湖南省株洲市茶陵县2020-2021学年九年级上学期期末数学试题 (1)
- 格式:docx
- 大小:533.88 KB
- 文档页数:23
2020-2021学年度第⼀学期九年级数学期末考试试卷及答案2020-2021学年度第⼀学期期末考试试卷九年级数学⼀、选择题:本⼤题共10⼩题,每⼩题3分,共30分,每⼩题只有⼀个正确选项,将此选项的字母填在题后括号内.1.下列图形中既是轴对称图形⼜是中⼼对称图形的是( )2.⼀元⼆次⽅程xx=-232化成⼀般形式后,⼆次项系数为3,它的⼀次项系数和常数项分别是( )A.1、2B.-1、-2C.3、2D.0、-23.⊙O的半径r=10cm,圆⼼到直线的距离OA=8cm,则直线与圆的位置关系是( )A.相交B.相切C.相离D.不确定4.有下列四个说法,其中正确说法的个数是( )①图形旋转时,位置保持不变的点只有旋转中⼼;②图形旋转时,图形上的每⼀个点都绕着旋转中⼼旋转了相同的⾓度;③图形旋转时,对应点与旋转中⼼的距离相等;④图形旋转时,对应线段相等,对应⾓相等,图形的形状和⼤⼩都没有发⽣变化A.1个B.2个C.3个D.4个5.对于抛物线3)1(2y2+--=x,下列判断正确的是( )A.抛物线的开⼝向上B.抛物线的顶点坐标为(-1,3)C.对称轴为直线x=1D.当x>1时,y随x的增⼤⽽增⼤6.如图,点A,B,C三点均在⊙O上,若∠A=30°,则∠BOC的度数是( )A.30°7.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°8.某超市⼀⽉份的营业额为100万元,第⼀季度的营业额共800万元,如果平均每⽉增长率为x,则所列⽅程应为( )A.100(1+x)2=800B.100+100×2x=800C.100+100×3x=800D.100[1+(1+x)+(1+x)2]=8009.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上⼀点,∠BMO=120°,则⊙C的直径为( )A.6B.5C.3D.2310.⼆次函数)0(2≠++=acbxaxy的顶点坐标为(﹣1,n),其部分图象如图所⽰.以下结论错误的是( )A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的⽅程12+=++ncbxax⽆实数根.⼆、填空题:本⼤题共8⼩题,每⼩题3分,共24分.11.中国汉字有许多具有⼏何图形的特性,观察“⽺,⼠,⽥,旦”这4个汉字有⼀个共同特性都是________图形,其中_______字可看成中⼼对称图形.12.点P(-1,2)关于原点的对称点坐标为.13.抛物线23xy=先向右平移2个单位,再向上平移5个单位,所得抛物线的解析式为___ __.14.如图,△ABC为等边三⾓形,D为△ABC内⼀点,△ABD逆时针旋转后到达△ACP 的位置,则(1)旋转中⼼是____;(2)旋转⾓度是______;(3)△ADP是______三⾓形.15.如图所⽰,图中五⾓星绕着中⼼O最⼩旋转度能与⾃⾝重合.16.若⽅程有两个相等的实数根,则k= _________.17.如图,⊙O是等边三⾓形ABC的外接圆,点D是⊙O上⼀点,则∠BDC= _________.题号⼀⼆三四总分得分第15题图第14题图第17题图第18题图第6题图第10题图第7题图第9题图第1页(共4页)。
第1页 共10页 ◎第2页 共10页 湘教版2020-2021学年度第一学期期末质量检测九年级数学试卷 满分:120分考试时间:100分钟 题号 一 二 三 总分得分评卷人 得分一、单选题(共30分)1.(本题3分)下列方程中,属于一元二次方程的是 ( )A .x-1=2x-3B .2x-x²=0C .3x-2=yD .2130x x -+=2.(本题3分)下列说法正确的是( )A .所有的等腰梯形都相似B .所有的平行四边形都相似C .所有的圆都相似D .所有的等腰三角形都相似3.(本题3分)在正方形网格中,ABC 如图放置,则tan CAB ∠=( )A .32B .23C .21313D .12 4.(本题3分)若点(-2,)、(-1,)、(2,)在反比例函数y=-100x 的图象上,则( ) A .>> B .>> C .>> D .>> 5.(本题3分)有四组线段长度如下:①2,1,2,2;② 3,2,6,4;③10,1,5,2;④1,3,5,7能成比例的线段有( ). A .1组 B .2组 C .3组 D .4组 6.(本题3分)如图,已知D 、E 分别是ABC 的AB 、AC 边上的一点,//DE BC ,且:1:2AD AB =,则ADE 与四边形DBCE 的面积之比为( ) A .1:4 B .1:3 C .1:2 D .2:3 7.(本题3分)关于x 的一元二次方程x 2-2x +m=0有两个不相等的实数根,则m 的取值范围是( ) A .m >0 B .m <1 C .m >1 D .m≤1第3页 共10页 ◎ 第4页 共10页8.(本题3分)函数y=kx+k ,与y=x k 在同一坐标系中的图象大致如图,则( )A 、K ﹥0B 、K ﹤0C 、-1﹤K ﹤0D 、K ﹤-19.(本题3分)某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了右边的折线统计图,下列说法正确的是( ) A .极差是47B .中位数是58C .众数是42D .极差大于平均数 10.(本题3分)如图,在平面直角坐标系中,过y 轴正半轴上一点C 作直线l ,分别与2y x=-(x <0)和3y x =(x >0)的图象相交于点A 、B ,且C 是AB 的中点,则△ABO 的面积是( )A .32B .52C .2D .5 评卷人得分 二、填空题(共32分)11.(本题4分)x x =2,则方程的解为___________.12.(本题4分)若点P 是线段AB 的黄金分割点,AB=10cm ,则较长线段AP的长是_____cm .13.(本题4分)已知x=1是一元二次方程2x mx n 0-+=的一个根,则22m 2mn n -+的值为 .14.(本题4分)在正方形网格中,ABC △的位置如图所示,则sin A ∠的值为__________.第5页 共10页 ◎ 第6页 共10页15.(本题4分)若数据12345,,,,x x x x x 的平均数为4,则数据123452,2,3,3,15x x x x x +-+-+的平均数为__________.16.(本题4分)如图,AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,4CD =,则GH 的长为__________.17.(本题4分)如图,矩形ABCD 中,AD=6,CD=6+22,E 为AD 上一点,且AE=2,点F ,H 分别在边AB ,CD 上,四边形EFGH 为矩形,点G在矩形ABCD 的内部,则当△BGC 为直角三角形时,AF 的值是 . 18.(本题4分)如图,双曲线3(0)y x x =>的图像经过正方形OCDF 的对角线交点A ,则这条双曲线与CD 的交点B 的坐标为____________.评卷人得分 三、解答题(共58分)19.(本题9分)计算:()0o 2020+4tan 45+3---20.(本题9分)解下列方程:(1) 2x - 4x - 1 = 0(2) ()24x += 5 (x +4 )21.(本题9分)如图,在△ABC中,∠B=∠AED,AB=5,AD=3,CE=6,求证:(1)△ADE∽△ABC;(2)求AE的长.22.(本题9分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)第7页共10页◎第8页共10页23.(本题10分)某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利1200元,每件衬衣降价多少元?24.(本题12分)阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程2x1=-时,突发奇想:2x1=-在实数范围内无解,如果存在一个数i,使2i1=-,那么当2x1=-时,有x i=±,从而x i=±是方程2x1=-的两个根.据此可知:()1i可以运算,例如:32i i i1i i=⋅=-⨯=-,则4i=____,2011i=____,2012i=____;()2方程2x2x20-+=的两根为________(根用i表示).第9页共10页◎第10页共10页参考答案1.B【分析】【详解】A 、最高次数是1次,是一次方程,故选项错误;B 、正确;C 、含有2个未知数,故选项错误;D 、是分式方程,故选项错误.故选B .2.C【解析】A 选项中,因为“两个等腰梯形不一定相似”,所以A 中说法错误;B 选项中,因为“两个平行四边形不一定相似”,所以B 中说法错误;C 选项中,因为“所有的圆都是相似的”,所以C 中说法正确;D 选项中,因为“两个等腰三角形不一定相似”,所以D 中说法错误;故选C.点睛:根据相似多边形的定义:“对应边都成比例,对应角都相等的两个多边形相似”结合等腰梯形、平行四边形、圆和等腰三角形的特征分析即可得到正确结论.3.B【分析】依据正切函数的定义:正切函数是直角三角形中,对边与邻边的比值叫做正切.由Rt ABC 中3AB =,2BC =,求解可得.【详解】解:在Rt ABC 中,3AB =,2BC =, 则23BC tan CAB AB ∠==, 故选:B .【点睛】本题主要考查解直角三角形,解题的关键是掌握正切函数的定义.4.B【解析】∵反比例函数y=-100x的k =−100<0, ∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大. ∵−2<−1<0,∴点(−2,y 1),(−1,y 2)位于第二象限,∴y 2>y 1>0,∵点(2,y 3)位于第四象限,∴y 3<0,∴y 2>y 1>0> y 3.故选:B.5.C【解析】试题分析:成比例的线段的定义:若四条线段a 、b 、c 、d 满足a :b=c :d ,则称这四条线段成比例;也可运用bc=ad 即其中两对数的乘积相等,也可说明这四条线段成比例. ①2)2(12=⨯,②6243⨯=⨯,③52110⨯=⨯,均能成比例④无法找到其中有两对数的乘积相等,故不能成比例故选C.考点:成比例的线段的定义点评:本题属于基础应用题,只需学生熟练掌握成比例的线段的定义,即可完成. 6.B【解析】【分析】因为DE ∥BC ,所以可得△ADE ∽△ABC ,根据相似三角形的面积比等于相似比的平方解答即可.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴21==4ADE ABC S AD SAB ⎛⎫ ⎪⎝⎭,∴1=3ADE DBCE S S 四边形,故选B . 【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.7.B【分析】根据根的判别式,令△>0即可求出根的判别式.【详解】∵关于x 的一元二次方程x 2−2x+m=0有两个不相等的实数根,∴△=(−2)2−4×m>0,∴4−4m>0,解得m<1.故答案选B.【点睛】本题考查的知识点是根的判别式,解题的关键是熟练的掌握根的判别式.8.A .【解析】试题分析:由图可知,函数k kx y +=在第一、二、三象限中,可得k>0,又 反比例函数xk y =在第一、三象限中,∴k>0,综上所述,k>0. 考点:1、一次函数图像与性质;2、反比例图像与性质.9.B【详解】解:A. 极差为:83−28=55,故错误;B. 中位数为:(58+58)÷2=58,正确;C. ∵58出现的次数最多,是2次,∴众数为:58,故错误;D.计算可知平均数为56.25大于极差.故错误.故选B .10.B【解析】【分析】根据题意A 、B 的横坐标化为相反数,所以设A (2,m m ---)则B (m ,3m),根据题意中位线等于上下底和的一半,求得表示出OC ,然后根据S △ABO =S △AOC +S △BOC 即可求得.【详解】∵C 是AB 的中点,∴设A (2,m m ---)则B (m ,3m), ∴OC =132522mm m ⎛⎫+= ⎪⎝⎭ ∴S △ABO =S △AOC +S △BOC =1552222m m ⨯⨯= 故选:B .【点睛】 本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键. 11.,1,021==x x【解析】试题分析:x x =2,20,(1)0x x x x -=-=,所以,1,021==x x考点:解一元二次方程.12. 5【解析】∵P 是线段AB 的黄金分割点,AP >BP ,∴AP=12AB , ∵AB=10cm ,∴AP=105=.故答案为5.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即AP=51-AB. 13.1.【解析】 试题分析:∵x=1是一元二次方程2x mx n 0-+=的一个根,∴1m n 0m n 1-+=⇒-=. ∴()2222m 2mn n m n 11-+=-==.试题解析:考点:1. 方程的根;2. 求代数式的值;3.整体思想的应用. 14.1010【解析】过C 作CD ⊥AB 于D ,∵AB 224+4=42,BC =2,∴12×AB ⋅CD =12BC ×4, ∴CD 2,∵AC 222+4=25∴sin ∠A =2101025CD AC ==, 故答案为10. 15.7【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据1x ,2x ,3x ,4x ,5x 的和,然后再用平均数的定义求新数据的平均数.【详解】解:一组数据1x ,2x ,3x ,4x ,5x 的平均数是4,有123451()45x x x x x ++++=, ∴1234520x x x x x ++++=,那么12x +,22x -,33x +,43x -,515x +的平均数为:1234512345111(223315)(15)357555x x x x x x x x x x ++-+++-++=+++++=⨯=; 故答案为:7.【点睛】本题考查的是算术平均数的求法及运用,解题的关键是掌握算术平均数的定义. 16.43【解析】∵AB CD ,∴ABD D ∠∠=,A ACD ∠∠=,∴ABG CDG ∽, ∴BG AB 21DG CD 42===, ∵GH CD ,∴BHG BCD ∽, ∴BG HG 1BD CD 3==, ∴14GH CD 33==. 17.2或4【解析】试题分析:如图过点G 作MN ⊥AB 垂足为M ,交CD 于N ,作GK ⊥BC 于K .∵四边形EFGH 是矩形,∴GH=EF ,GH ∥EF ,∠A=90°,∴∠DNM+∠NMA=90°,∴∠AMN=∠DNM=90°,∵CD ∥AB ,∴∠NHG=∠AFE ,在△HNG 和△FAE 中,{HNG FAENHG AFE GH EF∠=∠∠=∠=,∴△HNG ≌△FAE ,∴AE=NG=2,ED=GM=4,∵四边形NGKC 、四边形GMBK 都是矩形,∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK ∽△GBK ,∴CK GK GK BK=, ∴GK=MB=CN=22,∴DN=AM=AB ﹣MB=6,∴四边形AMND 是正方形,设AF=x ,则FM=6﹣x ,∵△AEF ∽△MFG ,∴AE AF MF MG=, ∴264x x =- ∴x 2﹣6x+8=0,∴x=2或4.∴AF=2或4.故答案为2或4考点:矩形的性质、全等三角形得到和性质、相似三角形的判定和性质18.2⎛⎫ ⎪ ⎪⎝⎭【分析】根据题意先求出正方形的边长,然后确定B 的横坐标,代入解析式即可求得B 的纵坐标.【详解】解:设正方形的边长为2a ,则点A 的坐标为(a ,a ),因为A 在3y x =, ∴a ×a=3,即a =∴B 的横坐标为∵B 在3y x =上,∴y ==,∴点B 的坐标为2⎛⎝⎭,故答案为:2⎛ ⎝⎭.【点睛】本题主要了正方形的性质、反比例函数图象上点的坐标特征以及勾股定理等知识,求出点A 的坐标是关键.19.5【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.【详解】解:原式12135.【点睛】此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.20.(1)x 2=+ 或 x 2=(2)x 4=- 或 x 1=【解析】【分析】(1)根据配方法,即可解出方程的解;(2)根据因式分解法中的提公因式法,即可解出方程的解;【详解】解:(1)2410x x --=2445x x -+=()225x -=x 2-=∴x 2=或 x 2=-.(2)()24x += 5 (x +4 )∴()()24540x x +-+=()()x 4x 450++-=()()x 4x 10+-=∴x 4=- 或 x 1=【点睛】本题考查了解二元一次方程的解法,解题的关键是掌握配方法解题和因式分解法解题. 21.(1)证明见解析(2)9【解析】【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】(1)∵∠B=∠AED ,∠A=∠A ,∴△ADE ∽△ABC(2)解:由(1)知,△ADE ∽△ABC ,则AD AB = AE EC, 即 AD AB = AE AE EC + . ∵AB=5,AD=3,CE=6,∴ 35 = 6AE AE + , ∴AE=9【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.22.该建筑物的高度AB 为(61+米.【分析】设AM x =米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.【详解】解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan 3AM EM x AEM ==∠,由题意得,FM EM EF -=,即403x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB 为(61+米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.20元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200整理,得x2-30x+200=0解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应略去,∴x=20.答:每件衬衫应降价20元.【点睛】本题考查的知识点是一元二次方程的应用,解题关键是读清题意,进行解答. 24.(1)1;-i;1(2)1+i和1-i【分析】(1)原式各项根据阅读材料中的方法计算即可得到结果;(2)一元二次方程解法--配方法,结合阅读材料中的方法求出解即可.【详解】解:(1)由题意可得i4=1,i2012=1,i2013=i;故答案为1;1;i;(2)方程整理得:x2-2x=-2,配方得:x2-2x+1=-1,即(x-1)2=-1,开方得:x-1=±i,解得:x1=1+i,x2=1-i.故答案为x1=1+i,x2=1-i。
2020年下期九年级期终教学质量检测数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题4分,共40分):1.下列函数中,表示的是x y 反比例函数的是( )A . x y 2=B . x y 2= C .xy 2= D .x y =2.在Rt △ABC 中,∠C =90°,若A ∠=30°,则A sin 的值是 ( )A .21B .22C .23D .13.若四边形ABCD 与四边形D C B A ''''相似,AB 与B A '',AD 与D A ''分别是对应边,cm AB 8=,cm B A 6='',cm AD 5=,则D A ''等于 ( )A . cm 215B . cm 415C .cm 320D .cm 5484.每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了了解全校2 000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI )标准,体重超标的有15名学生,则估计全校体重超标学生的人数为 ( )A. 100B. 150C. 200D. 20005.用配方法解方程362=-x x 时,变形正确的是 ( )A.3)3(2=-x B .9)3(2=-x C .12)3(2=-xD .12)3(2=+x6.⊙O 的直径为10,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是( )A. 相交B. 相切C. 相离D. 无法确定7.对于二次函数212+-=-)(x y 的图像,下列说法正确的是( ) A. 图像有最低点,其坐标是),(21 B. 图像有最高点,其坐标是),(21- C. 的增大而减小随时,当x y x 1< D. 的增大而减小随时,当x y x 1> 8.在△ABC 中,13+=BC ,∠B =45°,∠C =30°,则△ABC 的面积为( )A .213- B .123+ C .213+ D .13+9.如图,在半径为4的⊙O 中,CD 是直径,AB 是弦,且CD ⊥AB ,垂足为点E,∠AOB=90°,则阴影部分的面积是( )A .44-πB .42-πC .π4D .π210.如图,已知顶点为)63(--,的抛物线c bx a y x ++=2经过点)41(--,,则下列结论:①ac b 42>;②62-≥++c bx a x ;③639-=+-c b a ;④关于x 的一元二次方程42-=++c bx a x 的根为15--和;⑤若点)2(m ,-,)5(n ,-在抛物线上,则n m >,其中正确结论的个数共有 ( )A .1个B .2个C .3个D .4个 二、填空题(本题共8小题,每小题4分,共32分): 11.一元二次方程0)3)(2(=+-x x 的根是 .12.将抛物线x y 23=先向左平移2个单位长度,再向上平移1个单位长度,所得新抛物线的表达式为 . 13.若53=b a ,则=+ba a_______. 14.数据1,2,3,4,5的方差为 .15.在△ABC 中,∠A ,∠B 均为锐角,且有03tan )21(cos 2=+--B A ,则△ABC 是 三角形.16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC.若28==CD AB ,,则EC 的长为 .17.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则x =________.18.如图所示,在△ABC 中,68==AC AB ,,P 是AC 的中点,过P 点的直线交AB 于点Q ,若以A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为________. 三、解答题(本大题共8小题,共78分): 19.(本小题满分6分)计算: ︒-︒+︒-︒30sin 2360cos 30tan 45sin 22220.(本小题满分8分,每小题4分)解下列方程: (1).1)1(2=-x (2). 24)5(=+x x21.(本小题满分8分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A 组:时间小于0.5小时;B 组:时间大于等于0.5小时且小于1小时;C 组:时间大于等于1小时且小于1.5小时;D 组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A 组的人数是________人,并补全条形统计图; (2)本次调查数据的中位数落在________组;(3)根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人? 22.(本小题满分10分)在Rt △ABC 中,∠C=90°,△ACD 沿AD 折叠,使得点C 落在斜边AB 上的点E 处. (1)求证:△BDE ∽△BAC ;(2)已知AC=6,BC=8,求线段AD 的长度.23.(本小题满分10分)关于x 的一元二次方程xx xk x 212034,的两个实根是=-+-.(1)已知k =2,求x x x x 2121++; (2)若x x 213=,试求k 的值。
湘教版2020-2021学年度九年级数学第一学期期末模拟能力测试题(附答案详解)一、单选题1.函数21k y x +=(k 为常数)的图象过点(2,y 1)和(5,y 2),则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .与k 的取值有关2.已知23+是关于x 的方程240x x c -+=的一个根,则方程的另一个根与c 的值是( )A .23- ,1B .63--,1583-C .32-,-1D .23+,743+3.已知R t A B C 中,A B∠≠∠,点P 是边AC 上一点(不与A 、C 重合),过P 点的一条直线与A B C 的边相交,所构成的三角形与原三角形相似,这样的直线有( )条A .1B .2C .3D .44.下列方程中,一元二次方程有( )①3x 2+x =20;②2x 2﹣3xy +4=0;③214x x -=;④x 2=1;⑤2303x x -+= A .2个 B .3个 C .4个 D .5个5.用配方法解方程x 2﹣8x +2=0,则方程可变形为( )A .(x ﹣4)2=5B .(x +4)2=21C .(x ﹣4)2=14D .(x ﹣4)2=8 6.下列是随机事件的是( )A .口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B .平行于同一条直线的两条直线平行C .掷一枚图钉,落地后图钉针尖朝上D .掷一枚质地均匀的骰子,掷出的点数是77.如图,在扇形AOB 中,AC 为弦,140A O B ∠︒=,60C A O ∠︒=,6O A =,则B C 的长为( )A .43πB .83πC .23πD .2π8.2s in60︒的值等于( )A .1 B 2 C 3 D .29.关于一元二次方程x 2﹣4x +4=0根的情况,下列判断正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根二、填空题 10.如图,直线2y x b =+与双曲线()0k y k x=>交于点A 、D ,直线AD 交y 轴、x 轴于点B 、C ,直线23y x n =-+过点A ,与双曲线()0k y k x =>的另一个交点为点E ,连接BE 、DE ,若4A B E S ∆=,且:3:4A B E D B ES S ∆∆=,则k 的值为_____.11.一个扇形的面积为4πcm 2,弧长为2πcm ,则此扇形的圆心角为_____度.12.已知方程5x 2+kx ﹣6=0有一个根是2,则另一个根是_____,k =_____.13.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.主视图 左视图 俯视图14.如图所示,Rt △ABC 与Rt △AB ′C ′关于点A 成中心对称,若∠C =90°,∠B =30°,BC =1,则BB ′的长度为_____.15.若1x ,2x 是一元二次方程2230x x +-=的两个根,则221212x x xx 的值是_________.16.如图,点A ,B ,C ,D 在O 上,2A B B C =,3A D B C=,延长B C ,AD 交于点P ,若C B D18∠=,则P ∠的大小为________.17.如图,在A B C △中,AD 是中线,F 是AD 上的点,:2:3AF F D =,BF 的延长线交AC 于点E ,则:A EE C =__________.18.如图,反比例函数 y =4x的图象经过矩形 OABC 的一个顶点 B ,则矩形 OABC 的面积等于___.19.已知Rt △ABC 中,∠C=90°,AC=3,BC=4,以C 为圆心,r 为半径的圆与边AB 有两个交点,则r 的取值范围是___________.三、解答题20.在1~100,若存在整数n ,使2x x n +-能分解为两个系数为整数的一次式的乘积,则这样的n 有几个?21.如图,正方形ABCD 的边长为2+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.22.如图,已知一次函数y 1=x +m 的图象与x 轴y 轴分别交于点A 、B ,与反比例函数y 2=2k x (x <0)的图象分别交于点C 、D ,且C 点的坐标为(﹣1,2).(1)分别求出一次函数及反比例函数的关系式;(2)求出点D 的坐标并直接写出y 1>y 2的解集.23.计算: 03(1)2c o s 30π-+--︒ 24.已知关于x 的方程x 2﹣2(m+1)x+m 2﹣3=0.(1)当m 取何值时,方程有两个不相等的实数根?(2)设x 1、x 2是方程的两根,且(x 1+x 2)2﹣(x 1+x 2)﹣12=0,求m 的值.25.如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点E(04),.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)填空:点C 的坐标___________,点P 的坐标__________ (用含t 的代数式表示) (2)以点C 为圆心、12t 个单位长度为半径的C ,与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C 与射线DE 有公共点时,求t 的取值范围;②当P A B △为等腰三角形时,求t 的值.26.如图,在R t A B C ∆中,90C ∠=︒,D 是B C 的中点,D E A B ⊥,垂足为E ,且1tan 2B =,7A E =,求DE 的长.27.一天晚上,哥哥和弟弟拿两根等长的标杆,ABC D 直立在一盏亮着的路灯下,然后调整标杆位置,使它们在该路灯下的影子,BE DF 恰好在一条直线上(如图所示). (1)请在图中画出路灯灯泡P 的位置;(2)哥哥和弟弟测得如下数据:1.6A B C D ==米,1B E =米,2D F =米,两根标杆的距离3.6A C B D == 米,且//A C B D.请你根据以上信息计算灯泡P 距离地面的高度.参考答案1.C【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2的大小关系即可.【详解】解:∵(k 2+1)>0, ∴函数21k y x+=(k 为常数)的图象位于第一、三象限,且在每一象限内,y 随x 的增大而减小.∴点(2,y 1,y 2)都在第四象限,∵2∴y 1>y 2.故选:C .2.A【解析】【分析】把代入方程x 2-4x+c=0就得到关于c 的方程,就可以解得c 的值,进而求出方程式和它的解.【详解】把2代入方程x 2-4x+c=0,得2(4(0c += 解得c=1;所以原方程是x 2-4x+1=0,解得方程的解是;∴另一解是故选:A【点睛】本题考查的是一元二次方程的根即方程的解的定义.3.D【解析】【分析】过点D作直线与另一边平行或垂直,或∠CPD=∠B即可.【详解】如图,过点P作AB的平行线,或作BC的平行线,或作AB的垂线,或作∠CPD=∠B,共4条直线,故选D.【点睛】考查相似三角形的判定,掌握相似三角形的几种判定方法是解题的关键.4.B【解析】【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点睛】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.5.C【解析】【分析】按照配方法的过程进行配方,即可得出答案.【详解】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选C.【点睛】本题考查了解一元二次方程的方法——配方法. 掌握配方法的步骤是解题的关键.6.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B. 平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C. 掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D. 掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B【解析】【分析】连接O C ,根据等边三角形的性质得到80B O C ∠︒=,根据弧长公式计算即可. 【详解】连接O C ,60O A O C C A O ∠︒=,=, A O C∴为等边三角形, 60A O C ∴∠︒=, 1406080B O C A O B A O C ∴∠∠-∠︒-︒︒===, 则B C 的长80681803ππ⨯==, 故选B .【点睛】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键. 8.C【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:把sin45°3=2×33. 故选:C.【点睛】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.9.B【解析】【分析】根据方程根的判别式的值即可得解.【详解】解:∵方程x2-4x+4=0的二次项系数a=1,一次项系数b=-4,常数项c=4,∴△=b2-4ac=(-4)2-4×1×4=0,∴方程x2-4x+4=0有两个相等的实数根.故选B.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.10.8 3【解析】【分析】过点A作AF⊥y轴于点F,过点D作DG⊥y轴于点G,先联立直线AB反比例函数的解析式求出A、D点的横坐标,得到AF与DG,再由三角形的面积比与相似三角形的比例线段得到k与b的关系,进而用b的代数式表示A点坐标,再将其代入AE的解析式中,用b表示n,进而联立AE与反比例函数解析式求出E的坐标,最后根据已知三角形的面积,得到b的方程求得b,问题便可迎刃而解.【详解】解:过点A作AF⊥y轴于点F,过点D作DG⊥y轴于点G,∴AF∥DG,∴△ABF∽△DBG,∴AF AB DG DB=, ∵S △ABE :S △DBE =3:4, ∴34A B D B =, 由2x +b =k x 得,2x 2+bx ﹣k =0, 解得,x, 即A,D, ∴AF,DG,34=, 解得,k =6b 2,∴A=32b ,纵坐标为263322k b b b ==4b , ∴A (32b ,4b ), 把A (32b ,4b )代入y =﹣23x +n 中,得n =5b , ∴AE 的解析式为:y =﹣23x +5b , 联立方程组22536y x b b y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得11324x b y b⎧=⎪⎨⎪=⎩ ,226x b y b =⎧⎨=⎩, ∴E (6b ,b ),∵B (0,b ),∴BE ∥x 轴,∴BE=6b,∴12A B ES B E B F=⨯=216392b b b⨯⨯=,∵S△ABE=4,∴9b2=4,∴b2=49,∴k=6b2=6×49=83.故答案为83.【点睛】本题是反比例函数图象与一次函数图象的交点问题,主要考查了求反比例函数与一次函数图象的交点坐标,相似三角形的判定与性质,三角形的面积公式的应用,关键是根据相似三角形得到b与的关系,以及由已知三角形的面积列出方程.11.90【解析】【分析】设扇形圆心角的度数为n,半径为r,再由扇形的面积公式求出r的值,根据弧长公式即可得出结论.【详解】解:设扇形圆心角的度数为n,半径为r,∵扇形的弧长为2π,面积为4π,∴4π=12×2πr,解得r=4.∵4180nπ⋅⨯=2π,∴n=90°.故答案为:90.【点睛】本题考查了扇形的面积公式,熟练掌握所写的面积公式是解题的关键.12.﹣35﹣7.【解析】【分析】先设方程5x 2+kx-6=0的另一个根为x 1,利用根与系数的关系,即可得2x 1=-65,x 1+2=-5k ,解此方程组即可求得答案.【详解】解:设方程5x 2+kx-6=0的另一个根为x 1,∵方程5x 2+kx-6=0有一个根是2,∴2x 1=-65, ∴x 1=-35, ∵x 1+2=-5k , 即-35+2=-5k , 解得:k=-7.故答案为:-35,-7. 【点睛】题考查了一元二次方程的解的定义与根与系数的关系.此题难度适中,解此题的关键是注意掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 13.22【解析】【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【详解】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6-8=22, 故答案为:22.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.14【解析】【分析】在直角△ABC 中求得AB ,而BB′=2AB ,据此即可求解.【详解】∵△ABC 与△A ′B ′C ′关于点A 中心对称;2,B B A B ∴'=∵在直角△ABC 中,301B B C ∠==,,∴c o s 3032B C A B ==∴2B B A B '= 【点睛】 考查中心对称的性质以及解直角三角形,熟练掌握锐角三角函数是解题的关键.15.6【解析】【分析】首先把221212x x xx 提公因式进行因式分解得到1212()xx x x ,然后运用韦达定理,1212,c b x x x x a a=+=-,最后代入求值. 【详解】 221212x x xx =1212()xx x x由韦达定理可知:12123,2x x x x =-+=-代入得: 1212()(3)(2)6x x xx 故答案为6【点睛】本题考查了一元二次方程两根之间的关系,由韦达定理可知,20a xb xc ++=的两根为12,x x ,则1212,cb x x x x a a=+=-. 16.36【解析】【分析】连接AC ,根据圆周角定理得到∠CAD=∠CBD=18°,设∠BAC=x ,根据三角形的内角和列方程得到∠BAD=45°,∠ABC=81°,于是得到结论【详解】连接AC ,∴∠CAD=∠CBD=18°, 设∠BAC=x ,∵2A B B C =,3A D B C=, ∴∠ABD=3∠BAC ,∠ADB=2∠BAC ,∴∠ABD=3x ,∠ADB=2x ,∴x+2x+3x+18°=180°,∴x=27°, ∴∠BAD=45°,∠ABC=99°, ∴∠P=180°-45°-99°=36°, 故答案为36°. 【点睛】本题考查了圆周角定理,三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键. 17.1:3【解析】【分析】过点D 作DG ∥AC ,证得△DGF ∽△AEF,得到23AE DG =,再依据DG ∥AC ,证得△BDG ∽△BCE ,得到2C E D G =,由此求得:A EE C =1:3. 【详解】如图,过点D 作DG ∥AC ,则△DGF ∽△AEF,∴DG DF AE AF=, ∵:2:3A F F D =, ∴32D G A E =,23AE DG =, ∵DG ∥AC ,则△BDG ∽△BCE, ∴12D G B D C E B C ==,即2C E D G =, ∴:A EE C =1:3, 故填1:3.【点睛】此题考察相似三角形的判定即性质,过点D 作DG ∥AC 是解题的关键,由平行线证得三角形相似,从而得到23AE DG =,2C E D G =,继而求得结果. 18.4【解析】【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S=|k|.【详解】由于点B在反比例函数y=4x的图象上,k=4故矩形OABC的面积S=|k|=4.故答案为:4【点睛】本题考查了反比例函数系数k的几何意义,掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|是解题的关键.19.123 5r<≤【解析】【分析】要使圆与斜边AB有两个交点,则应满足直线和圆相交,且半径不大于AC.要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.【详解】如图,∵BC>AC,∴以C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD,小于或等于AC,由勾股定理知,22A CB C+.∵S△ABC=12AC•BC=12CD•AB=12×3×4=12×5•CD,∴CD=125,即R的取值范围是125<r≤3.故答案为:125<r≤3. 【点睛】 本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.20.9个.【解析】【分析】根据根与系数的关系,可设x 2+x-n=(x+a )(x+b ),即可得a+b=1,ab=-n ,可得a ,b 符号相反,且a ,b 的绝对值是相邻的两个数,然后由小到大分类讨论即可求得.解题时注意不要漏解.【详解】解:由题意设22()()()x x n x a x b x a b x a b+-=+-=+--, 两边对应得1a b a b n -=⎧⎨=⎩, ∴1a b -=得1a b =+; 代入a b n =得(1)b b n ⨯+=,可见n 是两个连续自然数的乘积,所以在1~100,两个连续自然数相乘是,122⨯=,236⨯=,3412⨯=,4520⨯=,5630⨯=,6742⨯=,7856⨯=,8972⨯=,91090⨯=,因为1011100⨯>, 因此,满足条件的n 的所有值共有9个,分别为2,6,12,20,30,42,56,72,90.【点睛】本题考查的是一元二次方程的整数根与有理数,根据二次三项式分解为两个一次式的乘积,得到两个一次式的所有情况,然后确定n 的值.21.(1)证明见解析;(2)tan ∠EAB ﹣1;(3)PE+PF .【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC 2x ,∵BC 2+1,∴x+x 2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221B E A B == ﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM 2,∵AC 22A B B C+=2, ∴OA =OC =OB =12AC 22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB 22+ •2﹣12,∴HM =OH+OM 22+,在Rt △EHM 中,EH 2222222E M H M 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= 22+.. ∴PE+PF 22+.. 【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型. 22.(1) 一次函数的解析式为y 1=x +3,反比例函数的解析式为:y 2=﹣2x;(2)D (﹣2,1),y 1>y 2的解集为﹣2<x <﹣1. 【解析】 【分析】(1)把点C (﹣1,2)分别代入一次函数y 1=x +m ,反比例函数y 2=2k x,即可求出一次函数及反比例函数的关系式;(2)联立解析式,解方程组即可求得D 的坐标,然后根据图象即可求得y 1>y 2为的解集. 【详解】(1)把点C (﹣1,2)代入y 1=x +m 得:2=﹣1+m ,解得:m =3,把点C (﹣1,2)代入y 2=2k x(x <0)得:2=21k -,解得:k 2=﹣2,故一次函数的解析式为y 1=x +3,反比例函数的解析式为:y 2=﹣2x. (2)解32y x y x =+⎧⎪⎨=-⎪⎩,得:12x y =-⎧⎨=⎩或21x y =-⎧⎨=⎩,∴D (﹣2,1),∴y 1>y 2的解集为﹣2<x <﹣1. 【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,难度适中.注意数形结合思想的应用. 23.1 【解析】 【分析】利用负数的绝对值等于本身的相反数,a 0=1(a≠0),cos30°代入计算.【详解】()012c o s 30π-+--︒12- =1. 【点睛】考查二次根式的运算,解题关键是牢记特殊角三角函数值以及公式a 0=1(a≠0)、绝对值的性质.24.(1)m >-2 (2)m=1 【解析】【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b 2-4ac >0,建立关于m 的不等式,求出m 的取值范围.(2)给出方程的两根,根据所给方程形式,可利用一元二次方程根与系数的关系得到x 1+x 2=2(m+1),代入且(x 1+x 2)2-(x 1+x 2)-12=0,即可解答. 【详解】解:(1)∵方程有两个不相等的实数根,∴△=b 2﹣4ac =[﹣2(m+1)]2﹣4×1×(m 2﹣3)=16+8m >0, 解得:m >﹣2;(2)根据根与系数的关系可得: x 1+x 2=2(m+1),∵(x 1+x 2)2﹣(x 1+x 2)﹣12=0, ∴[2(m+1)]2﹣2(m+1)﹣12=0, 解得:m 1=1或m 2=﹣(舍去) ∵m >﹣2; ∴m =1. 【点睛】本题考查根与系数的关系,解一元二次方程-因式分解法,根的判别式. 25.(1)C(5-t,0), 343,55t t P ⎛⎫- ⎪⎝⎭;(2)①41633t ≤≤; ②43t =或4t =或5t =或203t = 【解析】 【分析】(1)根据题意,得t 秒时,点C 的横坐标为5t -,纵坐标为0;过点P 作PQ x ⊥轴于点Q ,根据相似三角形对应边成比例列出比例式求出P Q 、D Q 再求出O Q ,从而得解; (2)①当点A 到达点D 时,所用的时间是t 的最小值,此时1532D CO C O D t t =-=--=,得到43≥t ;当圆C 在点D 左侧且与ED 相切时,为t 的最大值.如图,易得R t C D F R t E D O,有()3545t C F --=,求解得到t 的最大值. ②当P A B △为等腰三角形时,有三种情况:P A A B =,P A P B =,P B A B =,根据勾股定理,求得每种情况的t 的值. 【详解】(1)如图,t 秒时,有P D t =,5D E =,4O E =,3O D =,则:::P Q E O D Q O D P D E D ==, ∴45PQ t =,3D Q t 5=.∴C(5-t,0), 343,55t t P ⎛⎫- ⎪⎝⎭(2)①当⊙C 的圆心C 由点M(5,0)向左运动,使点A 到点D 并随⊙C 继续向左运动时 有3532t -≤,即43t ≥. 当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由∠CDF=∠EDO 得ΔCDF ∽ΔEDO ,则()3545t C F --=.解得485t CF -=. 由2t C F ≤即4852t t -≤,解得163t ≤.当⊙C 与射线DE 有公共点时,t 取值范围为41633t ≤≤.②当PA=AB 时,过P 作PQ ⊥x 轴,垂足为Q,有222P A P Q A Q=+ ∴2229184205t t t -+=, 即2972800t t -+=,解得143t =,2203t =. 当P A P B=时,有P C A B ⊥,此时P 、C 横坐标相等, ∴3535t t -=-.解得35t =.当P B A B =时,有222221613532525P BP Q B Q t t t ⎛⎫=+=+--+ ⎪⎝⎭. ∴221334205t t t ++=, 即278800t t --=. 解得44t =,5207t =-(不合题意,舍去). ∴当P A B△是等腰三角形时,43t =,或4t =,或5t =,或203t =. 又C 是从M 点向左运动的,故43t =,或4t =,或5t =或203t =.【点睛】本题为代数与几何有一定难度的综合题,它综合考查了用变量t 表示点的坐标,直线(射线)与圆的位置关系,相似三角形和方程不等式等方面的知识.重点考查学生是否认真审题,挖掘出题中的隐含条件,综合运用数学知识解决实际问题的能力,以及运用转化的思想,方程的思想,数形结合的思想和分类讨论的思想解决实际问题的能力.由于本题入口平台较高,不少学生在第(1)题中就畏缩不前,第(2)题中的第①题中,不少学生把射线DE 误为直线,在第(2)题中的第②题,分类讨论不全面. 26.73D E =. 【解析】 【分析】首先表示出BD 的长,进而得出AB=5x ,由AB=AE+BE ,得出5x=7+2x ,求出x 即可. 【详解】 ∵DE ⊥AB 于E ,1t a n 2D E B B E ∴==设DE =x , ∴BE =2x ,c o sB E B B D ∴=90,c o sB CBC B A BB ︒∠=∴==∵D 是BC 边的中点,2B C B ∴=,5A B B C x ∴= ∵AE =7, ∴AB =AE +BE , 5x =7+2x ,73x =,故73D E =. 【点睛】本题考查解直角三角形,勾股定理,一元一次方程的应用,解决本题的关键是在线段AB ,能根据三角函数表示出BE 和AB ,再根据AB =AE +BE ,列出方程是解决此题的关键. 27.(1)见解析;(2)3.52 【解析】 【分析】(1)连接FC 、EA 并延长,相交于点P ,则点P 即是灯泡的位置;(2)过P 作PH ⊥EF ,则PH 即是灯泡P 距离地面的高度,根据已知可得EF=6.6米,AB//PH//CD ,即可证明A B P H =E B E H ,C D P H =F D F H ,由AB=CD 可得E B E H =F D F H,根据EH+FH=EF=6.6,解方程即可求出EH 的长,进而根据A B P H =E BE H即可得答案. 【详解】(1)如图所示,连接FC 、EA 并延长,相交于点P ,则点P 即是灯泡的位置;(2)过P作PH⊥EF,则PH即是灯泡P距离地面的高度,∵AC=BD=3.6米,BE=1米,DF=2米,∴EF=BE+BD+DF=3.6+1+2=6.6(米),∵AB⊥EF,CD⊥EF,PH⊥EF,且AB、CD、PH在同一平面内,∴AB//CD//PH,∴A BP H=E BE H,C DP H=F DF H,∵AB=CD,∴E BE H=F DF H∵FH=EF-EH,∴E BE H=FDEF EH-,即126.6E H E H=-,解得:EH=2.2(米),∴A BP H=E BE H,即1.6P H=12.2解得:PH=3.52(米).答:灯泡P距离地面的高度是3.52米.【点睛】本题考查了中心投影及平行线分线段成比例定理,根据中心投影的性质正确找出P点位置是解题关键.。
湘教版2020-2021学年度九年级数学第一学期期末模拟能力达标测试卷(附答案详解)一、单选题1.已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( ) A .3 B .1 C .3或1- D .3-或12.计算sin 245°+tan60°•cos30°值为( )A .2B .C .1D .3.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( ) A .5人 B .6人 C .7人 D .8人4.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A .22B .92C .32D .42 5.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°6.如图,利用标杆BE 测量楼的高度,标杆BE 高1.5 m ,测得AB =2 m ,BC =14 m ,则楼高CD 为( )A .10.5 mB .9.5 mC .12 mD .14 m7.已知水平放置的圆柱形排水管道,管道截面半径是1 m ,若水面高0.2 m. 则排水管道截面的水面宽度为( )A .0.6 mB .0.8 mC .1.2 mD .1.6 m8.如图,OA 平分∠BOC ,P 是OA 上任意一点,以点P 为圆心的圆与OC 相切,那么⊙P 与OB 的位置关系是( )A .相离B .相切C .相交D .不能确定 9.如果()x y +:()x y 3-=,那么x :y 等于( )A .2-B .2C .3-D .310.在公园的O 处附近有E 、F 、G 、H 四棵树,位置如图所示(图中小正方形为边长均相等),现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E 、F 、G 、H 四棵树中需要被移除的为( )A .E 、F 、GB .F 、G 、HC .G 、H 、ED .H 、E 、F二、填空题 11.如图一张长方形纸片ABCD ,其长AD 为a ,宽AB 为b (a b >),在BC 边上选取一点M ,将ABM 沿AM 翻折后B 至B '的位置,若B '为长方形纸片ABCD 的对称中心,则a b的值为________.12.如图,AB 为O 的直径,CD 切O 于点C ,交AB 的延长线于D ,且CO CD =,则A ∠的度数为______.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有_____.14.如图,点在双曲线上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径画弧,两弧相交于,两点,直线交于点,当时,的周长为__________.中,AB=AC,BC=4,以AB为直径作半圆O,交BC于点D,则BD 15.如图,在ABC的长是__.16.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是_____.17.张华讲义夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语3张、物理3张,他随机地从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为_____.18.如图,在平面直角坐标系中,点A的坐标(﹣4,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为__.19.把方程x(x-2)=4-5x改为方程的一般形式为_____________________________ 20.若sin cos40α=,则锐角α=__________。
九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知3sin 2α=,则α∠的度数是( ) A .30° B .45°C .60°D .90°4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .36.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k ≠07.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A 10B 310C .13D 108.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .69.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .334D .32210.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根11.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣212.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题13.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.14.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).15.抛物线21(5)33y x =--+的顶点坐标是_______. 16.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.17.若32x y =,则x y y+的值为_____. 18.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.19.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.20.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.21.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.22.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 23.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.26.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.27.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 28.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.29.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.30.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.31.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.32.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动. (1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x =218, 即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】解:由sin 2α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A6.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.7.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sin10BC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.8.C解析:C 【解析】 【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答. 【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.9.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.10.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.11.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.14.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.15.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 16.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.17..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.18.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.19.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.20.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.21.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.22.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.23.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.24.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FH CD =EF DE , ∴4DF =55DF -, 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可. (2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.26.(1)14;(2)716; 【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=14. (2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=716. 【点睛】 本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.27.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.28.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x 甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2s 甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键. 29.(1)(2,﹣2);(2)(1,0);(3)10.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=10平方单位.故答案为10.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理30.8+83【解析】 【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.31.(1)233384y x x =-++;(2)① 32t =;②123453172417,3,,,26176t t t t t ===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32.② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,517145t -=.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.32.(1)5;(2)PQ ∥A D '',理由见解析;(35 【解析】【分析】(1)求出AE 5ABE ∽△DEA ,由AD AE AE BE=可求出AD 的长; (2)过点E 作EF ⊥AD 于点F ,证明△PEF ∽△QEC ,再证△EPQ ∽△A'ED',可得出∠EPQ =∠EA'D',则结论得证;(3)由(2)知PQ ∥A ′D ′,取A ′D ′的中点N ,可得出∠PEM 为定值,则点M 的运动路径为线段,即从AD 的中点到DE 的中点,由中位线定理可得出答案.【详解】解:(1)∵AB =2,BE =1,∠B =90°,∴AE 22AB BE +2221+5∵∠AED =90°,∴∠EAD+∠ADE =90°,∵矩形ABCD 中,∠ABC =∠BAD =90°,∴∠BAE+∠EAD =90°,∴∠BAE =∠ADE ,∴△ABE ∽△DEA ,∴AD AE AE BE =, ∴55=, ∴AD =5; (2)PQ ∥A ′D ′,理由如下:∵5,5AD AE ==,∠AED =90° ∴22DE DA AE =-=225(5)-=25,∵AD =BC =5,∴EC =BC ﹣BE =5﹣1=4,过点E 作EF ⊥AD 于点F ,则∠FEC =90°,∵∠A'ED'=∠AED =90°,∴∠PEF =∠CEQ ,∵∠C =∠PFE =90°,∴△PEF ∽△QEC ,∴2142EP EF EQ EC ===, ∵51225EA EA ED ED ''===, ∴EP EA EQ ED ''=, ∴PQ ∥A ′D ′;(3)连接EM ,作MN ⊥AE 于N ,由(2)知PQ ∥A ′D ′,∴∠EPQ =∠A ′=∠EAP ,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴NM EMEF PE=PQ2PE为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长=1AE2=5.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.。
九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm4.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0 5.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .46.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高7.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位11.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④12.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.14.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.15.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.16.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.17.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 19.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.20.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.21.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.22.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,;④=3m .其中,正确的有___________________.23.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.24.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题25.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.26.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.27.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)28.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.29.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.30.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.32.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分BAF∠,过点D作DE AF⊥交射线AF于点AF.(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.4.C解析:C 【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.5.B解析:B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.8.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D9.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,∴∠+∠=︒,GDP ADO90=,OA OD∴∠=∠,ADO OAD∠=∠,∠+∠=︒,GPD APFAPF OAD90∴∠=∠,GPD GDP∴=,故②正确.GD GP⊥,③正确.AB CE∴AE AC=,=,AC CD∴CD AE=,∴∠=∠,CAD ACEPC PA∴=,AB是直径,∴∠=︒,90ACQCAP CQP∠+∠=︒,∴∠+∠=︒,90 ACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PA∠=︒,ACQ90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,APF ABD∽,∴∆∆∴AP AF=,AB ADAP AD AF AB∴⋅=⋅,∠=∠=︒,AFC ACBCAF BAC∠=∠,90∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CBAP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题13.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.14.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.15.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.16.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.17..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.18.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.19.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.20.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.21.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.22.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.23.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.24.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题25.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)证明见解析;(2)513;(3)53、5、155(345)-【解析】【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x, ∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EF CA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE的长为:53、5、15、5(345).【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.吊灯AB的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.28.(1)①(6,23),②(3,33);(2)()()()()2434303313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩【解析】【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,23),∴点B的坐标为:(6,23);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3∴3∴AE=3tan60PE=,∴OE=OA-AE=6-3=3, ∴点P 的坐标为(3,33);故答案为:①(6,23),②(3,33); (2)①当0≤x ≤3时,如图,OI =x ,IQ =PI •tan 60°=3,OQ =OI +IQ =3+x ;由题意可知直线l ∥BC ∥OA , ∴31333EF PE DC OQ PO DO ====, ∴EF =133+x () 此时重叠部分是梯形,其面积为:S 梯形=12(EF +OQ )•OC =43(3+x ) ∴4343x S =+. 当3<x ≤5时,如图AQ =OI +IO -OA =x +3-6=x -3AH 3x -3)S=S 梯形﹣S △HAQ =S 梯形﹣12AH •AQ 433+x 23x (-3) ∴231333S x x =+ ③当5<x ≤9时,如图∵CE ∥DP ∴CO CE DO DP = ∴2333CE x= ∴23CE x = 263BE x =- S=12(BE +OA )•OC =3(12﹣23x ) ∴23123S x =-+. ④当x >9时,如图∵AH ∥PI∴AO AH OI PI = ∴633x =∴183AH =S=12543.综上:24343033313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩()()()().【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.29.(1)2s(2)①证明见解析,②33√【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=33cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=12∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=33cm.30.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为⎝⎭或⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,。
2020-2021年九年级上册期末数学试题(含答案)(1) 一、选择题1.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( )A .42B .45C .46D .48 2.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d <B .5d >C .5d =D .5d ≤ 3.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .224.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .2425.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数7.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A.10πB.10C.10πD.π8.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°9.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.610.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm11.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A .2332π-B .233π-C .32π-D .3π-12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .100 13.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 14.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.17.已知tan (α+15°)= 3,则锐角α的度数为______°. 18.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.二次函数y=x 2−4x+5的图象的顶点坐标为 .20.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____.21.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.22.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.23.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.24.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.25.一组数据:2,5,3,1,6,则这组数据的中位数是________.26.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.27.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.28.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.29.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.30.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC .(1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).33.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.34.计算:(1)2sin30°+cos45°-3tan60°(2) (3)0 -(12)-2 + tan 2 30︒ . 35.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围? 四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.38.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)39.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 40.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题:(1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48 ∴中位数为4646462+=. 故答案为:46.【点睛】 找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.2.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l 与半径为5的O 相离, ∴圆心O 与直线l 的距离d 满足:5d >.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交. 3.C解析:C【解析】【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长.【详解】如图,连接BD ,∵四边形ABCD 是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴,∵正方形ABCD 是⊙O 的内接四边形,∴BD 是⊙O 的直径,∴⊙O 的半径是12⨯,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD 是直径是解题关键.4.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=42A(0,2)、B(a ,a +2) 22(22)42a a ++-=解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.6.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差7.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.C解析:C【解析】【分析】首先根据3、4、6、7、x这组数据的平均数求得x值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.10.B解析:B【解析】【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中, OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.11.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3 3∴α+15°=30°,∴α=15°故答案是15此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 20.(6,4).【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.21.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.22.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =12BC =2,根据勾股定理可求AG =,由三角形的三边关系可得AH ≥AG ﹣HG ,当点H 在线段AG 上时,可求AH 的最小值.【详解】解:如图,取BC 中点G ,连接HG ,AG ,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG=22AC CG=25在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为25﹣2,故答案为:25﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.23.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.24.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 25.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.26.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.27.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4, ∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】 此题考查几何概率,解题关键在于掌握运算法则.28.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.29.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=- 故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.30.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:2【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.三、解答题31.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.32.(1)BC 与⊙O 相切,理由见解析;(2)23π. 【解析】试题分析:(1)连接OD ,推出OD BC ⊥,根据切线的判定推出即可;(2)连接,DE OE ,求出阴影部分的面积=扇形EOD 的面积,求出扇形的面积即可. 试题解析:(1)BC 与O 相切,理由:连接OD ,。
2020-2021学年株洲市茶陵县九年级上学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1.如果反比例函数的图象经过点(−8,3),那么当x>0时y的值随x的值的增大而()A. 增大B. 不变C. 减小D. 无法确定2.方程2(x+3)(x−4)=x2−10的一般形式为()A. x2−2x−14=0B. x2+2x+14=0C. x2+2x−14=0D. x2−2x+14=03.如图,AB//EF//CD,BC、AD相交于点O,F是AD的中点,则下列结论中错误的是()A. AOAD =BOBCB. OBCE =OADFC. EFCD =OEBED. 2BEAD =OEOF4.如图,点A,B,C三点在x轴的正半轴上,且OA=AB=BC,过点A,B,C分别作x轴的垂线交反比例函数y=kx(k>0)的图象于点D,E,F,连结OD,AE,BF,则S△OAD:S△ABE:S△BCF为()A. 12:7:4B. 3:2:1C. 6:3:2D. 12:5:45.生活中,很多女生都喜欢穿高跟鞋,目的是为了让自己的身体比例达到黄金比.就是穿上高跟鞋后,肚脐到地面的垂直距离与头顶到地面的垂直距离之比约为0.618.某女生身高为160cm,赤脚站立时,她的肚脐到地面的垂直距离为97cm,那么为了让自己的比例达到黄金比,她的高跟鞋跟高约为()A. 2cmB. 3cmC. 5cmD. 6cm6.已知方程(x+3)2=5(x+3),则该方程用因式分解法可化简为()A. (x+3)(x+5)=0B. (x+3)(x+2)=0C. (x+3)(x−5)=0D. (x+3)(x−2)=07.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=c在同一平面直角坐标系中的图象可能是()xA.B.C.D.8.已知二次函数y=−x2−bx+1(−5<b<2),则函数图象随着b的逐渐增大而()A. 先往右上方移动,再往右平移B. 先往左下方移动,再往左平移C. 先往右上方移动,再往右下方移动D. 先往左下方移动,再往左上方移动9.若有意义,则锐角的取值范围是()A. B. C. D.10.已知二次函数y=x2+bx+c的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是()A. b2−4c+1=0B. b2−4c−1=0C. b2−4c+4=0D. b2−4c−4=0二、填空题(本大题共8小题,共32.0分)11.在比例尺为1:3000000的地图上量得A、B两个城市之间的距离是5厘米,则这两个城市之间的实际距离是______千米.12.若关于x的一元二次方程x2−3x+a=0有一个根是2,则a=______.13.△ABC中,AB=9cm,AC=6cm,D是AC上的一点,且AD=2cm,过点D作直线DE交AB于点E,使所得的三角形与原三角形相似,则AE=______ cm.14.三张完全相同的卡片上分别写有函数y=2x、y=3x、y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是.15.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到0.001)累计实验次数100200300400500顶尖朝上次数55109161211269顶尖朝上频率0.5500.5450.5360.5280.538根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为______.16. 如图所示:两个同心圆,半径分别是2√6和4√3,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是______.17. 如图,△ABC中,AB=AC,tanC=34,D、F分别在边AC、BC上,作AE⊥BD,DE//AF交AE于E.若AEBD =34,则CDBF=______ .18. 如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=______.三、解答题(本大题共8小题,共78.0分)19. 计算:sin30°tan30°+cos60°cot30°.20. 已知关于x的方程x 2+x+n=0有两个实数根−2,m.求m,n的值.21. 某中学暑假开展“课外读书周”活动,开学后随机调查了八年级部分学生一周课外阅读的时间,并将结果绘制成条形统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为______人;(2)求被调查学生的课外阅读时间的平均数,众数,中位数;(3)若全校八年级共有学生700人,估算八年级一周课外阅读时间为6小时的学生有多少人.22. 已知二次函数y=ax2+(3a+1)x+3(a<0).(1)该函数的图象与y轴交点坐标为______;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.①求a的值及二次函数的表达式;②画出二次函数的大致图象(不列表,只用其与x轴的两个交点A、B,且A在B的左侧,与y轴的交点C及其顶点D,并标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P,使△PCA为直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由.23. 如图,小慧家对面是一幢商业大厦,小慧在自家窗口从C处测得商业大厦顶部D的仰角40°,商业大厦底部B的俯角25°,量得两幢楼之间的距离为36m,求商业大厦的高度和小慧家的高度(结果精确到1m)参考数据:sin40°≈0.6;cos40°≈0.8;tan40°≈0.8;sin25°≈0.4;cos25°≈0.9;tan25°≈0.524. 如图,利用一面墙(墙EF最长可利用28米),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙).用砌60米长的墙的材料,当矩形的长BC为多少米时,矩形花园的面积为300平方米;能否围成480平方米的矩形花园,为什么?25. 如图,一次函数y=kx+b的图象与反比例函数y=m的图象相交于xA(−1,n)、B(2,−1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)请直接写出不等式kx+b>m的解集;x(3)若点D与点C关于x轴对称,求△ABD的面积.(x+1)2+2.26. 已知二次函数y=−12(1)填空:此函数图象的顶点坐标是______;(2)当x______时,函数y的值随x的增大而减小;(3)设此函数图象与x轴的交于点A、B,与y轴交于点C,连接AC及BC,试求△ABC的面积.参考答案及解析1.答案:A解析:试题分析:设反比例函数的解析式为y=kx(k≠0),根据反比例函数的图象经过点(−8,3)求出k的值,由反比例函数的增减性即可得出结论.设反比例函数的解析式为y=kx(k≠0),∵反比例函数的图象经过点(−8,3),∴k=(−8)×3=−24<0,∴此函数的图象在每一象限内y随x的增大而增大,∴当x>0时y的值随x的值的增大而增大.故选A.2.答案:A解析:解:方程整理得:2(x2−4x+3x−12)=x2−10,即2x2−2x−24=x2−10,则方程的一般形式为x2−2x−14=0.故选:A.方程整理为一般形式,即可得到结果.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.答案:C解析:本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.根据平行线分线段成比例定理,由AB//CD得AOAD =BOBC,则可对A进行判断;先由AB//EF得OAOF=OBOE,利用比例性质得OBOA =OEOF,由EF//CD得OEEC=OFFD,利用比例性质得OEOF=ECFD,所以OBOA=ECFD,则可对B进行判断;由EF//CD得EFCD =OEOC,则可对C进行判断;由EF//CD得OEEC=OFFD,即OEOF=ECFD,加上F是AD的中点,则可对D进行判断.解:A.由AB//CD得AOAD =BOBC,所以A选项的结论正确;B.由AB//EF得OAOF =OBOE,即OBOA=OEOF,由EF//CD得OEEC=OFFD,即OEOF=ECFD,则OBOA=ECFD,即OBEC=OADF,所以B选项的结论正确;C.由EF//CD得EFCD =OEOC,所以C选项的结论错误;D.由EF//CD得OEEC =OFFD,即OEOF=ECFD,而F是AD的中点,所以OEOF=2CE2DF,即OEOF=2CEAD,此外,BECE=AFFD,AF=FD,所以,BE=CE,于是OEOF =2CEAD=2BEAD,所以D选项的结论正确.故选C.4.答案:C解析:解:设OA=AB=BC=a,∴D(a,ka ),E(2a,k2a),F(3a,k3a).∴S△AOD=12OA⋅AD=12a⋅ka=12k,∴S△ABE=12AB⋅BE=12⋅a⋅k2a=14k,∴S△BCF=12⋅BC⋅CF=12⋅a⋅k3a=16k.∴S△AOD:S△ABE:S△BCF=6:3:2.故选:C.设OA=AB=BC=a,求出点D、E、F的坐标,利用面积公式即可求解.本题考查了反比例函数的图象与性质.解题关键在于OA=AB=BC,即OA:OB:OC=1:2:3,因此可以得到D,E,F坐标的关系.5.答案:C解析:解:设高跟鞋跟高约为x cm.由题意,97+x160+x=0.618,解得x=5,经检验x=5是分式方程的解,∴高跟鞋跟高约为5cm.故选:C.设高跟鞋跟高约为x cm.本题考查黄金分割的应用,解题的关键是学会利用参数,构建方程解决问题.6.答案:D解析:解:∵(x+3)2=5(x+3),∴(x+3)2−5(x+3)=0,∴(x+3)(x+3−5)=0,∴(x+3)(x−2)=0,故选D.方程移项后得到(x+3)2−5(x+3)=0,再提取公因式(x+3),整理后得到(x+3)(x−2)=0,据此选择正确答案.本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是提取等号两边公因式(x+3),此题难度不大.7.答案:D解析:解:因为二次函数y=ax2−bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=−b2a>0,得出b<0,所以一次函数y=ax+b经过一、三、四象限,反比例函数y=cx经过一、三象限,故选:D.根据二次函数y=ax2−bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=−b2a>0,得出b<0,进而对照四个选项中的图象即可得出结论.本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据二次函数图象,找出a>0、b<0、c>0是解题的关键.8.答案:D解析:解:二次函数y=−x2−bx+1(−5<b<2),当b=−5时,y=−x2+5x+1=−(x−52)2+294顶点坐标为(52,294 );当b=0时,y=−x2+1顶点坐标为(0,1);当b=2时,y=−x2−2x+1=−(x+1)2+2顶点坐标为(−1,2).故函数图象随着b的逐渐增大而先往左下方移动,再往左上方移动.故选:D.先分别求出当b=−5、0、2时函数图象的顶点坐标即可得结论.本题考查了二次函数图象与几何变换、熟练掌握二次函数的性质是解决本题的关键.9.答案:D解析:首先根据二次根式有意义的条件求得cosα的取值范围,再根据锐角三角函数的特殊值以及其变化规律进行分析.解:由题意可得:2cosα−1≥0,∴,∵,∴余弦函数随角增大而减小,∴锐角α的取值范围是0°<α≤60°,故选:D.10.答案:D解析:解:∵二次函数y=x2+bx+c的图象与x轴相交于A、B两点,其顶点为P,S△APB=1,∴该函数开口向上,与x轴两个交点,顶点P的纵坐标为:4×1×c−b24×1=4c−b24,则4c−b24<0,设该函数与x轴的两个交点分别(x1,0),(x2,0),x1<x2,则x1+x2=−b,x1⋅x2=c,∴(x1+x2)2=b2,∴(x2−x1)2+4x1x2=b2,∴x2−x1=√b2−4c,∵S△APB=1,∴(x2−x1)×b2−4c42=1,∴√b2−4c×b2−4c42=1,∴b2−4c=4,即b2−4c−4=0,故选:D.根据题意和二次函数的性质,可以用含b、c的式子表示出△APB的面积,然后化简即可解答本题.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.11.答案:150解析:解:设这两个城市之间的实际距离是x厘米,则:1:3000000=5:x,解得x=15000000,∵15000000厘米=150千米,∴这两个城市之间的实际距离是150千米.故答案为:150.根据比例尺=图上距离:实际距离,列出比例式直接求解即可.本题考查了比例尺的定义.要求能够根据比例尺由图上距离正确计算实际距离,解答本题的关键是单位的换算.12.答案:2解析:解:∵关于x的一元二次方程x2−3x+a=0有一个根是2,∴22−3×2+a=0,解得a=2,故答案为:2.把x=−1代入原方程,列出关于a的新方程,通过解新方程可以求得a的值.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.答案:4或33解析:解:①如图2,当△ADE∽△ABC时,有AD:AE=AB:AC∵AB=9cm,AC=6cm,AD=2cmcm;∴AE=43②如图1,当△AED∽△ABC时,有AD:AE=AC:AB∵AB=9cm,AC=6cm,AD=2cm∴AE=3cmcm或3cm.∴AE为43因为题中没有指明对应边,故应该分两种情况进行分析,从而得到答案.此题主要考查学生对相似的三角形的性质的运用及分类讨论思想的掌握情况.14.答案:23解析:函数y=2x的图象是经过第一、三象限的直线,由于k=2>0,所以y随x的增大而增大,函的图象位于第一、三象限,k=3>0,y随x的增大而减小;函数y=x2的图象开口向上,顶数y=3x点在原点,在第一象限y随x的增大而增大,所以三个函数中符合要求的有两个,故可以利用列举法求出概率值.、y=x2的图象的草图如图所示,函数y=2x、y=3x由图可知,图象在第一象限内y随x的增大而增大的函数是y=2x、y=x2,故P=2.3故答案为:2.315.答案:0.530解析:解:观察发现,随着实验次数的增多,顶尖朝上的频率逐渐稳定到常数0.530,故掷一枚这样的图钉落地后顶尖朝上的概率为0.530.故答案为:0.530.根据用频率估计概率解答即可.本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16.答案:16+12√2解析:解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6√2,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12√2.此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.17.答案:45解析:解:如图,过点A作AH⊥BC于H,连接DH,EH,设BD交AH于O,交AE于K,设DH交AE于T.∵BD⊥AE,AH⊥BC,∴∠AKO=∠BHO=90°,∵∠AOK=∠BOH,∴∠DBH=∠EAH,∵AB=AC,∴∠ABC=∠C,∴tan∠ABC=tan∠C=AHBH =34,∵AEBD =34,∴AHBH =AEBD,∴△AHE∽△HBD,∴∠AEH=∠BDH,EHDH =AHBH=34,∵∠DTK=∠ETH,∴∠DHE=∠DKT=90°,∴tan∠HDE=tan∠C=34,∴∠HDE=∠C,∵∠DJH=∠C+∠CDJ,∠CDH=∠CDJ+∠EDH,∴∠DJH=∠CDH,∵AF//DE,∴∠FAB=∠CDH,∵∠ABH=∠C,∴△CDH∽△BFA,∴CDBF =CHAB,设AH=3k,则BH=CH=4k,AB=AC=5k,∴CDBF =4k5k=45.故答案为45.如图,过点A作AH⊥BC于H,连接DH,EH,设BD交AH于O,交AE于K,设DH交AE于T.想办法证明△CDH∽△BFA,推出CDBF =CHAB,由此即可解决问题.本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考填空题中的压轴题.18.答案:15°解析:解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA=180°−30°2=75°.∴∠PAD=15°,故答案为:15°.先根据已知求得∠ABP=30°,再证明AB=BC=BP,进而求出∠PAB的度数,然后求得∠PAD的度数即可.本题考查了正方形和等边三角形的性质:正方形的四条边都相等,四个角都是直角;等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.19.答案:解:原式=12×√33+12×√3=23√3.解析:此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.直接利用特殊角的三角函数值把相关数据代入进而得出答案.20.答案:解:∵关于x的方程x 2+x+n=0有两个实数根−2,m,∴,解得,,即m,n的值分别是1、−2.解析:利用根与系数的关系知−2+m=−1,−2m=n,据此易求m、n的值.21.答案:50解析:解:(1)本次调查的学生总数为:(6+4)+(8+8)+(8+12)+(1+3)=50(人),故答案为:50;(2)被调查学生的课外阅读时间的平均数是:3×(6+4)+4×(8+8)+5×(8+12)+6×(1+3)50=4.36(小时),众数是5小时,中位数是(4+4)÷2=4(小时),即被调查学生的课外阅读时间的平均数是4.36小时,众数是5小时,中位数是4小时;(3)700×1+3=56(人),50即八年级一周课外阅读时间为6小时的学生有56人.(1)根据条形统计图中的数据,可以计算出本次调查的学生总数;(2)根据条形统计图中的数据,可以得到被调查学生的课外阅读时间的平均数,众数,中位数;(3)根据条形统计图中的数据,可以计算出八年级一周课外阅读时间为6小时的学生有多少人.本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.22.答案:(1)(0,3)(2)①令y=0,则ax2+(3a+1)x+3=0,∴(ax+1)(x+3)=0,∴x1=−1,x2=−3,a∵二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.∴a=−1,∴二次函数的表达式为y=−x2−2x+3;②图象如图所示:(3)设点P(m,−m2−2m+3),当点P为直角顶点时,如图,过点P作PF⊥y轴于F,过点A作AE⊥PF,交FP的延长线于E,∵∠APC =90°,∴∠APE +∠CPF =90°,∵∠APE +∠EAP =90°,∴∠CPF =∠EAP ,又∵∠AEP =∠CFP =90°,∴△APE∽△PCF ,∴AE PF =PE CF ,∴−m 2−2m +3−m =3+m −m 2−2m +3−3∴−(m +3)(m −1)−m =m +3−m(m +2)∴−(m −1)(m +2)=1,∴m 1=√5−12,m 2=−√5−12,经检验,m 1=√5−12,m 2=−√5−12是原方程的根; ∴点P 坐标为(√5−12,5−√52)或(−√5−12,5+√52); 若点A 为直角顶点时,如图,过点P 作PH ⊥x 轴于H ,∵点A(−3,0),点C(0,3),∴OA=OC,又∵∠AOC=90°,∴∠CAO=∠ACO=45°,∵∠CAP=90°,∴∠PAH=45°,∵PH⊥x轴,∴∠PAH=∠APH=45°,∴AH=PH,∴m+3=m2+2m−3∴m1=−3(舍去),m2=2,∴点P坐标为(2,−5);若点C为直角顶点,过点P作PE⊥y轴于E,∵∠ACP=90°,∠ACO=45°,∴∠PCE=45°,∵PE⊥y轴,∴∠PCE=∠CPE=45°,∴PE=CE,∴−m=−m2−2m+3−3,∴m1=0(舍去),m2=−1,∴点P坐标为(−1,4);综上所述:点P坐标为(√5−12,5−√52)或(−√5−12,5+√52)或(2,−5)或(−1,4).解析:(1)令x=0,可得y=3,可得函数的图象与y轴交点坐标为(0,3);(2)①令y=0,可求方程ax2+(3a+1)x+3=0的两根为x1=−1a,x2=−3,即可求解;②图象如图所示;(3)分三种情况讨论,利用相似三角形的性质和等腰直角三角形的性质可求解.本题是二次函数综合题,考查了二次函数的性质,一元二次方程的应用,相似三角形判定和性质,等腰直角三角形的性质等知识,利用分类讨论思想解决问题是本题的关键.解:(1)令x=0时,y=3,∴函数的图象与y轴交点坐标为(0,3),故答案为:(0,3);(2)见答案.(3)见答案.23.答案:解:如图,∵CE⊥BD,∴BD⊥AB,AC⊥AB,∴四边形ABEC是矩形,∴CE=AB=36米,∵在Rt△BAC中,∠ABC=25°,∴BE=AC=36×tan25°≈18(米),在Rt△CED中,tan40°=DECE,∴DE=CE⋅tan40°≈36×0.8=28.8(米),∴BD=BE+DE=18+28.8≈47(米),∴商业大厦的高度约为47米,小慧家的高度约为18米.解析:易得四边形ABEC 是矩形,即可求得CE 的长,然后分别在Rt △BAC 与Rt △CED 中,利用三角函数的知识求得AC 与DE 的长,继而求得答案.此题考查了仰角与俯角的定义.注意能借助仰角与俯角构造直角三角形并解直角三角形是关键. 24.答案:解:(1)设矩形花园BC 的长为x 米,则其宽为12(60−x +2)米,依题意列方程得: 12(60−x +2)x =300,即x 2−62x +600=0,解得:x 1=12,x 2=50,∵28<50,∴x 2=50不合题意,舍去,∴x =12,即当矩形的长BC 为12米时,矩形花园的面积为300平方米.(2)12(60−x +2)x =480,即x 2−62x +960=0, 解得:x 1=32,x 2=30,∵28<30<32,∴x 1=32,x 2=30均不合题意,舍去,∴不能围成480平方米的矩形花园.答:当矩形的长BC 为12米时,矩形花园的面积为300平方米;不能围成480平方米的矩形花园. 解析:设BC =x 米,则AB =12(60−x +2)米,再根据矩形的面积公式列方程,解一元二次方程即可.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙EF 最长可利用28m ,舍掉不符合题意的数据. 25.答案:解:(1)把B(2,−1)代入y =m x ,得:m =−2,∴反比例函数的解析式为y =−2x ;把A(−1,n)代入y =−2x ,得:n =2,∴A(−1,2),把A(−1,2)、B(2,−1)代入y =kx +b ,得:{−k +b =22k +b =−1解得:{k =−1b =1, ∴一次函数的解析式为y =−x +1;(2)根据图象得:不等式kx +b >m x 的解集为x <−1或0<x <2;(3)由y =−x +1可知C 的坐标为(0,1),∵点D 与点C 关于x 轴对称,∴D(0,−1),∴CD =2,∴S △ABD =S △ACD +S △BCD =12×2×1+12×2×2=3.解析:(1)把B(2,−1)代入y =m x 可得m 的值,求得反比例函数的解析式;根据反比例函数解析式求得点A 坐标,再由A 、B 两点的坐标可得一次函数的解析式;(2)根据图象得出不等式kx +b >m x 的解集即可;(3)利用面积的和差关系可求解.本题主要考查反比例函数和一次函数的交点问题,待定系数法求函数解析式,掌握图象的交点的坐标满足两个函数解析式是解题的关键. 26.答案:(1)(−1,2) (2) x >−1(或x ≥−1)(3)令x =0时,易求:y =32∴点C 的坐标为(0,32)即:OC =32令y =0时,易求:x 1=1,x 2=−3易求:AB =4.∴S △ABC =12×4×32=3. 解析:解:(1)二次函数y =−12(x +1)2+2的顶点坐标是(−1,2).故答案是:(−1,2);(2)因为二次函数y =−12(x +1)2+2的开口方向向下,且对称轴是直线x =−1,所以当x >−1(或x ≥−1)时,函数y 的值随x 的增大而减小.故答案是:x >−1(或x ≥−1);(3)见答案(1)根据抛物线解析式直接得到答案;(2)结合抛物线的性质填空;(3)由抛物线与坐标轴的交点的求法求得三角形ABC 的底边以及底边上的高线的长度,结合三角形的面积公式解答.考查了二次函数的性质,抛物线与x轴的交点坐标以及三角形的面积公式.需要掌握二次函数解析式的三种形式,二次函数图象的增减性.。
株洲市2021版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·武汉模拟) 下列我国著名企业商标图案中,是中心对称图形的是()A .B .C .D .2. (2分)解关于的方程时,得到以下四个结论,其中正确的是()A . m为任意数时,方程总有两个不相等的实数根B . m为任意数时,方程无实数根C . 只有当 =2时,方程才有两个相等的实数根D . 当 = 2时,方程有两个相等的实数根3. (2分)一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是8的概率是A .B .C .D .4. (2分)在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A .B .C .D .5. (2分)如果两条弦相等,那么()A . 这两条弦所对的圆心角相等B . 这两条弦所对的弧相等C . 这两条弦所对的弦心距相等D . 以上说法都不对6. (2分)已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A . AB2=AC2+BC2B . BC2=AC•BAC . AC2=AB•BCD . AC=2BC7. (2分)某经济开发区今年一月份工业产值达到80亿元,第一季度总产值为275亿元,问二、三月平均每月的增长率是多少?设平均每月的增长率为x,根据题意所列方程是()A . 80(1+x)2=275B . 80+80(1+x)+80(1+x)2=275C . 80(1+x)3=275D . 80(1+x)+80(1+x)2=2758. (2分)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A . 6B . 5C . 3D . 29. (2分)(2018·黄浦模拟) 下列方程中没有实数根的是()A . ;B . ;C . ;D . .10. (2分) (2018九上·新乡期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共7分)11. (2分) (2019九上·台安月考) 已知正六边形的外接圆的半径是,则正六边形的周长是________.12. (1分)(2018·辽阳) 一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是________.13. (1分)(2020·西藏模拟) 已知圆锥的高h=4,底面半径r=3,则该圆锥侧面展开图的圆心角度数为________°14. (1分) (2019八下·句容期中) 如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D 在y轴上,则点C的坐标是________.15. (1分) (2016九上·宜城期中) 如图,四边形ABCD内接于⊙O,∠DAB=120°,连接OC,点P是半径OC 上任意一点,连接DP,BP,则∠BPD可能为________度(写出一个即可).16. (1分) (2019八下·邳州期中) 菱形中,,其周长为,则菱形的面积为________.三、解答题 (共8题;共54分)17. (5分) (2016九上·鞍山期末) 解方程:2x2+3x-5=0.18. (2分)(2020·金牛模拟) 某校教务处为了解九年级学生“居家学习”的学习能力,随机抽取该年级部分学生,对他们的学习能力进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图(其中学习能力指数级别“1”级,代表学习能力很强;“2”级,代表学习能力较强;“3”级,代表学习能力一般;“4“级,代表学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数________人,并将条形统计图补充完整;(2)本次抽查学生“居家学习”能力指数级别的众数为________级,中位数为________级.(3)已知学习能力很强的学生中只有1名女生,现从中随机抽取两人写有关“居家学习”的报告,请用列表或画树状图的方法求所抽查的两位学生中恰好是一男一女的概率.19. (5分)某旅游景区内有一块三角形绿地ABC,如图所示,现要在道路AB的边缘上建一个休息点M,使它到A,C两个点的距离相等.在图中确定休息点M的位置.20. (10分)(2017·合肥模拟) 如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.21. (10分) (2015九上·重庆期末) 已知关于x的一元二次方程x2+4x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你在﹣5,﹣4,﹣3,1,2,3中选择一个数作为k的值,使方程有两个整数根,并求出方程的两个整数根.22. (10分)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?23. (10分)(2020·阜宁模拟) 如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=6,求图中阴影部分的面积.24. (2分)(2020·茂名模拟) 已知抛物线(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线的函数解析式;(2)如图①,将抛物线沿x轴翻折得到抛物线,抛物线与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线于点E,求线段DE的长度的最大值;(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线上一动点,⊙P与直线BC相切,且S⊙P:S△DFH=2π,求满足条件的所有点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共54分)17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
2024届湖南省株洲市茶陵县九年级数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.如图所示,若△ABC ∽△DEF ,则∠E 的度数为( )A .28°B .32°C .42°D .52°2.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠ B .21120x x -= C .122x x += D .122x x ⋅=3.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x ,则下列方程正确的是( )A .6(1+x )=8.64B .6(1+2x )=8.64C .6(1+x )2=8.64D .6+6(1+x )+6(1+x )2=8.644.将抛物线22y x =向左平移2个单位后所得到的抛物线为( )A .222y x =-B .222y x =+C .22(2)y x =-D .22(2)y x =+5.如图,在⊙O 中,AB ⊥OC ,垂足为点D ,AB =8,CD =2,若点P 是优弧 AmB 上的任意一点,则sin ∠APB =( )A .35B .45C .32D .126.如图,直线l 和双曲线y=k x(k>0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 37.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )A .24B .24或85C .48或165D .858.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°9.如图,四边形OABC 的顶点坐标分别为(0,0),(2,0),(4,4),(2,2)-.如果四边形''''O A B C 与四边形OABC 位似,位似中心是原点,它的面积等于四边形OABC 面积的94倍,那么点',','A B C 的坐标可以是( )A .'(0,3),'(6,6),'(3,3)ABC - B .'(3,0),'(6,6),'(3,3)A B C -C .'(0,3),'(6,6),'(3,3)A B C -D .'(3,0),'(6,6),'(3,3)A B C -10.下列交通标志中,是中心对称图形的是( )A .B .C .D .二、填空题(每小题3分,共24分)11.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.12.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .13.如图所示,已知ABC 中,12BC =,BC 边上的高6h =,D 为BC 上一点,EF BC ∥,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则DEF 的面积y 关于x 的函数图象大致为__________.14.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则BF 的长为_____.16.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.17.如图,在长方形中,cm ,cm ,将此长方形折叠,使点与点重合,折痕为,则的面积为________.18.如图,矩形ABOC 的顶点B 、C 分别在x 轴、y 轴上,顶点A 在第一象限,点B 3,0),将线段OC绕点O 顺时针旋转60°至线段OD ,若反比例函数k y x = (k ≠0)的图象进过A 、D 两点,则k 值为_____.三、解答题(共66分)19.(10分)把函数C 1:y =ax 2﹣2ax ﹣3a (a ≠0)的图象绕点P (m ,0)旋转180°,得到新函数C 2的图象,我们称C 2是C 1关于点P 的相关函数.C 2的图象的对称轴与x 轴交点坐标为(t ,0).(1)填空:t 的值为 (用含m 的代数式表示)(2)若a =﹣1,当12≤x ≤t 时,函数C 1的最大值为y 1,最小值为y 2,且y 1﹣y 2=1,求C 2的解析式; (3)当m =0时,C 2的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90°,得到它的对应线段A ′D ′,若线A ′D ′与C 2的图象有公共点,结合函数图象,求a 的取值范围.20.(6分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.21.(6分)有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A 组抽取一张,求抽到数字为2的概率;(2)随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?22.(8分)解方程:(1)x 2+4x ﹣5=0(2)x (2x+3)=4x+623.(8分)我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22,AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.24.(8分)如图,直线112y x =+分别与x 轴交于点A ,与y 轴交于点C ,与双曲线(0)k y x x =>交于点(4,)m . (1)求m 与k 的值;(2)已知P 是y 轴上的一点,当12APB S ∆=时,求点P 的坐标.25.(10分)如图,四边形ABCD 中,AB ∥CD ,CD ≠AB ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CF •FG =DF •BF ;(2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB =12,EF =8,求CD 的长.26.(10分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.参考答案一、选择题(每小题3分,共30分)1、C【题目详解】∵△ABC ∽△DEF ,∴∠B=∠E ,在△ABC 中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C .2、D【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【题目详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意;21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D. 【题目点拨】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键. 3、C【分析】设该快递公司这两个月投递总件数的月平均增长率为x ,根据今年8月份与10月份完成投递的快递总件数,即可得出关于x 的一元二次方程,此题得解.【题目详解】解:设该快递公司这两个月投递总件数的月平均增长率为x ,根据题意得:6(1+x )2=8.1.故选:C .【题目点拨】此题主要考查一元二次方程的应用,解题的关键是熟知增长率的问题.4、D【分析】根据抛物线的平移规律“上加下减,左加右减”求解即可.【题目详解】解:将抛物线22y x =向左平移2个单位后所得到的抛物线为:22(2)y x =+.故选D.【题目点拨】本题考查了抛物线的平移,属于基础知识,熟知抛物线的平移规律是解题的关键.5、B【分析】如图,连接OA ,OB .设OA =OB =x .利用勾股定理构建方程求出x ,再证明∠APB =∠AOD 即可解决问题.【题目详解】如图,连接OA ,OB .设OA =OB =x .∵OC ⊥AB ,∴AD =DB =4,在Rt △AOD 中,则有x 2=42+(x ﹣2)2,∴x =5,∵OA =OB ,OD ⊥AB ,∴∠AOD =∠BOD ,∵∠APB =12∠AOB =∠AOD , ∴sin ∠APB =sin ∠AOD =AD AO =45, 故选:B .【题目点拨】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识.6、D【分析】根据双曲线的解析式可得xy k =所以在双曲线上的点和原点形成的三角形面积相等,因此可得S 1=S 2,设OP 与双曲线的交点为P 1,过P 1作x 轴的垂线,垂足为M ,则可得△OP 1M 的面积等于S 1和S 2 ,因此可比较的他们的面积大小.【题目详解】根据双曲线的解析式可得xy k =所以可得S 1=S 2=12k 设OP 与双曲线的交点为P 1,过P 1作x 轴的垂线,垂足为M因此11212OP M S S S k ∆=== 而图象可得13OP M S S ∆<所以S 1=S 2<S 3故选D【题目点拨】本题主要考查双曲线的意义,关键在于xy k =,它代表的就是双曲线下方的矩形的面积.7、B【分析】由216600x x -+=,可利用因式分解法求得x 的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.【题目详解】∵216600x x -+=,∴(x−6)(x−10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①,AB=AC=6,BC=8,AD 是高,∴BD=4,AD=22=25AB BD-,∴S△ABC=12BC⋅AD=12×8×25=85;当x=10时,如图②,AC=6,BC=8,AB=10,∵AC2+BC2=AB2,∴△ABC是直角三角形,∠C=90°,S△ABC=12BC⋅AC=12×8×6=24.∴该三角形的面积是:24或85.故选B.【题目点拨】此题考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解题关键在于利用勾股定理进行计算.8、C【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【题目详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【题目点拨】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.9、B【分析】根据位似图形的面积比得出相似比,然后根据各点的坐标确定其对应点的坐标即可.【题目详解】解:∵四边形OABC与四边形O′A′B′C′关于点O位似,且四边形的面积等于四边形OABC面积的94,∴四边形OABC与四边形O′A′B′C′的相似比为2:3,∵点A,B,C分别的坐标(2,0),(4,4),(2,2)-),∴点A′,B′,C′的坐标分别是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).故选:B .【题目点拨】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况. 10、D【解题分析】根据中心对称图形的概念判断即可.【题目详解】A 、不是中心对称图形;B 、不是中心对称图形;C 、不是中心对称图形;D 、是中心对称图形.故选D .【题目点拨】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【题目详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故答案为:2020.【题目点拨】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.12、m≤54且m≠1. 【题目详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 13、抛物线y =-x 2+6x .(0<x <6)的部分.【分析】可过点A 向BC 作AH ⊥BC 于点H ,所以根据相似三角形的性质可求出EF ,进而求出函数关系式,由此即可求出答案.【题目详解】解:过点A 向BC 作AH ⊥BC 于点H ,∵EF BC ∥∴△AEF ∽△ABC ∴EF h x BC h -=即6126y x -=, ∴y=12×2(6-x )x=-x 2+6x .(0<x <6) ∴该函数图象是抛物线y =-x 2+6x .(0<x <6)的部分.故答案为:抛物线y =-x 2+6x .(0<x <6)的部分.【题目点拨】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.14、22(2)3y x =-+【分析】根据“左加右减、上加下减”的原则进行解答即可.【题目详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为22(2)3y x =-+,故答案为:22(2)3y x =-+【题目点拨】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15、815π 【解题分析】试题解析:连接CF ,DF ,则△CFD 是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴BF的长=4828 18015ππ⨯⨯=,故答案为815π.16、49.【分析】直接利用概率求法,白球数量除以总数进而得出答案.【题目详解】∵一个不透明的盒子中有4个白球,3个黑球,2个红球,∴随机从盒子中摸出一个球,摸到白球的概率是:49.故答案为:49.【题目点拨】此题主要考查了概率公式,正确掌握概率求法是解题关键.17、6【解题分析】由折叠的性质可知AE与BE间的关系,根据勾股定理求出AE长可得面积.【题目详解】解:由题意可知.因为cm,所以cm.在中,根据勾股定理可知,,所以,所以cm,所以的面积为().故答案为:6【题目点拨】本题考查了勾股定理,由折叠性质得出直角边与斜边的关系是解题的关键.18、3【分析】过点D作DH⊥x轴于H,四边形ABOC是矩形,由性质有AB=CO,∠COB=90°,将OC绕点O顺时针旋转60°,OC=OD,∠COD=60°,可得∠DOH=30°,设DH=x,点D3,x),点A32x),反比例函数kyx=(k≠0)的图象经过A、D两点,构造方程求出即可.【题目详解】解:如图,过点D作DH⊥x轴于H,∵四边形ABOC是矩形,∴AB=CO,∠COB=90°,∵将线段OC绕点O顺时针旋转60°至线段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH3,设DH=x,∴点D3,x),点A32x),∵反比例函数kyx=(k≠0)的图象经过A、D两点,3×x32x,∴x=2,∴点D(3,2),∴k=32=3故答案为:3【题目点拨】本题考查反比例函数解析式问题,关键利用矩形的性质与旋转找到AB=CO=OD,∠DOH=30°,DH=x,会用x表示点D3x,x),点A32x),利用A、D在反比例函数kyx=(k≠0)的图象上,构造方程使问题得以解决.三、解答题(共66分)19、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a 13或a≥1或a≤﹣13.【分析】(1)C1:y=ax2−2ax−3a=a(x−1)2−4a,顶点(1,−4a)围绕点P(m,0)旋转180°的对称点为(2m−1,4a),即可求解;(2)分12≤t<1、1≤t≤32、t>32三种情况,分别求解,(3)分a>0、a<0两种情况,分别求解.【题目详解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=﹣(x﹣1)2+4,①当12≤t<1时,x=12时,有最小值y2=154,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣154=1,无解;②1≤t≤32时,x=1时,有最大值y1=4,x=12时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=14≠1(舍去);③当t>32时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C 2过点A ′时,y =﹣a (0+1)2+4a =1,解得:a =13, 当C 2过点D ′时,同理可得:a =1,故:0<a ≤13或a ≥1; 当a <0时, 当C 2过点D ′时,﹣3a =1,解得:a =﹣13, 故:a ≤﹣13; 综上,故:0<a ≤13或a ≥1或a ≤﹣13. 【题目点拨】本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转等,其中(2)(3),要注意分类求解,避免遗漏.20、见解析【分析】由菱形的性质可得BA BC =,A C ∠=∠,然后根据角角边判定≅ABE CBF ,进而得到AE=CF .【题目详解】证明:∵菱形ABCD ,∴BA BC =,A C ∠=∠,∵BE AD ⊥,BF CD ⊥,∴90BEA BFC ∠=∠=,在ABE △与CBF 中,BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅(), ∴AE=CF .【题目点拨】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.21、(1)P (抽到数字为2)=13;(2)不公平,理由见解析.【解题分析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P= 13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=42 63 =,乙获胜的情况有2种,P=21 63 =,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.22、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【题目详解】解:(1)x²+4x-5=0因式分解得,(x+5)(x-1)=0则,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移项得,x(2x+3)-2(2x+3)=0则,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.23、(1)是,理由见解析;(2)125;(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=22AB=4,D是边AB的中点,得到AC2=AD AB,可得到两个三角形相似,从而得到∠ACD=∠B ;(2)由点D 是△ABC 的“理想点”,得到∠ACD=∠B 或∠BCD=∠A ,分两种情况证明均得到CD ⊥AB ,再根据面积法求出CD 的长;(3)使点A 是B ,C ,D 三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D 的坐标即可.【题目详解】(1)D 是△ABC 边AB 上的“理想点”,理由:∵AB=4,点D 是△ABC 的边AB 的中点,∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D 是△ABC 的“理想点”,∴∠ACD=∠B 或∠BCD=∠A,当∠ACD=∠B 时,∵∠ACD+∠BCD=90︒,∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A 时,同理可得CD ⊥AB ,在Rt △ABC 中,∵∠ACB=90︒,AB=5,AC=4,∴222254AB AC --=3, ∵1122AB CD AC BC ⋅=⋅, ∴1153422CD ,∴125 CD=.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D 1CA=∠ABC,∠CD 1A=∠CD 1B,∴△D 1AC ∽△D 1CB,∴2111CD D A D B , ∴226(2)(3)m m m ,解得m=42,∴D 1(0,42);②当∠BCA=∠CD 2B 时,点A 是△BCD 2“理想点”,可知:∠CD 2O=45︒,∴OD 2=OC=6,∴D 2(0,6).综上,满足条件的点D 的坐标为D (0,42)或D (0,6).【题目点拨】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.24、(1)12;(2)(0,5)P 或(0,3)-.【解题分析】(1)把点(4,m )代入直线112y x =+求得m ,然后代入与反比例函数(0)k y x x =>,求出k ; (2)设点P 的纵坐标为y ,一次函数112y x =+与x 轴相交于点A ,与y 轴相交于点C ,则A (-2,0),C (0,1),然后根据S △ABP =S △APC +S △BPC 列出关于y 的方程,解方程求得即可. 【题目详解】解:(1)点(4,)m 在一次函数112y x =+上, 14132m ∴=⨯+=, 又点(4,3)在反比例函数k y x=上, 4312k ∴=⨯=;(2)设点P 的纵坐标为y ,一次函数112y x =+与x 轴相交于点A ,与y 轴相交于点C , (2,0)A ∴-,(0,1)C , 又点P 在y 轴上,12APB S ∆=,ABP APC BPC S S S ∆∆∆∴=+,即112|1|4|1|1222y y ⨯⨯-+⨯⨯-=, |1|4y ∴-=,5y ∴=或3y =-(0,5)P ∴或(0,3)-.【题目点拨】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.25、(1)证明见解析;(2)1.【分析】(1)证明△CDF ∽△BGF 可得出结论;(2)证明△CDF ≌△BGF ,可得出DF =GF ,CD =BG ,得出EF 是△DAG 的中位线,则2EF =AG =AB +BG ,求出BG 即可.【题目详解】(1)证明:∵四边形ABCD ,AB ∥CD ,∴∠CDF =∠G ,∠DCF =∠GBF ,∴△CDF ∽△BGF . ∴CF DF BF FG=, ∴CF •FG =DF •BF ;(2)解:由(1)△CDF ∽△BGF ,又∵F 是BC 的中点,BF =FC ,∴△CDF ≌△BGF (AAS ),∴DF =GF ,CD =BG ,∵AB ∥DC ∥EF ,F 为BC 中点,∴E 为AD 中点,∴EF 是△DAG 的中位线,∴2EF =AG =AB +BG .∴BG =2EF ﹣AB =2×8﹣12=1,∴BG =1.【题目点拨】此题考查三角形相似的判定及性质定理,三角形全等的判定及性质定理,三角形的中位线定理,(2)利用(1)的相似得到三角形全等是解题的关键,由此利用中点E 得到三角形的中位线,利用中位线的定理来解题.26、(1)2(1)4y x =--;(2)C 在,D 不在,见解析【分析】(1)根据点A 的坐标设出二次函数的顶点式,再代入B 的值即可得出答案;(2)将C 和D 的值代入函数解析式即可得出答案.【题目详解】解:(1) 设二次函数的解析式是()2y a x h k =-+, ∵ 二次函数的顶点坐标为 ()A 1,4-∴()2y a x 14=-+又 经过点 ()B 3,0∴ 代入得:()20a 314=--解得:a 1=∴函数解析式为:2(1)4y x =--(2)将x=2代入解析式得2(21)4=-3y =--∴点 ()C 2,3- 在该函数图象上将x=-1代入解析式得2(-11)4=0y =--∴点 ()D 1,1- 不在该函数图象上【题目点拨】本题考查的是待定系数法求函数解析式,解题关键是根据顶点坐标设出顶点式.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020-2021学年湘教新版九年级上册数学期末复习试卷1 一.选择题(共12小题,满分48分,每小题4分)1.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0)B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)2.如图,正比例函数与反比例函数的图象相交于AB、两点,分别以AB、两点为圆心,画与x轴相切的两个圆,若点A的坐标为(2,1),则图中两个阴影部分面积的和是()A.B.C.πD.4π3.若方程(m﹣1)x﹣x﹣2=0是一元二次方程,则m的值为()A.0B.±1C.1D.﹣14.关于x的方程x2+|x|﹣a2=0的所有实数根之和等于()A.﹣1B.1C.0D.﹣a25.若四边形ABCD与四边形A′B′C′D′相似,AB与A′B′,AD与A′D′分别是对应边,AB=8cm,A′B′=6cm,AD=5cm,则A′D′等于()A.cm B.cm C.cm D.cm6.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍7.已知α是锐角,sinα=cos60°,则α等于()A.30°B.45°C.60°D.不能确定8.Rt△ABC中,∠C=90°,sin A=,AB=10,则AC的长为()A.6B.8C.10D.129.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.10.在△ABC中,BC=+1,∠B=45°,∠C=30°,则△ABC的面积为()A.B.+1C.D.11.在△ABC中,∠A,∠B都是锐角,tan A=1,sin B=,你认为△ABC最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形12.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内(一周按6天计算)丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45名同学,那么根据提供的数据估计,本周全班同学的家庭总共丢弃塑料袋的数量约为()A.900个B.1080个C.1260个D.1800个二.填空题(共8小题,满分32分,每小题4分)13.一个函数具有下列性质:①它的图象经过点(﹣1,1);②它的图象在二、四象限内;③在每个象限内,函数值y随自变量x的增大而增大.则这个函数的解析式可以为.14.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x 人,则关于x的方程为.15.如图,在△ABC中,∠C=90°,AC=6,若cos A=,则BC的长为.16.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值.17.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°≈1.2)18.数据1,2,3,4,5的方差为.19.某城市家庭人口数的一次统计结果表明:2口人家占23%,3口人家占42%,4口人家占21%,5口人家占9%,6口人家占3%,其他占2%,若要制作统计图来反映这些数据,最适当的统计图是(从折线统计图、条形统计图、扇形统计图中选一).20.若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是.三.解答题(共7小题,满分70分)21.计算:(1)(2)(3)已知α为锐角,,计算的值.22.校史展览馆某天对四个时间段进出馆人数作了统计,数据如下表所示,求馆内人数变化最大的时间段.9:00~10:0010:00~11:0014:00~15:0015:00~16:00进馆人数50245532出馆人数30652845 23.已知,反比例函数图象经过点A(2,6)(1)求这个反比例函数的解析式;(2)这个函数的图象位于哪些象限;(3)y随x的增大如何变化.24.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.25.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F.(1)求证:;(2)若,求的值.26.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.27.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选:A.2.解:∵点A的坐标为(2,1),且⊙A与x轴相切,∴⊙A的半径为1,∵点A和点B是正比例函数与反比例函数的图象的交点,∴点B的坐标为(﹣2,﹣1),同理得到⊙B的半径为1,∴⊙A与⊙B关于原点中心对称,∴⊙A的阴影部分与⊙B空白的部分完全重合,∴⊙A的阴影部分与⊙B空白的部分的面积相等,∴图中两个阴影部分面积的和=π•12=π.故选:C.3.解:根据题意得:m2+1=2,解得:m=1或﹣1,把m=1代入m﹣1得:m﹣1=0(不合题意,舍去),把m=﹣1代入m﹣1得:m﹣1=﹣2(符合题意),故选:D.4.解:方程x2+|x|﹣a2=0的解可以看成函数y=x与函数y=﹣x2+a2的图象的交点的横坐标,根据对称性可知:所有实数根之和等于0.故选:C.5.解:∵四边形ABCD与四边形A′B′C′D′相似,AB与A′B′,AD与A′D′分别是对应边,∴=,∵AB=8cm,A′B′=6cm,AD=5cm,∴=,则A′D′=.故选:B.6.解:如图,作OE⊥AB于E,EO的延长线交CD于F.∵AB∥CD,∴FO⊥CD,△AOB∽△DOC,∴===(相似三角形的对应高的比等于相似比),∴CD=AB,故选:A.7.解:∵sinα=cos60°=,∴α=30°.故选:A.8.解:∵在Rt△ABC中,∠C=90°,sin A=,∴sin A=,∵AB=10,∴BC=6,∴AC==8,故选:B.9.解:如图所示,在Rt△ABD中,tan B==.故选:A.10.解:过A点作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°=∠B,∴AD=BD,设BD=x,则AD=x,∵∠C=30°,∴tan C=,∴,∵BC=+1,∴x+x=+1,∴x=1,即AD=1,∴.故选:C.11.解:由题意,得∠A=45°,∠B=45°.∠C=180°﹣∠A﹣∠B=90°,故选:B.12.解:(33+25+28+26+25+31)÷6=28,28×45=1260.故选:C.二.填空题(共8小题,满分32分,每小题4分)13.解:设符合条件的函数解析式为y=,∵它的图象经过点(﹣1,1)把此点坐标代入关系式得k=﹣1,∴这个函数的解析式为y=﹣.14.解:∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x,∵经过两轮传染后共有121人患了流感,∴可列方程为:(1+x)2=121.故答案为:(1+x)2=121.15.解:∵在△ABC中,∠C=90°,AC=6,cos A=,∴cos A===,∴AB=10,∴BC====8.故答案为:8.16.解:如图,作DH∥AB交AC于H.∵tan B==,∴可以假设AD=7k,AB=4k,∵DH∥AB,∴==,∠ADH=∠BAD=90°,∴DH=k,在Rt△ADH中,tan∠CAD==,故答案为.17.解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF∥EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴=,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=,∴AH=≈20,∴BF=EH=AH﹣AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.18.解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.19.解:要反映各个部分所占整体的百分比,因此选择扇形统计图,故答案为:扇形统计图.20.解:由已知得:△=b2﹣4ac=(﹣4)2﹣4×1×(﹣m)=16+4m>0,解得:m>﹣4.故答案为:m>﹣4.三.解答题(共7小题,满分70分)21.解:(1)原式=3﹣1+=2+=.(2)原式=4﹣2×1+5=4﹣2+5=7.(3)∵α为锐角,,∴α﹣15°=45°.∴α=60°.∴=﹣2×+3×﹣2=﹣1+3﹣2=﹣1+.22.解:进馆人数与出馆人数的差为:|50﹣30|=20,|24﹣65|=41,|55﹣28|=27,|32﹣45|=13,所以,10:00~11:00馆内人数变化最大是41人,答:10:00~11:00馆内人数变化最大.23.解:(1)由于反比例函数y=的图象经过点A(2,6),∴6=,解得k=12,∴反比例函数为y=,(2)∵k=12>0,∴这个函数的图象位于第一,三象限;(3)k=12>0,∴y随x的增大而减小,24.解:根据勾股定理得:BA=;(1)分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴,解得,t=;∴t=1或时,△BPQ∽△BCA;(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴,解得t=.25.(1)证明:∵CD⊥AB,∴∠ADC=90°,∵E是AC的中点,∴DE=EC,∴∠EDC=∠ECD,∵∠ACB=90°,∠BDC=90°∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,∴∠ECD=∠B,∴∠FDC=∠B,∵∠F=∠F,∴△FBD∽△FDC,∴=.(2)解:∵,∴,∴,∵△FBD∽△FDC,∴,∴=.26.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a1=0(不合题意舍去),a2=10,答:a的值为10.27.解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.。
2020-2021学年湖南省株洲市茶陵县九年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.下列各点中,在反比例函数y=−12x图象上的是()A. (−2,−6)B. (−2,6)C. (3,4)D. (−4,−3)2.一元二次方程3x2−5x−9=0的二次项系数、一次项系数和常数项分别是()A. 3,−5,9B. 3,−5,−9C. 3,5,9D. 3,5,−93.如图,在△ABC中,DE//AB,且CDBD =32,则CEAE的值为()A. 32B. 23C. 45D. 354.如图,点P在反比例函数y=kx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB 的面积为2,则k等于()A. −4B. −2C. 2D. 45.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A. 1.24米C. 1.42米D. 1.62米6.方程x2=x的解为()A. x=1B. x=±1C. x=0或1D. x=07.把函数y=x与y=2的图象画在同一个直角坐标系中,正确的是()xA. B.C. D.8.如图,是一条抛物线的图象,则其解析式为()A. y=x2−2x+3B. y=x2−2x−3C. y=x2+2x+3D. y=x2+2x+39.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sin A的值越小,梯子越陡B. cos A的值越小,梯子越陡C. tan A的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关10.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x−1的图象上,则y1,y2,y3的大小关系是()A. y1=y2>y3B. y3>y1=y2C. y1>y2>y3D. y1<y2<y3二、填空题(本大题共8小题,共32.0分)12.若方程x2+kx−2=0的一个根是−2,则k的值是______.13.已知△ABC∽△A′B′C′,AD和A′D′是对应高,且AD:A′D′=2,则△ABC与△A′B′C′的周长比是______.14.当m______ 时,函数y=m−1的图象在第二、四象限内.x15.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中红球的数量为______个.16.如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,则sin B等于______.17.如图,∠DBC=30°,AB=DB,利用此图求tan75°=______.18.边长为4的正方形ABCD,在BC边上取一动点E,连接AE,,则CE的长作EF⊥AE,交CD边于点F,若CF的长为34为______.三、解答题(本大题共8小题,共78.0分)19.计算:2cos245°+tan60°⋅tan30°−cos60°20.已知x1,x2是一元二次方程x2−3x−1=0的两根,不解方程求下列各式的值.(1)x12+x22;(2)1x1+1x2.21.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?22.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长.23.如图,某高速公路设计中需要测量某条江的宽度AB,测量人员使用无人机测量,在C处测得A,B两点的俯角分别为45°和30°.若无人机离地面的高度CD为1200米,且点A,B,D在同一水平直线上,求这条江的宽度AB长(结果保留根号).24.如图1,在△ABC中,∠A=90°,AB=12cm,AC=8cm,现有动点P从点B出发,沿射线BA方向运动,动点Q从点C出发,沿射线CA方向运动,已知点P的速度是2cm/s,点Q的速度是1cm/s,它们同时出发,设运动时间是ts(t>0).(1)当t=4时,求△APQ的面积.(2)经过多少秒时,△APQ的面积是△ABC面积的一半.25.如图,一次函数y1=x+4的图象与反比例函数y2=k的图象.x(1)若两函数交于A(−1,a),B两点,与x轴交于点C.求k.(2)根据图象求出y1>y2时,x的取值范围.(3)若反比例函数y2=k与一次函数y1=x+4的图象总有交点,求k的取值.x26.已知:二次函数为y=x2−x+m,(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)m为何值时,顶点在x轴上方;(3)若抛物线与y轴交于A,过A作AB//x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.答案和解析1.【答案】B【解析】解:∵−2×(−6)=12,−2×6=−12,3×4=12,−4×(−3)=12,∴点(−2,6)在反比例函数y=−12x图象上.故选:B.利用反比例函数图象上点的坐标特征进行判断.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线;图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.【答案】B【解析】解:一元二次方程3x2−5x−9=0的二次项系数、一次项系数和常数项分别是3,−5,−9.故选:B.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).其中a,b,c分别叫二次项系数,一次项系数,常数项.据此作答.本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】A【解析】解:∵DE//AB,∴CDBD =CEAE=32,故选:A.根据平行于三角形一边的直线截其他两边所得的对应线段成比例,据此可得结论.本题主要考查了平行线分线段成比例定理,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.4.【答案】A【解析】【分析】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=k图象中任取x一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.”是解题的关键.由反比例函数系数k的几何意义结合△APB的面积为2即可得出k=±4,再根据反比例函数在第二象限有图象即可得出k=−4,此题得解.【解答】解:∵点P在反比例函数y=k的图象上,PA⊥x轴于点A,PB⊥y轴于点B,x|k|=2,∴S△APB=12∴k=±4.又∵反比例函数在第二象限有图象,∴k=−4.故选A.5.【答案】A【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,=0.618,∴ab∵b为2米,∴a约为1.24米.故选:A.根据雕像的腰部以下a与全身b的高度比值接近0.618,因为图中b为2米,即可求出a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.【答案】C【解析】解:原方程变形为:x2−x=0,∴x(x−1)=0,∴x=0或x=1.故选:C.利用因式分解法解方程即可.此题考查了解一元二次方程−因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.7.【答案】D【解析】解:∵y=x中比例系数为1,大于0,∴其图象经过原点且位于一三象限,∵y=2中的比例系数为2,大于0,x其图象位于一三象限,故选:D.根据正比例函数和反比例函数的比例系数确定其图象的大体位置即可.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.【答案】B【解析】【分析】本题考查了待定系数法求二次函数的解析式.先利用抛物线与x轴的交点坐标为(−1,0),(3,0),则可设交点式为y=a(x+1)(x−3),然后把(0,−3)代入求出a的值即可.【解答】解:因为抛物线与x轴的交点坐标为(−1,0),(3,0),可设交点式为y=a(x+1)(x−3),解得:a=1,所以解析式为:y=x2−2x−3,故选:B.9.【答案】B【解析】解:sin A的值越小,∠A越小,梯子越平缓;cos A的值越小,∠A就越大,梯子越陡;tan A的值越小,∠A越小,梯子越平缓,所以B正确.故选:B.根据锐角三角函数的增减性即可得到答案.本题考查了锐角三角函数的增减性:对于正弦和正切函数,函数值随角度的增大而增大;对于余弦函数,函数值随角度的增大而减小.10.【答案】A【解析】解:∵y=−x2+2x−1=−(x−1)2,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(−1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选:A.根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(−1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.11.【答案】6【解析】解:∵线段a、b、c、d成比例,∴a:b=c:d,∴d=2×3÷1=6.故答案为:6.根据四条线段成比例的概念,得比例式a:b=c:d,再根据比例的基本性质,即可求得d的值.本题考查了成比例线段的概念,掌握成比例线段的概念是解本题的关键.12.【答案】1【解析】解:∵一元二次方程x2+kx−2=0的一个根是−2,∴(−2)2+k×(−2)−2=0,解得,k=1,故答案为:1.将x=−2代入题目中的方程,即可求得k的值,本题得以解决.本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.13.【答案】2:1【解析】解:∵△ABC∽△A′B′C′,AD和A′D′是对应高,AD:A′D′=2,∴△ABC与△A′B′C′的相似比为2:1,∴△ABC与△A′B′C′的周长比为2:1,故答案为:2:1.根据相似三角形的性质解答即可.本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.14.【答案】<1的图象在第二、四象限内,【解析】解:∵函数y=m−1x∴m−1<0,∴m<1,故当m<1时,函数y=m−1x的图象在第二、四象限内,故答案为:<1.根据反比例函数的性质,结合反比例函数图象所在象限,求出m的取值范围.本题主要考查了反比例函数的性质,象限内点的坐标特征,关键是根据反比例函数图象的位置确定m的取值范围.15.【答案】7【解析】解:因为共摸了100次球,发现有71次摸到红球,所以估计摸到红球的概率为0.7,所以估计这个口袋中红球的数量为10×0.7=7(个).故答案为7.估计利用频率估计概率可估计摸到红球的概率为0.7,然后根据概率公式计算这个口袋中红球的数量.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16.【答案】35【解析】解:由题意得,sinB=ACAB =610=35,故答案为:35.根据锐角三角函数的定义求解即可.本题考查锐角三角函数,掌握锐角三角函数的定义是正确解答的前提.17.【答案】√3+2【解析】解:∵AB=BD,∴∠A=∠ADB.∵∠DBC=30°=2∠A,∴∠A=15°,∠ADC=75°.设CD=x,∴AB=BD=CDsin∠DBC =x12=2x,BC=CD×cot∠DBC=√3x,AC=AB+BC=(2+√3)x,∴tan∠ADC=tan75°=AC:CD=2+√3.由AB=BD推出∠A=∠ADB,根据三角形的外角等于与它不相邻的两内角和知∠A= 15°,∠ADC=75°.设CD=x,表示出AB、BD、BC,进一步表示AC.根据tan∠ADC= tan75°=AC:CD求解.此题综合考查了解直角三角形的知识,要求学生有较强逻辑推理能力和运算能力.18.【答案】1或3【解析】解:∵EF⊥AE,∴∠AEB+∠FEC=90°,∵四边形ABCD是正方形,∴∠AEB+∠BAE=90°,∴∠BAE=FEC,又∠B=∠C=90°,∴△ABE∽ECF,∴ABEC =BECF,即4EC=4−EC34,解得CE=1或CE=3,故答案为:1或3.结合图形由∠AEB+∠FEC=90°,∠AEB+∠BAE=90°推出∠BAE=FEC,根据正方形的性质得到∠B=∠C=90°,从而推出△ABE∽ECF,进而根据相似三角形的性质和线段之间的和差关系求解即可.本题考查相似三角形的判定与性质及正方形的性质,应从图形入手,寻找判定相似三角形的条件(∠BAE=FEC,∠B=∠C=90°),再根据相似三角形的性质进行求解,注意运用数形结合的思想方法19.【答案】解:原式=2×(√22)2+√3×√33−12=1+1−12=32.【解析】把特殊角的三角函数值代入计算,得到答案.本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.20.【答案】解:∵x 1,x 2是一元二次方程x 2−3x −1=0的两根,∴x 1+x 2=3,x 1x 2=−1.∴(1)x 12+x 22=(x 1+x 2)2−2x 1x 2=32−2×(−1)=11;(2)1x 1+1x 2=x 1+x 2x 1⋅x 2=3−1=−3.【解析】(1)根据根与系数的关系得到:x 1+x 2=3,x 1x 2=−1,则x 12+x 22=(x 1+x 2)2−2x 1x 2,计算可得;(2)将x 1+x 2、x 1x 2代入1x 1+1x 2=x 1+x 2x 1⋅x 2可得.本题主要考查一元二次方程根与系数的关系,一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系为:x 1+x 2=−b a ,x 1⋅x 2=c a .21.【答案】解:(1)x =120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.22.【答案】解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF,∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.【解析】(1)依据折叠即可得到BC=BF,∠FBE=∠EBC;再根据BF=2AB,即可得出∠AFB=30°;再根据矩形的性质以及折叠的性质,即可得到∠CBE的度数;(2)先判定△FAB∽△EDF,即可得出AF⋅DF=AB⋅DE,依据AF⋅DF=10,AB=5,可得DE=2,进而得到CE=EF=3;再根据勾股定理求得DF的长,依据相似三角形的性质求得AF的长,即可得出AD的长以及BC的长.本题主要考查了折叠问题、矩形的性质以及相似三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.23.【答案】解:如图,∵CE//DB,∴∠CAD=∠ACE=45°,∠CBD=∠BCE=30°.在Rt△ACD中,∵∠CAD=45°,∴AD=CD=1200米,在Rt△DCB中,∵tan∠CBD=CDBD,∴BD=CDtan∠CBD =1200√33=1200√3(米).∴AB=BD−AD=1200√3−1200=1200(√3−1)米.故这条江的宽度AB长为1200(√3−1)米.【解析】在Rt△ACD和Rt△DCB中,利用锐角三角函数,用CD表示出AD、BD的长,然后计算出AB的长.本题考查了解直角三角形的应用−仰角俯角问题.题目难度不大,解决本题的关键是用含CD的式子表示出AD和BD.24.【答案】解:(1)∵点P的速度是2cm/s,点Q的速度是1m/s,当t=4时,BP=2t=8cm,CQ=t=4cm,∴AP=4cm,AQ=4cm,∴S△APQ=12×4×4=8(cm2).(2)设经过t秒△APQ的面积是△ABC面积的一半.根据题意得:12S△ABC=12×12×12×8=24cm2,当0<t<6时如图1:S△APQ=12(12−2t)(8−t)=24,整理得t2−14t+24=0,解得t=12(舍去)或t=2.当6<t<8时如图2:(2t−12)(8−t)=24,S△APQ=12整理得t2−14t+72=0,△<0,无解.当t>8时如图3:(2t−12)(t−8)=24,S△APQ=12整理得t2−14t+24=0,解得t=12或t=2(舍去).综上所述:经过2秒或12秒△APQ的面积是△ABC面积的一半.【解析】(1)根据点P的速度是2cm/s,点Q的速度是1cm/s,AP=4cm,AQ=4cm,利用面积公式求解;(2)设经过t秒△APQ的面积是△ABC面积的一半,则BP=2t cm,CQ=2t cm,进而表示出AP=(12−2t)cm,AQ=(8−t)cm,利用面积公式表示出方程求解但是由于题目给的是射线,注意分类讨论.本题考查了一元二次方程的应用,特别是动点问题更是中考的热点考题之一,注意审题,分类讨论思想的应用.25.【答案】解:(1)一次函数y1=x+4的图象过A(−1,a),∴a=−1+4=3,∴A(−1,3)代入反比例函数y 2=k x 得,k =−3,(2)反比例函数y 2=−3x ,由题意得{y =x +4y =−3x , 解得{x =−1y =3或{x =−3y =1, ∴点B(−3,1),当y 1>y 2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:−3<x <−1;(3)若反比例函数y 2=k x 与一次函数y 1=x +4的图象总有交点,即,方程k x =x +4有实数根,也就是x 2+4x −k =0有实数根,∴16+4k ≥0,解得,k ≥−4,∵k ≠0,∴k 的取值范围为:k ≥−4且k ≠0.【解析】(1)由一次函数解析式求得A 的坐标,代入y 2=k x 求得k 的值;(2)解析式联立成方程组,解方程组求得B 的坐标,然后观察图象求得即可;(3)根据题意得出16+4k ≥0,解不等式即可.本题是反比例函数与一次函数的交点问题,考查了二次函数、反比例函数的图象和性质,同时数形结合直观得出不等式的解集是解题的关键.26.【答案】解:(1)∵a =1>0,∴抛物线开口方向向上;对称轴为直线x =−−12×1=12;4×1⋅m−(−1)24×1=4m−14,顶点坐标为(12,4m−14); (2)顶点在x 轴上方时,4m−14>0,解得m >14;(3)令x =0,则y =m ,所以,点A(0,m),∵AB//x轴,∴点A、B关于对称轴直线x=1对称,2∴AB=1×2=1,2|m|×1=4,∴S△AOB=12解得m=±8,所以,二次函数解析式为y=x2−x+8或y=x2−x−8.【解析】(1)根据抛物线的开口方向与a有关,利用对称轴与顶点坐标公式列式计算即可得解;(2)根据顶点在x轴上方,顶点纵坐标大于0列出不等式求解即可;(3)先求出点A的坐标,再根据抛物线的对称求出AB=1,然后根据三角形的面积公式列式计算即可得解.本题考查了二次函数的性质,主要利用了二次函数的开口方向,对称轴、顶点坐标公式,以及二次函数的对称性.。
2020-2021学年湖南省株洲市炎陵县九年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.已知反比例函数经过(−2,3),则下列哪个点在此函数图象上()A. (−1,−6)B. (3,2)C. (−2,−3)D. (−6,1)2.一元二次方程x2+4x=3配方后化为()A. (x+2)2=3B. (x+2)2=7C. (x−2)2=7D. (x+2)2=−13.点B是线段AC的黄金分割点,且AB<BC.若AC=4,则BC的长为()A. 2√5+2B. 2√5−2C. √5−12D. √5−14.Rt△ABC中,∠C=90°,若AB=4,cosA=35,则AC的长为()A. 95B. 125C. 163D. 55.小明随机抽查了八年级(1)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,9(单位:ℎ).则估计本班大多数同学一周写数学作业的时间约为()A. 4hB. 5hC. 6hD. 7h6.已知二次函数y=(m+2)x m2−3,当x<0时,y随x的增大而增大,则m的值为()A. −√5B. √5C. ±√5D. 27.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC⏜的长为()A. 103π B. 109π C. 59π D. 518π8.如图,在△ABC中,∠A=90°,sinB=35,点D在边AB上,若AD=AC,则tan∠BCD的值为()A. 15B. 16C. 17D. 189.如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y=kx 的图象相交于A(m,3√2),C两点,已知点B(2√2,2√2),则k的值为()A. 6B. −6C. 6√2D. −6√210.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(−1,0);⑤当1<x<4时,有y2<y1.其中正确个数是()A. 5B. 4C. 3D. 2二、填空题(本大题共8小题,共32.0分)11.已知反比例函数y=k−2x的图象位于第一、第三象限,则k的取值范围是______.12.已知2b3a−b =34,则ab=______.13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为______米.14.如果关于x的一元二次方程x2+2x−k=0有实数根,那么k的取值范围是______.15.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则⊙O的直径长等于______.16.如果抛物线y=x2−6x+c−2的顶点到x轴的距离是4,则c的值等于______.17.如图,D为AB边上一点,AD:DB=3:4,DE//AC交BC于点E,则S△BDE:S△AEC等于______.18.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=x24(x≥0)交于A,B两点,过点A作CD//x轴分别与y轴和抛物线C2交于点C、D,过点B作EF//x轴分别与y轴和抛物线C1交于点E、F,则S△OFBS△EAD的值为______.三、解答题(本大题共8小题,共78.0分)19.计算:4sin60°+(3.14−π)0−√12−tan230°.20.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查(不可多选,也不可不选),并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息,解答下列问题:(1)直接写出本次调查的学生总人数______;(2)补全条形统计图;(3)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(4)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生有多少人?21.某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)22.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA⋅BE;(2)若AB=6,BE=8,求CD的长.23.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.24.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.(x<0)的图象相25.如图,直线y1=kx+b与函数y2=kx交于点A(−1,6),与x轴交于点C,且∠ACO=45°,点D是线段AC上一点.(1)求k的值与一次函数的解析式.(2)若直线与反比例函数的另一支交于B点,直接写出y1<y2自变量x的取值范围,并求出△AOB的面积.(3)若S△COD:S△AOC=2:3,求点D的坐标.26.如图,抛物线y=ax2+bx+c的图象过点A(−1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:∵反比例函数kx图象经过点(−2,3),∴k=−2×3=−6.A、−1×(−6)=6,不在反比例函数图象上;B、3×2=6,不在反比例函数图象上;C、−2×(−3)=6,不在反比例函数图象上;D、−6×1=−6,在反比例函数图象上.故选:D.由反比例函数图象上点的坐标特点找到横纵坐标的积等于−6的点即可.此题主要考查了反比例函数图象上点的坐标特点;用到的知识点为:反比例函数图象上点的横纵坐标的积相等.2.【答案】B【解析】解:配方得,x2+4x+4=3+4,(x+2)2=7.故选:B.在等式的两边同时加上一次项系数的一半的平方.本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.【答案】B【解析】解:∵点B是线段AC的黄金分割点,且AB<BC,∴BC=√5−12AC=√5−12×4=2√5−2,故选:B . 根据黄金比值为√5−12进行计算即可.本题考查的是黄金分割的概念和性质,掌握黄金比值为√5−12是解题的关键.4.【答案】B【解析】解:Rt △ABC 中,∠C =90°,若AB =4,cosA =35, ∴cosA =35=AC AB=AC 4,∴AC =125,故选:B .根据锐角三角函数的定义求解即可.本题考查锐角三角函数,掌握锐角三角函数的定义是解决问题的关键.5.【答案】C【解析】解:x −=6+4+6+5+6+7+6+6+99≈6.1,∴本班大多数同学一周写数学作业的时间约为6h , 故选:C .根据平均数的求法和用样本估计总体解答.此题考查用样本估计总体,关键是根据平均数的求法解答.6.【答案】A【解析】解:由y =(m +2)x m2−3是二次函数.且当x <0时,y 随x 的增大而增大,得:{m 2−3=2m +2<0, 解得:{m =±√5m <−2,综上,m =−√5, 故选:A .根据二次函数的性质,可得方程,根据解方程,可得答案.本题考查了二次函数的定义,利用二次函数的定义得出方程是解题关键,注意二次项的系数小于零,对称轴的左侧y随x的增大而增大.7.【答案】B【解析】【分析】此题主要考查了弧长公式应用以及圆周角定理,正确得出∠BOC的度数是解题关键.直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴BC⏜的长为:100π×2180=109π.故选:B.8.【答案】C【解析】解:如图,作DH⊥BC于H.∵∠A=90°,sinB=ACBC =35,∴可以假设AC=3k,BC=5k,则AB=4k,∵AC=AD=3k,∴BD=k,∵∠B=∠B,∠DHB=∠A=90°,∴△BHD∽△BAC,∴BDBC =DHAC=BHAB,∴K5k =DH3k=BH4k,∴DH=35k,BH=45k,∵CH=BC−BH=5k−45k=215k,∴tan∠BCD=DHCH =35k215k=17,故选:C.如图,作DH⊥BC于H.设AC=3k,BC=5k,则AB=4k,想办法求出DH,CH即可解决问题.本题考查解直角三角形,解题的关键是学会利用参数解决问题,属于中考常考题型.9.【答案】B【解析】解:作AE⊥x轴交x轴于点E,作CF⊥x轴交x轴于点F,作BD//x轴交AE于点D,∵四边形AOCB是菱形,∴AB//CO,AB=CO,∴∠ABO=∠COB,又∵BD//x轴,∴∠DBO=∠FOB,∴∠ABD=∠COF,∵AD⊥BD,CF⊥OF,∴∠ADB=∠CFO=90°,在△ADB和△CFO中,{∠ABD=∠COF ∠ADB=∠CFO AB=CO,∴△ADB≌△CFO(AAS),∴AD=CF,∵A(m,3√2),B(2√2,2√2),∴AD=√2,∴CF=√2,同理可证,△AEO≌△OFC,∴OE=CF=√2,∵点A在反比例函数y=k的图象上,x∴3√2=,−√2解得,k=−6,故选:B.根据菱形的性质、平行线的性质和全等三角形的判定和性质可以求得点A的坐标,然后根据点A在反比例函数图象上,即可求得k的值,本题得以解决.本题考查反比例函数的图象和性质、菱形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】【分析】本题考查了二次函数图象与系数的关系,属于一般题.根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.【解答】解:∵抛物线的顶点坐标A(1,3),=1,∴抛物线的对称轴为直线x=−b2a∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=−2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值3,∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(−2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选:C.11.【答案】k>2【解析】解:∵y=k−2x的图象位于第一、第三象限,∴k−2>0,k>2.故答案为k>2.由题意得,反比例函数经过一、三象限,则k−2>0,求出k的取值范围即可.本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.【答案】119【解析】【分析】此题考查了比例的性质,关键是将2b3a−b =34变形为3a−b2b=43.根据2b3a−b=34,可得3a−b2b=43,再根据比例的性质即可求解.【解答】解:∵2b3a−b =34,∴3a−b2b =43,∴3a2b −12=43,a b =119.故答案为119.13.【答案】1.4【解析】【分析】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质.根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得:44+3=0.8ℎ,解得ℎ=1.4.故答案为1.4.14.【答案】k≥−1【解析】解:根据题意得△=22−4×(−k)≥0,解得k≥−1.故答案为k≥−1.根据判别式的意义得到△=22−4×(−k)≥0,然后解不等式即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】4【解析】解:连接BO并延长交⊙O于D,连接CD,则∠BCD=90°,∵∠BAC=30°,∴∠D=∠BAC=30°,∵BC=2,∴BD=2BC=4,故答案为:4.连接BO并延长交⊙O于D,连接CD,得到∠BCD=90°,根据圆周角定理得到∠D=∠BAC=30°,根据含30°角直角三角形的性质即可得到结论.构造直角三角形是解题的关键.16.【答案】7或15【解析】解:∵抛物线y=x2−6x+c−2的顶点到x轴的距离是4,∴|4×1×(c−2)−(−6)2|=4,4×1解得c1=7,c2=15,故答案为:7或15.根据抛物线y=x2−6x+c−2的顶点到x轴的距离是4,可知顶点的纵坐标的绝对值是4,然后计算即可.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】16:21【解析】解:∵DE//AC,∴△BDE∽△BAC,且AD:DB=3:4,∴BD:AB=DE:AC=4:7,S△BDE:S△BAC=16:49,∴S△BDE:S四边形DECA=16:33,∵DE:AC=4:7,△ADE与△ACE的高相等,∴S△ADE:S△ACE=4:7=12:21,∴S△BDE:S△AEC=16:21,故答案为:16:21.根据相似三角形的面积比等于相似比的平方及平行线分线段成比例,不难求得S△BDE:S△AEC.本题利用了平行线分线段成比例,相似三角形的性质,及分比性质求解.18.【答案】16【解析】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为a2,4∴点F纵坐标为a24,∵点F是抛物线y=x2上的点,∴点F横坐标为x=√y=12a,∵CD//x轴,∴点D纵坐标为a2,∵点D是抛物线y=x24上的点,∴点D横坐标为x=√4y=2a,∴AD=a,BF=12a,CE=34a2,OE=14a2,∴则S△OFBS△EAD =12⋅BF⋅OE12⋅AD⋅CE=18×43=16,故答案为:16.可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.本题考查了抛物线上点的计算,考查了三角形面积的计算,本题中求得点E、F、D的坐标是解题的关键.19.【答案】解:原式=4×√32+1−2√3−(√33)2=2√3+1−2√3−13=23.【解析】直接利用零指数幂的性质和特殊角的三角函数值、二次根式分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】90【解析】解:(1)本次调查的学生总人数:18÷20%=90,故答案为:90;(2)在线听课的学生有:90−24−18−补全的条形统计图如右图所示;(3)扇形统计图中“在线讨论”对应的扇形圆心角是:360°×1290=48°,即扇形统计图中“在线讨论”对应的扇形圆心角是48°;(4)3000×2490=800(人),答:该校对在线阅读最感兴趣的学生有800人.(1)根据在线答题的人数和所占的百分比可以求得本次调查的学生总人数;(2)根据(1)中的结果和条形统计图中的数据可以计算出在线听课的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以计算出扇形统计图中“在线讨论”对应的扇形圆心角的度数;(4)根据统计图中的数据可以计算出该校对在线阅读最感兴趣的学生有多少人.本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:由题意得∠CAO=60°,∠CBO=45°,∵OA=1800×tan30°=1800×√33=600√3,OB=OC=1800,∴AB=(1800−600√3)(m).答:隧道AB的长为(1800−600√3)m.【解析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB的长.本题考查了解直角三角形的应用−俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.22.【答案】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDE=∠BAD=90°,∴△ABD∽△DBE,∴ABBD =BDBE,∴BD2=BA⋅BE;∴BD=4√3,∴DE=√BE2−BD2=√64−48=4,∵∠BDC=∠A+∠ABD=∠BDE+∠EDC,∴∠ABD=∠CDE,∴∠CDE=∠DBC,又∵∠C=∠C,∴△BCD∽△DCE,∴DEBD =CDBC=ECCD,∴CD8+EC =ECCD=44√3,∴EC=4,CD=4√3.方法二、∵sin∠DBE=DEBE =48=12,∴∠DBE=30°,∴∠ABD=∠DBE=30°,∴∠C=30°,∴∠C=∠DBC,∴BD=CD,∵∠ABD=30°,∴cos∠ABD=ABBD=√32∴BD=4√3,∴CD=4√3.【解析】(1)通过证明△ABD∽△DBE,可得ABBD =BDBE,可得结论;(2)由勾股定理可求DE=4,通过证明△BCD∽△DCE,可得DEBD =CDBC=ECCD,即可求解.本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质等知识,利用相似三角形的性质求线段的长是本题的关键.23.【答案】解:(1)根据题意得:△=(2m)2−4(m2+m)>0,解得:m<0.(2)根据题意得:x1+x2=−2m,x1x2=m2+m,∵x12+x22=12,∴(x1+x2)2−2x1x2=12,∴(−2m)2−2(m2+m)=12,∴解得:m1=−2,m2=3(不合题意,舍去),∴m的值是−2.【解析】(1)由一元二次方程的根的情况与判别式的关系可得△>0,由此可解得m的值.(2)根与系数的关系及已知条件可得关于m的一元二次方程,解得m的值并根据(1)中的所得的m的取值范围作出取舍即可得出答案.本题考查了一元二次方程的根的情况与判别式的关系、及根与系数的关系及解一元二次方程等知识点,熟练掌握一元二次方程的相关知识是解题的关键.24.【答案】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB//CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC=√BE2+CE2=√32+42=5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴CD BC =BC CE , ∴BC 2=CD ⋅CE ,∴CD =524=254, ∴OC =12CD =258, ∴⊙O 的半径=258.【解析】(1)证明:如图1,连接OB ,由AB 是⊙0的切线,得到OB ⊥AB ,由于CE 丄AB ,的OB//CE ,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD 通过△DBC∽△CBE ,得到比例式CD BC =BCCE ,列方程可得结果. 本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵反比例函数经过点A(−1,6),∴k =−6.作AE ⊥x 轴,交x 轴于点E .∴E(−1,0),EA =6,∵∠ACO =45°,∴CE =AE =6,即C(5,0),把A(−1,6),C(5,0)代入y 1=kx +b 得{−k +b =65k +b =0, 解得{k =−1b =5, ∴一次函数的解析式y 1=−x +5;(2)由{y 1=−x +5y 2=−6x解得{x =−1y =6和{x =6y =−1, ∴B(6,−1).由图象可知,y 1<y 2自变量x 的取值范围是−1<x <0或 x >6,S △AOB =12OC ⋅(6+1)=12OC ⋅7=352; (3)作DF ⊥x 轴,交x 轴于点F .∵S △COD :S △AOC =2:3,设点D(x,−x+5).∴(−x+5):6=2:3,∴x=1.故D(1,4).(x<0)可求出k的值,作AE⊥x轴,交x轴于点E.则【解析】(1)将A(−1,6)代入y2=kxE(−1,0),EA=6,根据等腰直角三角形的性质得出CE=AE=6,即C(5,0),然后根据待定系数法即可求得一次函数解析式;(2)解析式联立,解方程组求得B点的坐标,然后根据图象即可求得y1<y2自变量x的取值范围,进而根据三角形面积公式求得△AOB的面积.(3)过点D作DF⊥x轴,垂足为E,过点A作AN⊥x轴,垂足为N,由△ODC与△OAC的面积比为2:3,可推出DF:AE=2:3,设点D(x,−x+5).即有(−x+5):6=2:3,解得x=1,可求出点D坐标;本题考查了待定系数法求解析式,等腰直角三角形的性质,三角形的面积,反比例函数的性质等,解题关键是数形结合思想的应用.26.【答案】解:(1)∵抛物线图象经过点A(−1,0)、B(3,0),不妨设抛物线的解析式为y=a(x+1)(x−3),将点C(0,3)代入其解析式得3=a(0+1)(0−3),解得a=−1,∴抛物线的解析式为y=−(x+1)(x−3),即y=−x2+2x+3;(2)如图1,抛物线的对称轴为直线x=1,连接BC,与直线x=1交于点P,则PA=PB,∴当点B、P、C三点共线时,△PAC周长取得最小值,设点P(1,m),直线BC表达式为y=kx+3,将点B(3,0)代入y=kx+3,得3k+3=0,解得k=−1,则直线BC表达式为y=−x+3,当x=1时,y=2,∴m=2,,故点P(1,2),∴AP=√22+22=2√2,CP=√12+12=√2,AC=√12+32=√10,∴AP=+CP+AC=2√2+√2+√10=3√2+√10,∴△PAC周长最小值为:3√2+√10;(3)设M(1,n),A(−1,0),C(0,3),则MA2=4+n2,MC2=1+(3−n)2,AC2=10,如图2所示,当MA=MC时,即4+n2=1+(3−n)2,解得n=1,此时点M(1,1);如图3所示,当MA=AC时,即4+n2=10,解得n=±√6,此时点M(1,√6),(1,−√6);如图4所示,当MC=AC时,即1+(3−n)2=10,解得:n1=0,n2=6(舍去),此时点M(1,0),综上所述,点M的坐标为(1,1),(1,√6),(1,−√6),(1,0).【解析】(1)根据题意设抛物线两点式y=a(x+1)(x−3),再将点C坐标进行代入求解即可;(2)根据抛物线的对称性得到PA=PB,从而当点B、P、C三点共线时,△PAC周长取得最小值,利用待定系数法求得直线BC的表达式,进而推出点P的坐标,结合图形利用勾股定理进行求解即可;(3)结合图形根据点的坐标特征推出则MA2=4+n2,MC2=1+(3−n)2,AC2=10,并分当MA=MC时、当MA=AC时和当MC=AC时三中情况进行讨论,分别列出方程进行求解即可.本题考查二次函数的综合题,应充分掌握用待定系数法求函数表达式、利用二次函数的对称性求三角形周长最小值以及平面直角坐标系中点的坐标特征与线段之间的关系,与此同时注意数形结合和分类讨论思想方法的运用.。
一、选择题1.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A .34B .13C .23D .122.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( ) A .16B .29C .13D .233.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( ) A .310B .925C .425D .1104.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为( ) A .12B .13C .23D .165.下列说法不正确的是( ) A .不在同一直线上的三点确定一个圆 B .90°的圆周角所对的弦是直径 C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等6.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .2B .2C .2D .27.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°8.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .49.如图:在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC 绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )A .3B .2C .1D .210.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A .B .C .D .11.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点 D .对称轴是3x =12.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn的值为( ) A .4B .1C .﹣2D .﹣1二、填空题13.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01)每批粒数n800100012001400160018002000发芽的频数m76294811421331151817101902发芽的频率mn0.9530.9480.9520.9510.9490.9500.95114.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.15.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.16.一点到O上的最近距离为3cm,最远距离为11cm,则这圆的半径是______.17.如图,正五边形ABCDE内接于⊙O,点F在DE上,则∠CFD=_____度.18.在平面直角坐标系中,将点P(﹣3,2)绕点Q(﹣1,0)顺时针旋转90°,所得到的对应点P'的坐标为____.19.如图,在平面直角坐标系中,点A,B是一次函数y x图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查,将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求D 班选择环境保护的学生人数,并补全折线统计图;(2)若随机抽取一位学生,选择做交通监督或环境保护志愿者的概率是多少? 22.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.23.下面是“作已知三角形的高”的尺规作图过程.已知:ABC.求作:BC边上的高AD.作法:如图,①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于,P Q两点;②作直线PQ,交AC于点O,则直线PQ是线段AC的线;③以O为圆心,OA为半径作O,与CB的延长线交于点D,连接AD,线段AD即为所作的高.(1)补全尺规作图并填空﹔(2)判断AD为高的依据是.24.已知△ABC为等边三角形.(1)如图,P为△ABC外一点,∠BPC=120°,连接PA,PB,PC,求证:PB+PC=PA;(2)如图,P为△ABC内一点,若PA=12,PB=5,PC=13,求∠APB的度数.25.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围; (2)请你设计一个方案,使获得的设计费最多,并求出这个费用.26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意画出树状图,进而得出以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形是等腰三角形的情况,求出概率即可. 【详解】解:∵以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形, ∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA 1B 1,△OA 2B 2, 所作三角形是等腰三角形的概率是:21=42. 故选:D . 【点睛】此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.2.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.3.A解析:A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=3 10.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.4.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:61=122.故答案为:12.故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5.C解析:C【分析】根据确定圆的条件对A进行判断;根据垂径定理的推论对C进行判断;根据圆周角定理及其推论对B、D进行判断.【详解】解:A.不在同一直线上的三点确定一个圆,说法正确;B. 90°的圆周角所对的弦是直径,说法正确;C. 平分弦(非直径)的直径垂直于弦,所以B选项错误;D. 等弧所对的圆周角相等,说法正确;故选:C【点睛】此题主要考查了圆的相关知识的掌握.解答此题的关键是要熟悉课本中的性质定理.6.D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE,交AC于点F,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点, ∵12AB = ∴6OE AO == 设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点, ∴DF AC ⊥,DF AF = ∵2DE =, ∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+ 即2226(6)(2)x x =-++, ∴122x =,222x =∴2(2)822AC x =+=+822- ∵6AC > ∴822AC =+ 故选:D 【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键.7.D解析:D 【分析】连接OB ,利用圆周角定理求得∠AOB ,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解. 【详解】 解:连接OB , ∵∠ACB=34°, ∴∠AOB=2∠ACB=68°, ∵PB 为O 的切线,∴OB ⊥PB ,即∠OBP=90°, ∴∠P=90°﹣∠AOB=22°, 故选:D .【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.8.C解析:C【分析】当M与A或B重合时,达到最大值;当OM⊥AB时,为最小,从而确定OM的取值范围即可解决问题.【详解】解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=1×8=4,2∴在Rt△OAM′中,2222-'=3,OA AM=-54∴线段OM长的最小值为3,最大值为5.所以,OM的取值范围是:3≤OM≤5,故线段OM长的整数值为3,4,5,共3个.故选:C.【点睛】本题考查的是勾股定理和最值.本题容易出现错误的地方是对点M的运动状态不清楚,无法判断什么时候会为最大值,什么时候为最小值.9.A解析:A【解析】试题分析:由题意可知:∠A=60°,AC=EC,所以△ACE是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF,所以△CBF是等边三角形,所以∠CBF=60°,∠FBE=60°+30°=90°,△BEF是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,=A.考点:1.旋转性质;2.直角三角形性质.10.D解析:D【分析】根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】考核知识点:中心对称图形的识别.11.C解析:C【分析】根据函数图象和性质逐个求解即可.【详解】解:对于y=5(x﹣3)2+2,则该函数的对称轴为直线x=3,顶点坐标为(3,2),A.二次函数y=5(x﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意;B.由于a=5>0,所以抛物线开口向上,故本选项不符合题意;C.由于y=5(x﹣3)2+2=5x2﹣30x+47,则△=b2﹣4ac=900﹣4×5×47=﹣40<0,所以该抛物线与x轴没有交点,故本选项符合题意;D.对于y=5(x﹣3)2+2,则该函数的对称轴为直线x=3,故本选项不符合题意.故选:C.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征.12.C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a、b看作方程x2+(m+n)x+mn﹣2=0的两个实数根,∴ab=mn﹣2,∴ab﹣mn=﹣2.故选:C.【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a、b看作方程x2+(m+n)x+mn﹣2=0的两实数根”是解题关键.二、填空题13.【分析】观察表格得到这种黄豆发芽的频率稳定在095附近即可估计出这种黄豆发芽的概率【详解】当n足够大时发芽的频率逐渐稳定于095故用频率估计概率黄豆发芽的概率估计值是095故答案为:095【点睛】本解析:0.95【分析】观察表格得到这种黄豆发芽的频率稳定在0.95附近,即可估计出这种黄豆发芽的概率.【详解】当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,黄豆发芽的概率估计值是0.95.故答案为:0.95.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况再利用概率公式即可求得答案【详解】解:画树状图得:∵共有6种等可能的结果抽签后每个运动员的出解析:1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=13,故答案为:13.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.【解析】分析:设勾为2k则股为3k弦为k由此求出大正方形面积和阴影区域面积由此能求出针尖落在阴影区域的概率详解:设勾为2k则股为3k弦为k∴大正方形面积S=k×k=13k2中间小正方形的面积S′=(解析:12 13【解析】分析:设勾为2k,则股为3k13,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k13,∴大正方形面积13132,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:221212 1313kk.故答案为12 13.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.16.4cm或7cm【分析】当点P在圆内时点P到圆的最大距离与最小距离之和就是圆的直径当点P在圆外时点P到圆的最大距离与最小距离的差就是圆的直径知道了直径就能确定圆的半径【详解】当点P在圆外时如图1点P到解析:4cm或7cm【分析】当点P在圆内时,点P到圆的最大距离与最小距离之和就是圆的直径.当点P在圆外时,点P到圆的最大距离与最小距离的差就是圆的直径.知道了直径就能确定圆的半径.【详解】当点P在圆外时,如图1,点P到圆的最大距离与最小距离的差为8cm,就是圆的直径,所以半径是4cm.当点P在圆内时,如图2,点P到圆的最大距离与最小距离的和为14cm,就是圆的直径,所以半径是7cm.故答案是:4cm或7cm.【点睛】本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,可以得到圆的直径,然后确定圆的半径.17.36【分析】连接OCOD求出∠COD的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD∵五边形ABCDE是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD=3605=72°,∴∠CFD=12∠COD=36°,故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.18.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P(12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.【详解】如图,观察图象可知,P'(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.19.【分析】设点E(mm2﹣4m+8)过E作EM垂直于x轴交AB于点M作BF⊥EMAG⊥EM垂足分别为FG由题意可得M(mm)从而可用含m的式子表示出EM的长根据二次函数的性质及三角形的面积公式可得答案解析:21 8【分析】设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意可得M(m,m),从而可用含m的式子表示出EM的长,根据二次函数的性质及三角形的面积公式可得答案.【详解】解:设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG ⊥EM ,垂足分别为F ,G ,由题意得:M (m ,m ),∴EM =m 2﹣4m +8﹣m=m 2﹣5m +8 =257()24m -+, ∴S △ABE =S △AEM +S △EMB =1122EM AG EM BF ⋅+⋅ 1()2EM AG BF =+ 12=(m 2﹣5m +8)×(4-1) 32=(m 2﹣5m +8) =23521()228m -+, 由302>,得S △ABE 有最小值. ∴当m =52时,S △ABE 的最小值为218. 故答案为:218. 【点睛】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p﹣3×(﹣1)=q所以p=﹣4q=3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p或q的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p,﹣3×(﹣1)=q,所以p=﹣4,q=3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q是解题的关键.三、解答题21.(1)15人,见解析;(2)0.57【分析】(1)先根据扇形统计图中,环境保护占200名学生中的30%求出选环境保护的学生人数,再根据折线统计图中A、B、C班的人数求出D班人数,最后补全折线统计图;(2)先根据折线统计图算出选择交通监督的学生数,再求出它的占比,概率就是交通监督和环境保护的占比之和.【详解】⨯=(人),解:(1)选择环境保护的学生数是:20030%60---=(人),D班选择环境保护的学生人数是:6015141615补全折线统计图如图所示:+++=(人),占比是:(2)选择交通监督的学生数是:1215131454÷⨯=,54200100%27%+=.随机抽取一位学生,选择做交通监餐或环境保护志愿者的概率是27%30%0.57【点睛】本题考查统计和概率,解题的关键是掌握折线统计图和扇形统计图的特点,以及概率的求解方法.22.(1)1,2;(2)72°;(3)见解析;(4)见解析,1 4【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据2部对应的人数,即可将条形统计图补充完整;(4)根据列表所得的结果,可判断他们选中同一名著的概率.【详解】解:(1)调查的总人数为:10÷25%=40,∴2部对应的人数为40-2-14-10-8=6,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部.故答案为:1,2(2)扇形统计图中“4部”所在扇形的圆心角为:8360?=72? 40⨯故答案为:72°.(3)2部对应的人数为:40-2-14-10-8=6人补全统计图如图所示.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:由图可知,共有16种等可能的结果,其中选中同一名著的有4种,()41 164P∴==选中同一部.故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)画图见解析,垂直平分;(2)直径所对的圆周角是直角【分析】(1)利用基本作图可判断PQ垂直平分AC;(2)根据圆周角定理求解.【详解】解:②作直线PQ,交AC于点O,则直线PQ是线段AC的垂直平分线;(1)如图,AD为所作;(2)∵AC为直径,∴∠ADC=90°,∴AD⊥BC.故答案为垂直平分线;直径所对的圆周角为直角.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质和圆周角定理.24.(1)证明见解析;(2)150°.【分析】(1)延长BP至E,使PE=PC,连接CE,由∠BPC=120°,推出等边△CPE,得到CP=PE=CE,∠PCE=60°,根据已知等边△ABC,推出AC=BC,∠ACP=∠BCE,根据三角形全等的判定推出△ACP≌△BCE,得出AP=BE即可求出结论;(2)由题意可得出:∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12,∠PBP'=∠ABC=60°,由勾股定理逆定理得出∠PP'C=90°,即可得出∠BPA的度数.【详解】(1)如图1,延长BP 至点E ,使得PE =PC ,连接CE .∵∠BPC =120°,PE =PC ,∴∠CPE =60°,∴△CPE 为等边三角形,∴CP =PE =CE ,∠PCE =60°.∵△ABC 是等边三角形,∴AC =BC ,∠BCA =60°,∴∠ACB =∠ECP ,∴∠ACB +∠BCP =∠ECP +∠BCP ,即:∠ACP =∠BCE .在△ACP 和△BCE 中,AC BC ACP BCE PE PC =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BCE (SAS ),∴AP =BE .∵BE =BP +PE =BP +PC ,∴PB +PC =PA ;(2)如图2,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ',连接PP ',由旋转知,△APB ≌△CP 'B ,∴∠BPA =∠BP 'C ,P 'B =PB =5,P 'C =PA =12,∠PBP '=∠ABC =60°,又∵P 'B =PB =5,∴△PBP '是等边三角形,∴∠PP 'B =60°,PP '=5.在△PP 'C 中,PC =13,PP '=5,P 'C =12,∴PC 2=PP '2+P 'C 2,即∠PP 'C =90°,∴∠APB =∠BP 'C =60°+90°=150°.【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理逆定理等知识,熟练利用勾股定理逆定理得出是解题关键.25.(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
湖南省株洲市茶陵县2020-2021学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.抛物线22(1)2y x =-+的顶点坐标是( ) A .(1,2)--B .(1,2)-C .(1,2)-D .(1,2)2.若()350a b b =≠,则下列各式一定成立的是( ) A .35a b = B .53a b = C .35a b = D .145a b += 3.在Rt ABC 中,∠C=90°,如果sin cos A A =,那么A ∠的值是( ) A .90°B .60°C .45°D .30°4.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( ) A .平均数变小,方差变小 B .平均数变小,方差变大 C .平均数变大,方差变小D .平均数变大,方差变大5.方程x (x ﹣5)=x 的解是( ) A .x=0B .x=0或x=5C .x=6D .x=0或x=66.在ABC 中,∠C=90°,AB=5,BC=4,以A 为圆心,以3为半径画圆,则点C 与⊙A 的位置关系是( ) A .在⊙A 外B .在⊙A 上C .在⊙A 内D .不能确定7.已知点(,1),(,3)A m B n 都在反比例函数(0)ky k x=>的图像上,那么( ) A .m n < B .m n =C .m n >D .m n 、的大小无法确定8.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .89.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .810.如图,若二次函数2(0)y ax bx c a =++≠的图象的对称轴为1x =,与x 轴的一个交点为(1,0)-,则:①二次函数的最大值为a b c ++ ;②0a b c -+<;③当1x >时,y 随x 的增大而增大;④当0y >时,13x,其中正确命题的个数是( )A .1B .2C .3D .4二、填空题11.已知关于x 的方程230x x m +-=的一个解为3-,则m=_______. 12.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.13.如图是某幼儿园的滑梯的简易图,已知滑坡AB 的坡度是1:3 ,滑梯的水平宽是6m ,则高BC 为_______m .14.如图,A B C 、、是⊙O 上的点,若100AOB ∠=,则ACB ∠=___________度.15.已知ABC DEF ∽△△,且916ABC DEF S S =△△ ,且ABC 与DEF 的周长和为175 ,则ABC 的周长为 _________.16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.17.已知1x ,2x 是方程2510x x --=的两个实根,则2212x x +=______.18.如图所示,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ=13CE 时,EP+BP= .三、解答题19.计算:()0sin 4512|3tan30︒-++︒ 20.解下列方程:(1)3(2)(2)x x x -=- (2)2430x x ++=21.某学校从360名九年级学生中抽取了部分学生进行体育测试,并就他们的成绩(成绩分为A 、B 、C 三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2) 如果成绩为A 层次的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?22.如图,点E 是弧BC 的中点,点A 在⊙O 上,AE 交BC 于点D . (1)求证:2•BE AE DE ;(2)连接OB ,OC ,若⊙O 的半径为5,BC=8,求OBC 的面积.23.如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD .求AC 的长和cos ∠ADC 的值.24.如图,某反比例函数图象的一支经过点A (2,3)和点B (点B 在点A 的右侧),作BC ⊥y 轴,垂足为点C ,连结AB ,AC .(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.25.如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.△≌△;(1)求证:AEB CGB(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;∽?(3)连接BH,当点E运动到AD的何位置时有BEH BAE26.已知ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.参考答案1.D 【分析】根据抛物线的顶点式解答即可. 【详解】解:抛物线22(1)2y x =-+的顶点坐标是(1,2). 故选:D . 【点睛】本题考查了抛物线的性质,属于基础题型,熟知抛物线的顶点式是解此题的关键. 2.B 【分析】由0,b ≠ 等式的两边都除以3b ,从而可得到答案. 【详解】 解:()350,a b b =≠∴ 等式的两边都除以:3b ,35,33a bb b ∴= 5.3a b ∴= 故选B . 【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键. 3.C 【分析】根据锐角三角函数的定义解得即可. 【详解】解:由已知,sin BCA AB=,cos AC A AB =∵sin cos A A = ∴BC AC =∵∠C=90° ∴A ∠=45° 故选:C 【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解. 4.A 【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188,方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187,方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593,∴平均数变小,方差变小, 故选A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 5.D 【分析】先移项,然后利用因式分解法解方程.【详解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=6.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:3,AC===∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.7.C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m 和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数kyx=(k>0)的图象上,1<3,∴m>n.故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.8.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题. 9.C【详解】∵直径AB 垂直于弦CD ,∴CE=DE=12CD , ∵∠A=22.5°,∴∠BOC=45°,∴OE=CE ,设OE=CE=x ,∵OC=4,∴x 2+x 2=16,解得:即:,∴,故选C .10.B【分析】①根据二次函数的图象可知,1x =时,二次函数取得最大值,将1x =代入二次函数的解析式即可得;②根据1x =-时,0y =即可得;③根据二次函数的图象即可知其增减性;④先根据二次函数的对称性求出二次函数的图象与x 轴的另一个交点坐标,再结合函数图象即可得.【详解】由二次函数的图象可知,1x =时,二次函数取得最大值,将1x =代入二次函数的解析式得:y a b c =++,即二次函数的最大值为a b c ++,则命题①正确;二次函数的图象与x 轴的一个交点为(1,0)-,0a b c ∴-+=,则命题②错误;由二次函数的图象可知,当1x >时,y 随x 的增大而减小,则命题③错误;设二次函数的图象与x 轴的另一个交点为(,0)m ,二次函数的对称轴为1x =,与x 轴的一个交点为(1,0)-,112m -+∴=,解得3m =, 即二次函数的图象与x 轴的另一个交点为(3,0),由二次函数的图象可知,当0y >时,13x,则命题④正确;综上,正确命题的个数是2,故选:B .【点睛】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键.11.0【分析】把3x =-代入原方程得到关于m 的一元一次方程,解方程即可得到答案.【详解】解:把3x =-代入原方程得: ()()23330,m ∴-+⨯--=0.m ∴=故答案为:0.【点睛】本题考查的是一元二次方程的解的含义,掌握方程的解的含义是解题的关键. 12.4.【解析】∵AB ∥CD , 223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.2【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC= 13×6=2m.故答案为:2.【点睛】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.14.130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=12∠AOB =50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.15.75【分析】根据相似三角形的性质得△ABC 的周长:△DEF 的周长=3:4,然后根据ABC 与DEF 的周长和为175即可计算出△ABC 的周长.【详解】解:∵△ABC 与△DEF 的面积比为9:16,∴△ABC 与△DEF 的相似比为3:4,∴△ABC 的周长:△DEF 的周长=3:4,∵ABC 与DEF 的周长和为175 ,∴△ABC 的周长=37×175=75. 故答案是:75.【点睛】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.16.11【解析】【分析】设参加聚会的有x 名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x 的一元二次方程,解之即可.【详解】解:设参加聚会的有x 名学生,根据题意得: ()x x 1110-=,解得:1x 11=,2x 10(=-舍去),即参加聚会的有11名同学,故答案为:11.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.17.27【分析】根据根与系数的关系,由x12+x22=(x1+x2)2−2x1x2,即可得到答案.【详解】∵x1,x2是方程 x2−5x−1=0的两根,∴x1+x2=5,x1∙x2=−1,∴x12+x22=(x1+x2)2−2x1x2=52-2×(-1)=27;故答案为27.【点睛】本题考查了一元二次方程的根与系数的关系,解题的关键是熟练掌握根与系数的关系,并正确进行化简计算.18.12.【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=13CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【详解】如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分线,∴∠PBM=∠CBM .∴∠M=∠PBM .∴BP=PM .∴EP+BP=EP+PM=EM .∵CQ=13CE , ∴EQ=2CQ .由EF ∥BC 得,△MEQ ∽△BCQ , ∴EM EQ 2BC CQ==. ∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键,也是本题的难点. 19.3【分析】分别根据特殊角三角函数值、零次幂、绝对值的代数意义进行化简,最后进行加减运算即可.【详解】解:()0sin 451|2|3tan30︒-++︒=1233+-⨯3=. 【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零次幂、二次根式、绝对值等考点的运算.20.(1)121,23x x ==;(2)121,3x x =-=- 【分析】(1)把方程右边的项作为整体移到左边,利用因式分解的方法解方程即可;(2)利用配方法把方程化为:()221,x +=再利用直接开平方法解方程即可.【详解】解:(1)原方程可化为: ()()3220,x x x ---=∴ ()()3120x x --= 解得:121,23x x == (2)∵24311x x +++=()221,x ∴+=∴ 21x +=±解得:1213x x =-=-,.【点睛】本题考查的是一元二次方程的解法,掌握因式分解与配方法解方程是本题的解题关键. 21.(1)见解析;(2)144人【分析】(1)首先利用C 组的数据可以求出抽取了部分学生的总人数,然后利用频率或频数即可补全频数分布表与频数分布直方图;(2)根据(1)的几个可以得到A 等级的同学的频率,然后乘以360即可得到该校九年级约有多少人达到优秀水平.【详解】(1)补全频数分布表如下:补全直方图如下:(2)∵A 层次的同学人数为40人,频率为0.40,∴估计该校九年级约有 0.4×360=144人达到优秀水平. 【点睛】本题考查的知识点是频率分布表及用样本估计总体以及频率分布直方图,解题的关键是熟练的掌握频率分布表及用样本估计总体以及频率分布直方图.22.(1)见解析;(2)12【分析】(1)由点E 是BC 的中点根据圆周角定理可得∠BAE=∠CBE ,又由∠E=∠E (公共角),即可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例,证得结论.(2)过点O 作OF ⊥BC 于点F ,根据垂径定理得出BF=CF=4 ,再根据勾股定理得出OF 的长,从而求出OBC 的面积【详解】(1)证明:∵点E 是弧BC 的中点∴∠BAE=∠CBE=∠DBE 又∵∠E=∠E∴△AEB ∽△BED∴AE EB BE ED= ∴2•BE AE DE =(2)过点O 作OF ⊥BC 于点F ,则BF=CF=4在Rt OFB ∆中,3OF === ∴11831222OBC S BC OF ∆=⨯=⨯⨯=【点睛】此题考查了圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.AC =4; cos ∠ADC =35 【详解】解:在Rt △ABC 中,∵BC =8,1tan 2B =, ∴AC =4.设AD =x ,则BD =x ,CD =8-x ,由勾股定理,得(8-x )2+42=x 2.解得x =5. ∴3cos 5DC ADC AD ∠==.24.(1)y 6x=;(2)y 12=-x +4. 【解析】【分析】(1)把A 的坐标代入反比例函数的解析式即可求得;(2)作AD ⊥BC 于D ,则D(2,b),即可利用a 表示出AD 的长,然后利用三角形的面积公式即可得到一个关于b 的方程,求得b 的值,进而求得a 的值,根据待定系数法,可得答案.【详解】(1)由题意得:k =xy =2×3=6,∴反比例函数的解析式为y 6x=; (2)设B 点坐标为(a ,b),如图,作AD ⊥BC 于D ,则D(2,b),∵反比例函数y 6x =的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6, 解得a =6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+4. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.25.(1)见解析;(2)当12x =,y 有最大值14;(3)当点E 是AD 的中点 【分析】(1)由同角的余角相等得到∠ABE=∠CBG ,从而全等三角形可证;(2)先证明△ABE ∽△DEH ,得到AB AE DE DH =,即可求出函数解析式y=-x 2+x ,继而求出最值.(3)由(2)12EH HD BE EA ==,再由12AE AB =,可得12EH AE BE AB ==,则问题可证. 【详解】 (1)证明: ∵∠ABE+∠EBC=∠CBG+∠EBC=90°∴∠ABE=∠CBG在△AEB 和△CGB 中:∠BAE=∠BCG=90°,AB=BC , ∠ABE=∠CBG∴△AEB ≌△CGB (ASA )(2)如图∵四边形ABCD ,四边形BEFG 均为正方形∴∠A=∠D=90°, ∠HEB=90° ∴∠DEH+∠AEB=90°,∠DEH+∠DHE=90°∴∠DHE=∠AEB∴△ABE ∽△DEH ∴AB AE DE DH= ∴11x x y=- ∴2211()24y x x x =-+=--+故当12x =,y 有最大值14 (3)当点E 是AD 的中点时有 △BEH ∽△BAE .理由:∵ 点E 是AD 的中点时由(2)可得1124AE DH ==, 又∵△ABE ∽△DEH∴12EH HD BE EA ==, 又∵12AE AB = ∴12EH AE BE AB == 又∠BEH=∠BAE=90°∴△BEH ∽△BAE【点睛】本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定,解答关键是根据题意找出相似三角形构造等式.26.(1)(3﹣m ,0);(2)2(1)y x =-;(3)见解析【分析】(1)AO=AC−OC =m−3,用线段的长度表示点A 的坐标;(2)ABC 是等腰直角三角形,因此AOD △也是等腰直角三角形,即可得到OD =OA ,则D (0,m−3),又由P (1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,运用相似比求出FC ,EC 长的表达式,而AC =m ,代入即可.【详解】解:(1)由B (3,m)可知OC=3,BC =m ,∴AC =BC =m ,OA =m ﹣3,∴点A 的坐标为(3﹣m ,0)(2)∵∠ODA =∠OAD =45°∴OD =OA = m ﹣3,则点D 的坐标是(0,m ﹣3)又抛物线的顶点为P (1,0),且过B 、D 两点,所以可设抛物线的解析式为:2(1)y a x =-得:221(31)4(01)3a a m m a m =⎧-=⎧⎨⎨=-=-⎩⎩解得:∴抛物线的解析式为:2(1)y x =-(3)证明:过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,则2(1)3QM CN x MC QN x ==-==-,∵QM ∥CE∴△PQM ∽△PEC 则2(1)12(1)2QM PM x x EC x EC PC EC --===-即得 ∵QN ∥FC∴△BQN ∽△BFC 则234(1)441QN BN x x FC FC BC FC x ---===+即得 又∵AC =m=4 ∴[]44()42(1)2(1)811FC AC EC x x x x +=+-=⨯+=++ 即()FC AC EC +为定值8【点睛】本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.。