分子和分母都减去同一个数,新的分数约分后是 1815 132、分数的分子、分母同加上一个数后得 135
353、 197
4、将582分母都减去同一个数,新的分数约分后是,那么减去的数是多少? 793
例2:
42将一个分数的分母减去21,则得,求这个分数。
53。
2015年暑期六年级奥数——抓住不变量解题讲义姓名
一、抓住和不变
1.甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?
2.某校五年级学生参加大扫除的人数是未参加的1,后来又有2个同学主动参加,实4
1际参加的人数是未参加人数的,问某班五年级有学生多少人? 3
3.甲、乙两人原有钱的比是3∶4,后来甲又给乙50元,这时甲钱是乙的各有多少元钱?
二、抓住部分量不变 1,原来两人2
14.有科技书和文艺书360本,其中科技书占总数的,现在又买来一些科技书,此时9
1科技书占总数的。
又买来多少本科技书? 6
5.有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?
6.现有浓度为20%的食盐水80克。
把这些食盐水变为浓度为75%的食盐水,需要再加食盐多少克?
三、抓住差不变
7.王叔叔和李叔叔每月工资收入比为3∶2,他们两家每月支出为1200元,两家每月结余的钱数比为9∶4,王叔叔和李叔叔每月工资各为多少元?
8.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。
那么,原来混合糖中奶糖和巧克力各有多少个?。
六年级奥数抓不变量解题
在六年级奥数中,抓不变量是一种常用的解题方法。
抓不变量是指在问题的每一步变换中,通过找到一个保持不变的性质来解决问题。
以下是一些常见的抓不变量解题方法和例子:
1. 总数不变:问题中的某些属性总数保持不变。
例子:有一串递增的连续整数,如果删除其中一个数,则剩下的数可以排成递增的连续整数。
这里总数不变的抓不变量是递增的连续整数的总数。
2. 和不变:问题中的某些数的和保持不变。
例子:一个棋盘上有若干个棋子,每次转动或移动棋盘上的一行或一列。
证明每次转动或移动后,棋盘上白色棋子的和与黑色棋子的和保持相同。
这里和不变的抓不变量是白色棋子的和与黑色棋子的和。
3. 差不变:问题中的某些数之间的差保持不变。
例子:有一组数字,每次选择其中的两个数a和b,然后将它们替换为a+b 和|a-b|。
证明无论选择哪两个数,替换后的数列的最小值都保持不变。
这里差不变的抓不变量是任意两个数的差的绝对值。
抓不变量方法通常需要通过观察问题的性质和变换规律来发现,并根据它们构造合适的抓不变量。
通过抓不变量,可以简化问题的复杂性,提供思考方向,使问题的解决更加直观和简单。
第12讲 抓不变量解题1.有关X的“灵魂⼋问”2.抓不变量解题男⽣与⼥⽣的⽐是5:3,如果把男⽣当成X,则⼥⽣为_____男⽣与⼥⽣的⽐是7:3,如果把⼥⽣当成X,则男⽣为_____男⽣与⼥⽣的⽐是5:3,如果把全班当成X,则⼥⽣为_____4男⽣是⼥⽣的 ,如果把男⽣当成X,则⼥⽣为_____94男⽣是⼥⽣的 ,如果把全班当成X,则男⽣为_____94男⽣是⼥⽣的 ,如果把⼥⽣当成X,则全班为_____94男⽣是全班的 ,如果把⼥⽣当成X,则男⽣为_____9男⽣是全班的30%,如果把男⽣当成X,则⼥⽣为_____学校合唱团男⽣⼈数是⼥⽣的40%,⼜来了3名⼥⽣后,男⽣3⼈数是⼥⽣的 .学校合唱团有男⽣多少⼈?8兄弟两⼈各有⼈⺠币若⼲元,其中弟的钱数是兄的80%,若弟给兄24元,则弟的钱数是兄的 ,求兄弟两⼈原来各有多少元?3“抓不变量解题”的⼀般步骤国庆节前⼣,六(2)班同学分成两个组打扫卫⽣,第⼀组和第⼆组⼈数⽐是7:3,后来发现第⼆组⼈⼿明显不够,于是卫⽣委员从第⼀组派5名同学到第⼆组,这时⼀、⼆两组⼈数⽐是3:2,求六(2)班共有多少名同学?去年王爷爷栽了⼀枇桃树和梨树,桃树和梨树的⽐是5:3,今年春季王爷爷⼜种了7棵梨树,这样梨树占两种树总数的 ,求现在两种有多少棵?115数学课外兴趣⼩组中,上学期男⽣占 ,这学期增加21名⼥⽣后,男⽣就只占 了,这个⼩组现有⼥⽣多少⼈?9552有两筐梨,⼄管是甲筐的 ,从甲筐取出5千克梨放⼊⼄管后,⼄筐的梨是甲筐的 ,甲、⼄两筐梨共重多少千克?5397和定部分定⽅程全搞定差不变今年妈妈54岁,⼥⼉26岁,当⼥⼉的年龄是妈妈的 之时,妈妈多少岁?239有两堆⻩沙,第⼀堆重25吨,第⼆堆重21吨.如果从这两堆中各⽤去同样多的⼀部分后,第⼆堆剩下的吨数是第⼀堆的75%.每堆⽤去的吨数是多少?。
抓“不变量”解题1将4361的分子与分母同时加上某数后得79,求所加的这个数。
2、分数97181的分子和分母都减去同一个数,新的分数约分后是25,那么减去的数是多少?3、分数113的分子、分母同加上一个数后得35,那么同加的这个数是多少?4、319的分子、分母加上同一个数并约分后得57,那么加上的数是多少?5、将5879这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?6将一个分数的分母减去2得45,如果将它的分母加上1,则得23,求这个分数。
7 将一个分数的分母加上2得79,分母加上3得34。
原来的分数是多少?8 将一个分数的分母加上2得34,分母加上2得45。
原来的分数是多少?9 将一个分数的分母加上5得37,分母加上4得49。
原来的分数是多少?10 将一个分数的分母减去9得58,分母减去6得74。
原来的分数是多少?11在一个最简分数的分子上加一个数,这个分数就等于57 。
如果在它的分子上减去同一个数,这个分数就等于12 ,求原来的最简分数是多少。
12、 一个最简分数,在它的分子上加一个数,这个分数就等于58 。
如果在它的分子上减去同一个数,这个分数就等于12,求这个分数。
13、 一个最简分数,在它的分子上加一个数,这个分数就等于67 。
如果在它的分子上减去同一个数,这个分数就等于13,求这个分数。
14、 一个分数,在它的分子上加一个数,这个分数就等于79 。
如果在它的分子上减去同一个数,这个分数就等于35,求这个分数。
15将一个分数的分母加3得79 ,分母加5得34 。
原分数是多少?16、一个分数,将它的分母加5得56 ,加8得45 ,原来的分数是多少?(用两种方法)17、将一个分数的分母减去3,约分后得67;若将它的分母减去5,则得78。
原来的分数是多少?(用两种方法做)18、把一个分数的分母减去2,约分后等于34。
如果给原分数的分母加上9,约分后等于57。
求原分数。
学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第15讲——抓“不变量”解题授课类型T同步课堂P实战演练S归纳总结掌握“总量不变”,“相差量不变”和“部分量不变”三种不变量思想,并能用这些思想教学目标解决现实生活中的问题。
授课日期及时段T(Textbook-Based)——同步课堂知识梳理一个数量的变化,往往会引起其他数量的变化。
如“某班转走3名女生”,女生人数变了,总人数也跟着变了,男生与女生、女生与总人数之间的倍数关系也变了……只有注意到这些变化,才能防止出错。
但在这些数量变化时,与它们相关的另外一些数量却没有改变。
在分析数量关系时,这种不变量常常会起到非常重要的作用。
抓住不变量进行思考,可以顺利解答一些经典的应用题,能达到事半功倍的效果。
根据不变量的不同,可以将“量不变”应用题分为三种类型:“总量不变”应用题、“相差量不变”应用题和“部分量不变”应用题。
典例分析考点一:总量不变题中两个变化的量中,一个量在增加,另一个量减少,但是增加的和减少的同样多,所以两个量的总和保持不变。
解题时,一般把两个量的总和看作单位“1”或者把其中一个量看作是1倍的量。
例1、有一个书架,上层与下层书的数量比是7:8,现从上层拿10本给下层,这时上层与下层的数量比是8:7,求原来上、下层各有多少本?例2、小军原有的钱数是小明的3/4,小军用去100元后,这时小军的钱数是两人总钱数的5/17。
小军原来有多少元钱?例3、唐洋小学六(4)班男生人数占班级总人数的9/16,后来又转走了4名男生,这时男生人数占班级总人数的8/15,求六(4)班原来有学生多少名?P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、育才小学六(1)班原有学生56人,其中女生人数占全班人数的3/7,现又转入若干名女生,这时,女生人数占全班的13/29。
问又转入多少名女生?课后反击1、育才小学六(1)班原有女生26人,其中女生人数占全班人数的13/29,现又转出若干名女生,这时,女生人数占全班的3/7。