动态最优化第2讲 基础知识简介
- 格式:pdf
- 大小:311.83 KB
- 文档页数:39
动态规划是对最优化问题的一种新的算法设计方法。
由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。
不存在一种万能的动态规划算法。
但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。
多阶段决策过程最优化问题——动态规划的基本模型在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。
因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。
当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。
这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。
【例题1】最短路径问题。
图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。
现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。
用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。
具体计算过程如下:S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8F3(C2)=d3(C2,D1)+f4(D1)=5+3=8F3(C3)=d3(C3,D3)+f4(D3)=8+3=11F3(C4)=d3(C4,D3)+f4(D3)=3+3=6S2: K=2,有:F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min {9,12,14}=9F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。
《最优化理论》教学大纲课程编号:112302A课程类型:专业选修课总学时:32 讲课学时:26 实验学时:6学分:2适用对象:金融工程专业先修课程:数学分析、线性代数、经济学、金融学一、教学目标最优化问题即在有限种或无限种可行方案(决策)中选择最优的方案(决策),与之相对应的最优化理论是数学领域的一个重要分支,也是金融工程专业学生需要掌握的必备工具之一。
现代金融学研究的技术化程度日益增加,金融工程的许多问题都与最优化理论与方法密切相关,例如:投资组合选择与资产配置、期权的定价与对冲、金融风险的度量与管理、资产和负债的现金流管理等等。
本课程拟对最优化的基础理论和求解方法进行一个比较全面和系统的介绍,其中涉及到的方法包括:线性规划、非线性规划、二次规划、锥优化、整数规划、动态规划、随机规划等等。
通过本课程的学习,实现以下几个教学目标:目标1:帮助学生了解各类最优化模型的数学理论与求解方法;目标2:使学生理解如何应用这些优化模型分析经济学和金融学相关问题。
二、教学内容及其与毕业要求的对应关系本课程主要介绍几种主要的最优化模型的理论与方法,根据最优化模型的类别进行划分,分为无约束最优化和有约束最优化两大类别。
其中,无约束最优化问题的子类别较少、难度相对较低,主要从理论方法和数值方法两方面进行讲解;有约束最优化重点讲解线性规划的单纯形法和非线性规划的库恩塔克条件,在时间允许的情况适当介绍其他类别的高级规划课题。
基本教学内容的框架图如下:本课以课堂讲授为主,间之以案例教学、随堂练习和课后作业,针对适当的问题讲解其计算机程序实现,使学生既能掌握理论,也能动手操作,切实做到理论与实践相结合。
该课程旨在进一步完善金融工程专业学生的数理知识,一方面有利于强化与完善了金融专业学生的数理知识体系,同时结合经济学和金融学实际问题进行讲解学习,锻炼了学生们思考学习的能力,更训练了学生应用数理思维分析经济金融问题的能力,与金融工程专业学生的毕业要求相呼应。
《最优化理论》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
三、教学内容及进度安排
四、课程考核
五、教材及参考资料
教材:《最优化理论与算法(第2版)》,陈宝林著,清华大学出版社,2005年,ISBN:97873021137680
参考书:
1、《最优化方法》,孙文瑜、徐成贤、朱德通主编,高等教育出版社,2004年第一版,ISBN:9787040143751o
2、《最优化理论与方法》,袁亚湘,孙文瑜著,科技出版社,2010年(第二版),ISBN:9787030054135o
3、《最优化计算方法》,黄正海,苗新河著,科技出版社,2015年(第二版),ISBN:9787030433053o
六、教学条件
本课程属于基础理论与应用型课程,对实验条件要求不是很高。
学校实验大楼拥有的计算机软硬件资源,高性能计算机,投影仪等设备,基本能够完成所需的理论计算任务、数值模拟试验以及程序测试等。
需要使用多媒体教室授课,授课电脑安装了WindoWS7、
OffiCe2010、1ingo11Python>Mat1ab2015>Mathematica11>MathTyPe6.9以上版本的正版软件。
附录:各类考核评分标准表。
第三讲连续时间动态最优化问题一、预备知识动态最优化问题历来是数学家们关注的热点和难点问题。
从17世纪末的伯努利,到20世纪50年代的贝尔曼和庞特里亚金,中间经过拉格朗日、欧拉等一大批数学家的努力,才使动态最优化理论日臻完善。
20世纪初,在拉姆齐(1928)的工作之后,动态数学技巧才被广泛地引入到经济学中来,目前,这些技巧已是大多数现代经济学家不可或缺的工具。
上一节,我们探讨了离散时间的动态优化问题,介绍了古典的拉格朗日乘数法和比较现代的贝尔曼方程法。
本节我们将在连续时间的动态优化问题中,也介绍两种方法,他们是古典的变分法和比较现代的汉密尔顿最大值原理。
下面分别介绍这两种方法。
二、连续时间动态最优化问题的描述例1.索罗(Solow)新古典经济增长模型的一个明显缺陷是把储蓄率看成是外生给定的。
事实表明,储蓄率不是常数。
为了将储蓄率内生化,堪斯(Cass,1965)和库普曼斯(Koopmans,1965) 利用拉姆齐(Ramsey, 1928)倡导的最优化方法,将储蓄率看作是由家庭和企业在竞争市场上追求自身利益最大化的结果,以此证明储蓄率是由模型决定的内生变量。
假设经济包含两个部门,家庭和企业,家庭通过提供劳动服务从企业取得工资,通过提供资产获得利息。
家庭收入分成消费和储蓄两部分。
家庭在预算约束条件下按照消费效用最大化的原则进行消费和投资决策。
家庭生命是无限期的。
家庭大小与成年人口数量对应,成年人口按给定(外生)不变的速度增长,为方便其见,人口的变化规律由下式确定: nt e t L =)(这里,假设初期人口数量为1,然后按等比级数递增,n 为人口增长率。
C(t)表示 t 时刻的消费, c(t)=C(t)/L(t)表示人均消费。
消费者问题是: [][]na c ra w adte e t c u t c U Max t nt t c --+=⋅⋅=⎰∞- 0)()()(ρ(1)此处,u(c)是c 的增函数并满足边际效用递减规律,u(c)满足稻田条件:∞=→)(lim'0c u c , 0)(lim '=∞→c u c 即当c 趋于零时,边际效用趋于无穷大,当c 趋于无穷大时,边际效用趋于零。
第四章 动态最优化基础§4.1 动态最优化的基本问题例:最短路问题图4.1给出了从城市A 到城市B 的路线图(省略了距离单位标注)。
现求一条从A 到B 的最短路线。
图4.1显然,为了从A 到B ,必须先逐步经过C1、C2、C3、C4等诸城市。
而在C1、C2、C3、C4,又都有多种选择。
而关键性的困难是当前的最优选择不一定是全局的最优。
这类问题也称为多阶段决策问题。
§4.2 动态最优化的基本概念阶段:将全过程分为若干个有相互联系的阶段,常用字母t 、k 表示;状态:系统在不同阶段性态。
一般来说,系统在一个阶段有多个状态。
系统在某一阶段的所有可能的状态构成的集合成为状态集,记为S k ;状态变量:表示系统状态的变量,记为s k 。
它与阶段有关;决策:在某一阶段的某一状态下,系统由该状态演变到下一阶段某一状态的选择。
在第k 阶段,处于状态s k 时的所有可能的决策集记为D k (s k );决策变量:描述决策的变量,它与阶段与系统在该阶段的状态有关。
在第k 阶段,处于状态s k 时的决策记为d k (s k );状态转移:从当前阶段的某一状态转移到下一阶段的某一状态。
状态转移方程:描述状态转移规律的数学方程。
它是当前状态变量与决策变量的函数,即) ,(1k k k k d s T s =+;策略:从起点到终点的每一阶段的决策所构成的决策序列,称为(全局)策略。
自某一阶段起,至终点的决策称为子策略,记为))(,),(()(11,n n k n k s d s d s p =。
指标(目标)函数:性能指标或效用指标,它用来评价决策的效果。
它可分为阶段指标与全局指标两类。
阶段指标是指衡量某一阶段在某一状态下的决策效果的指标。
它仅依赖当前状态和当前决策。
记为))(,(k k k k s d s v ;全局指标是指衡量整个全过程或自某一阶段起至终点的各阶段决策的总体效果的指标。
它是所有各阶段的状态和决策的函数,即动态最优化的主要问题是寻找一个策略,使全局指标最优。
最优化原理与方法首先讲几个问题:1>本部分以讲最优化原理和方法为主,联系金属加工工艺(轧钢)生产为辅。
因为最优化原理与方法不仅用于金属加工(轧钢生产),而且适用于国民经济的各个部门。
2>最优化(原理)是近化应用数学的一个新的分支。
最优化主要是研究在给定的条件下,如何做出最好的决策去完成所给的任务。
本门课程的基础是微积分和线性代数,本门课程的计算工具是电子计算机。
因为用的数学知识和证明较多,我们在讲课中力求深入浅出,对有些证明我们予以省略,这一方面是由于学时有限,另一方面不要用过多的证明冲淡我们对方法的掌握,我们的重点是“实用”。
但要求对一些基本概念要有清晰的了解。
3>主要参考书是“轧制变形规程优化设计”(刘战英,冶金工业出版社)。
参考书是“最优化原理与方法”(东北工学院,薛嘉庆,冶金工业出版社)。
本书的规定学时是70学时,所以我们不能全讲,只讲其中一部分,有些内容还是这本书没有的。
另一本参考书是“最优化技术基础”(范鸣玉、张莹,清华大学出版社)4>学习方法a、认真听课,认真做笔记,基本概念和基本方法一定要掌握,要及时复习。
b、认真完成作业c、上机操作5>考核方式a、作业完成情况b、笔试(闭卷6>学习目的对优化技术入门,能编制简单的优化程序,最好能在毕业设计和论文中加以应用。
1最优化问题与数学预备知识1.1引言1.1.1什么是最优化问题做一切工作,我们总想从一切可能的方案中选出最优的方案,这就是最优化问题如1)安排生产计划方面,如何在现有人力、物力条件下,合理安排产品生产,使总产值为最高:2)产品设计方面,工字钢(截面抗弯能力,宽高比或面模量wx/f)机械零件;3)工厂布局、物资调动方面;4)配料方面,如何合理配料,在保证质量前提下使成本最低;5)自动控制中参数的设定:如轧钢自动控制系统中连轧机各架轧机压下量的设定;在坯料厚度H和成品限制条件都能满足的情况下,如何分配各架轧机的压下量,使达到最优工作状态;等等,由此可见,在各生产、科研领域中普遍存在着最优化问题。
《动态最优化基础》读书札记一、内容描述与动态最优化概念动态最优化,作为一个核心概念和主要研究领域的广泛涵盖性,涵盖了诸如决策过程、控制理论以及数理经济等诸多领域。
《动态最优化基础》这本书为读者揭示并解释了动态最优化理论的基本原理、方法和应用。
在阅读这本书的过程中,我对其中的几个关键部分进行了深入的思考和记录。
本书的内容描述清晰明了,从基础知识出发,逐步深入到复杂的动态最优化问题及其解决策略。
它不仅涉及到了线性与非线性的最优化问题,而且也讨论了离散时间和连续时间的动态最优化问题。
书中还详细阐述了约束条件下的最优化问题,这些问题在实际生活中非常常见,如资源分配、生产计划等。
动态最优化概念是本书的核心,动态最优化涉及的是一个过程,这个过程包括了一系列决策的选择与实施,其中每一个决策都与特定的时间点有关。
在这些决策下,系统的状态会随时间变化而变化,目标是寻找一个最优路径或策略,使得系统的某个性能指标达到最优。
这种概念的应用场景十分广泛,例如在金融市场预测、资源优化管理、经济决策等领域都有着广泛的应用。
在阅读过程中,我特别关注了动态最优化理论的应用方面。
这本书不仅仅局限于理论层面的探讨,而是结合了许多实例来说明这些理论在实际问题中的应用。
通过制造业的生产计划、能源管理的节能策略等实例,我对如何应用动态最优化理论解决实际问题有了更深的理解。
这种理论与实践的结合,使我对动态最优化理论有了更深入的认识和理解。
《动态最优化基础》是一本涵盖面广、内容深入的书籍,对深入理解和学习动态最优化有着重要的作用。
1. 内容描述及背景介绍《动态最优化基础》是一本专注于探讨动态最优化理论与方法的学术著作。
本书系统地介绍了动态最优化问题的基本概念、模型构建、求解方法和应用实例,深入剖析了动态最优化在实际领域中的理论框架和实践路径。
本书主要涵盖了以下内容:动态最优化问题的基本定义和分类:介绍了动态最优化问题的基本概念,包括问题的基本构成元素、特点以及分类方式。
第三讲连续时间动态最优化问题一、预备知识动态最优化问题历来是数学家们关注的热点和难点问题。
从17世纪末的伯努利,到20世纪50年代的贝尔曼和庞特里亚金,中间经过拉格朗日、欧拉等一大批数学家的努力,才使动态最优化理论日臻完善。
20世纪初,在拉姆齐(1928)的工作之后,动态数学技巧才被广泛地引入到经济学中来,目前,这些技巧已是大多数现代经济学家不可或缺的工具。
上一节,我们探讨了离散时间的动态优化问题,介绍了古典的拉格朗日乘数法和比较现代的贝尔曼方程法。
本节我们将在连续时间的动态优化问题中,也介绍两种方法,他们是古典的变分法和比较现代的汉密尔顿最大值原理。
下面分别介绍这两种方法。
二、连续时间动态最优化问题的描述例1.索罗(Solow)新古典经济增长模型的一个明显缺陷是把储蓄率看成是外生给定的。
事实表明,储蓄率不是常数。
为了将储蓄率内生化,堪斯(Cass,1965)和库普曼斯(Koopmans,1965) 利用拉姆齐(Ramsey, 1928)倡导的最优化方法,将储蓄率看作是由家庭和企业在竞争市场上追求自身利益最大化的结果,以此证明储蓄率是由模型决定的内生变量。
假设经济包含两个部门,家庭和企业,家庭通过提供劳动服务从企业取得工资,通过提供资产获得利息。
家庭收入分成消费和储蓄两部分。
家庭在预算约束条件下按照消费效用最大化的原则进行消费和投资决策。
家庭生命是无限期的。
家庭大小与成年人口数量对应,成年人口按给定(外生)不变的速度增长,为方便其见,人口的变化规律由下式确定: nt e t L =)(这里,假设初期人口数量为1,然后按等比级数递增,n 为人口增长率。
C(t)表示 t 时刻的消费, c(t)=C(t)/L(t)表示人均消费。
消费者问题是: [][]na c ra w adte e t c u t c U Max t nt t c --+=⋅⋅=⎰∞- 0)()()(ρ(1)此处,u(c)是c 的增函数并满足边际效用递减规律,u(c)满足稻田条件:∞=→)(lim'0c u c , 0)(lim '=∞→c u c 即当c 趋于零时,边际效用趋于无穷大,当c 趋于无穷大时,边际效用趋于零。