2_湍流基础 很好的解析
- 格式:ppt
- 大小:1.47 MB
- 文档页数:76
一、激光大气衰减基础:激光大气衰减包括大气气体分子对激光的吸收和散射、气溶胶粒子的吸收和散射,激光信号通过均匀大大气介质之后,其电磁辐射强度满足:比尔-郎伯-布格定律:;:为波数,I()为信号传输l距离之后的电磁辐射强度,代表消光系数,为进入介质前的光辐射能量。
透过率函数:;其中,也被称作光学厚度,是一种无量纲的物理量;其中,既包括了大气分子的吸收()和散射()系数,也包括了气溶胶的吸收和散射()系数:在实际的大气信道中,随着高度(z)的变化(假设大气具有分层均匀特性),即可以表示为,,当信号光以天顶角入射到大气介质中时,光学厚度可以表示为:(,)其中,其他的消光系数表如附图所示:大气分子吸收效应的从测量:二、大气光学湍流:1、大气湍流模型的描述:均匀各向同性湍流、非均匀各向同性湍流均匀各向同性湍流(是一种理想化的大气湍流模型,在复杂地形区和高空,对流层以上的区域,满足该理论条件的大气湍流区域有限,特别是近年来对大气湍流间歇性现象的发现,更证明了Kolmogorov模型应用的局限性。
目前工程中常需要借助大量的实验观测数据对该模型进行修正。
)查理森级串模型:湍流可以视作由气体流动形成的差别较大的涡旋,大涡旋不稳定,其从外界获取能量后,通过分裂等一系列复杂的运动将能量传递给次级涡旋,最后再最小的涡旋中通过气体黏性损耗。
在一定的区域内,涡旋级串达到某种平衡状态,形成局部均匀各向同性湍流,具有普适性的统计规律。
为了确定气体湍流的统计规律,基于不同的假设条件,提出了许多统计模型,其中使用最广泛的为柯尔莫哥洛夫(Kolmogorov )模型: 柯尔莫哥洛夫(Kolmogorov )模型:模型假设:(1) 当雷诺数足够大时,存在具有各向同性结构的高波数区,在该区里,气体运动的统计特征只决定于流体的黏性系数 和能量耗散率 。
(雷诺数:雷诺数的定义为:L 为气体运动的尺度,v 为流体速度, 为分子)基于上述假设,建立起了湍流长度( 、 )、速度、时间的尺度,其中, 、 分别为湍流的内尺度和外尺度;;(2) 当雷诺数足够大时,扰动统计特征只依赖于扰动能量的耗散率 ,此惯性区域的尺度 满足:柯尔莫哥洛夫(Kolmogorov )模型的特征参数:随机场的空间统计特性通常用结构函数等相关函数关系描述,包括风速结构率函数、折射率结构函数等,由于在湍流效应的研究中,主要考虑大气折射率起伏对光传输的影响,故又称为大气光湍流。
湍流的理论与分析湍流是一种复杂的流动形式,并且广泛存在于自然界和工程实践中。
对湍流的理论研究和分析不仅有助于深入理解流体现象,还可以为湍流控制和能源利用等方面提供支持。
本文将从湍流的定义、产生机理、湍流统计理论和湍流模拟等方面进行探讨。
一、湍流的定义湍流是指一种相对瞬态的流体运动状态,其中流体的速度和方向发生剧烈变化,造成流体的混合和扰动,呈现出随机不规则的涡动结构。
与层流(稳态流动)相比,湍流的运动特征更加复杂,无法用简单的数学公式描述。
湍流的主要特征为不规则、随机、涡动等。
二、湍流的产生机理湍流的产生机理复杂,其中包括传统的机械湍流、自然湍流、边界层失稳等多种因素。
机械湍流是由于固体物体运动时与周围介质相互作用产生的湍流现象,如风力机翼片和涡轮机叶片的湍流。
自然湍流是由于自然界中各种复杂流动引起的,如河流、海洋和大气的运动等。
边界层失稳是当涡旋从高速的流动区进入低速的流动区时产生的,例如水流从管道进入膨胀段时发生的湍流现象。
三、湍流统计理论湍流统计理论是对湍流运动规律的理论分析,是研究湍流基本性质和湍流现象的一种方法。
湍流统计理论中有两个重要的概念,一个是湍流的集成时间,另一个是湍流脉动,这两个概念分别给出了湍流时间与空间扰动中的统计特征。
其中湍流的集成时间是指机械能向湍流能转化和湍流能转化为机械能时所需的时间因子,而脉动是指在一个给定点的流动路径上,流体参数波动的相对不稳定性。
四、湍流模拟湍流模拟是一种基于数值计算的湍流研究方法,主要有两种方式:直接数值模拟(DNS)和大涡模拟(LES)。
直接数值模拟是对湍流运动的一种高精度的数值计算方法,它通过离散化流动中的微小物理尺度,运用数值方法以求解流场运动方程,得到高精度的湍流场数据。
但DNS需要的计算量庞大,计算成本高昂。
大涡模拟是在保留湍流中大尺度涡旋信息的同时,模拟和模拟所得的速度与涡旋脉动能谱于实验结果的吻合程度。
而LES所需要的计算量较之DNS低,同时保留的流场尺度也比DNS更大,能够得到更加直观的湍流现象展示。
第七章湍流理论基础认识湍流——雷诺实验湍流具有——随机性、非线性性123(,,,)i i u u x x x t =湍流是三维空间中的不规则非定常流动。
学习湍流——预测、控制•各项物理意义如下:各项物义如下(1)总动能的当地变化率,由湍流流动的不恒定性而引起。
恒定性而引起(2)总动能的迁移变化率,由时均流场的空间不均匀性引起。
(3)时均总势能的迁移变化率,反映时均场)时均总势能的迁移变化率反映时均场的空间不均匀性。
(4)由脉动场的空间不均匀引起的脉动压能和脉动动能的迁移变化率和脉动动能的迁移变化率。
(5)时均粘性应力与时均流速的乘积,为粘性应力作功的功率(6)湍流切应力对时均流场作功的功率。
(7)脉动粘性应力对脉动流场作功的功率。
(8)时均流动耗散项,即粘性应力所作的变)时均流动耗散项即粘性应力所作的变形功。
(9)脉动流动耗散项,即脉动粘性应力对脉动流场的变形速率所作的脉动变形功。
动流场的变形速率所作的脉动变形功各项物理意义:(1)单位体积流体所具时均动能的当地变化率(2)单位体积流体所具时均动能的迁移变化率(3)压差与重力对流体作功的功率,单位体积流体所具时均势能的迁移变化率(4)时均粘性应力作功而传递能量的扩散项(5)单位体积流体的耗散项,时均粘性应力所做的变形功(6)雷诺应力作功的扩散项)雷诺应力对时均流场所作的变形功脉动(7)雷诺应力对时均流场所作的变形功,脉动能量的产生项,对时均流是能量的损失。
各项物理意义:(1)单位体积流体所具脉动动能的当地变化率。
(2)单位体积流体所具脉动动能的迁移变化率。
(3)由脉动场的空间不均匀引起的脉动压能和脉动动能的迁移变化率。
(4)脉动粘性应力对脉动流场作功的功率。
)脉动粘性应力对脉动流场作功的功率(5)脉动流动耗散项,即脉动粘性应力对脉动流场的变形速率所作的脉动变形功。
的变速率所作的脉动变功(6)脉动动能产生项。
§7-3 湍流流动的基本性质73湍流能量的输运性和耗散性以及湍流的有旋性是湍流的重要特性一、湍流能量的输运性分子的动能输运率表现为宏观的粘性,分子的分子的动能输运率表现为宏观的粘性分子的内能输运率表现为热传导。
第9章湍流基础透平叶栅中的流动是一种性质极为复杂的流动,由于在现代透平中流动的雷诺数很高,同时透平转子对流动的强烈影响,都使得流道中的实际流动呈现湍流状态]1[。
如果仍然采用层流模型进行数值研究,结果与真实值间的差距就会加大。
此外,湍流其本身也是一个很复杂的问题,一方面它是流体力学领域中尚未解决的问题之一;另一方面,在求解湍流模型的过程中还会产生很多数学上的问题]2[。
如此一来,叶栅流道内的三维湍流的数值计算就吸引了众多的学者和工程技术人员。
9.1 湍流的基本概念9.1.1 湍流的概念和基本结构自然界中的流动问题和工程实践中所处理的各种流体运动问题更多的是湍流流动问题。
如水在江河中的流动水通过各种水工建筑物、水处理建筑物的流动,管道中水的流动,污染物质在河流及海洋中的扩散,大气边界层流动等均多为湍流。
湍流是不同于层流的又一种流动形态。
英国的雷诺于1883年,通过其著名的圆管实验深入的揭示了这两种不同的粘性流动形态]3[。
虽然一百多年来人们对湍流的研究不断深入,但是由于湍流运动的极端复杂性,它的基本机理至今仍未被人们所掌握,甚至至今仍然没有一个精确的定义。
雷诺(Osborne Reynolds,1842年—1912年)把湍流定义为一种蜿蜒曲折、起伏不定的流动(sinuous motion)。
泰勒(G.I.Taylor 1886年—1975年)和冯·卡门对湍流的定义是“湍流是常在流体流过固体表面或者相同流体分层流动中出现的一种不规则的流动”。
欣策(J.O.Hinze )在他的著作“Turbulence”一书中则认为湍流的更为确切的定义应该是“湍流是流体运动的一种不规则的情形。
在湍流中各种流动的物理量随时间和空间坐标而呈现出随机的变化,因而具有明确的统计平均值”。
同时,在这本书中还把泰勒和卡门对湍流所下定义中提到的两种流动状况给予专门名称:“壁面湍流”表示流过固体壁面的湍流,“自由湍流”表示流动中没有固体壁面限制的湍流流动。
湍流的理论与实验研究湍流的理论与实验研究湍流是流体力学界公认的难题,被认为是经典物理学中最后一个未被解决的问题。
自然界和工程领域的绝大多数流动都是湍流,因此湍流研究具有重大意义。
近年来,随着实验测量技术和数值模拟能力的不断增强,学术界对高雷诺数和高马赫数湍流有了许多新的认识。
我国科学界也结合国家重大战略需求和学科发展前沿,分析国际上湍流研究的特点、现状和发展趋势,希望对湍流产生机制和流动本质进行深入研讨,加强与航空、航天、航海等相关单位和部门间的沟通与联系,推动湍流研究的发展。
针对国内学科发展现状,尤其是实验研究相对薄弱的特点,国家自然科学基金委员会数理科学部、工程与材料科学部和政策局,于2014年3月20-21日在北京联合举办了第110期双清论坛,论坛主题为“湍流的理论与实验研究”。
来自全国15个单位的近50位流体力学与工程领域的专家学者应邀出席。
与会专家通过充分而深入的研讨,凝练了该领域的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。
本期特刊登此次论坛学术综述。
一、湍流研究的重要意义自1883年雷诺(Reynolds)发现湍流以来,湍流问题的研究一直困扰着众多学者。
著名物理学家费曼曾说,湍流是经典物理学中最后一个未被解决的难题;2005年《科学》杂志在其创刊125周年公布的125个最具挑战性的科学问题中,其中至少两个问题与湍流相关。
在我们日常生活中,湍流无处不在。
自然界和工程应用中遇到的流动,绝大部分是复杂的湍流问题。
在自然界,从宇宙星系的时空演化,到星球内部的翻滚流动,从大气环流的全球运动,到江河湖泊的区域流动,都有湍流的身影。
在工程领域,从陆地、海洋、空天等交通运载工具,到原子弹、氢弹、导弹、战斗机、舰船等国防武器的设计;从全球气象气候的预报,到地区水利工程的设计;从传统行业如叶轮机械、房桥建筑、油气管道,到新兴行业如能源化工、医疗器械、纳米器件的设计,都需要了解和利用湍流。
因此,湍流流动的研究不仅仅是一个学科发展的问题,更具有重要的工程应用价值。
湍流问题十讲:理解和研究湍流的基础湍流是流体力学中的一个重要问题,它在自然界和工程应用中广泛存在。
湍流的复杂性使得我们需要深入了解其基础概念和研究方法。
本文将以十讲的形式,介绍湍流的基础知识和研究方法。
第一讲:湍流的基本概念湍流是流体在高速运动下出现的不规则涡旋运动。
它与层流不同,层流是指流体以平行于管道方向的层状流动。
湍流的出现使流体流动变得混乱复杂,存在着各种大小的涡旋结构。
湍流的基本特征包括湍流速度场的不规则性、涡旋的随机性和能量级联等。
第二讲:湍流的物理机制湍流的产生主要受到流体的非线性而不稳定的特性影响。
湍流的物理机制包括非线性不稳定性和能量级联。
非线性不稳定性指的是流体在高速运动下所产生的各种非线性效应,如非定常性、湍流粘度等。
能量级联则指的是湍流中能量的级联传递现象,由大尺度的涡旋向小尺度的涡旋传输。
第三讲:湍流的数学模型为了更好地理解和研究湍流,我们需要建立相应的数学模型。
湍流的数学模型包括雷诺平均模型、大涡模拟模型和直接数值模拟模型。
雷诺平均模型是最简单的湍流模型,假设湍流场的波动可以通过时间平均来描述。
大涡模拟模型则考虑湍流中的大尺度涡旋,并利用数值方法对其进行模拟。
直接数值模拟模型是最精确的湍流模型,将流动的各个时间和空间尺度都考虑在内。
第四讲:湍流的统计特性湍流的统计特性对于研究湍流现象非常重要。
湍流的统计特性包括均值场、涡旋相关性和能量谱等。
通过对这些统计量的分析,我们可以揭示湍流中的一些规律和特点。
第五讲:湍流的测量和实验方法湍流的研究需要借助于测量和实验方法。
常用的湍流测量方法包括热线、激光多普勒测速、PIV等。
这些方法可以提供湍流场的速度、梯度等信息。
此外,实验方法也是研究湍流的重要手段,通过在实验室中进行湍流的模拟研究,我们可以获得一些有关湍流性质的重要信息。
第六讲:湍流的数值模拟方法湍流的数值模拟是研究湍流的重要方法之一。
常用的湍流数值模拟方法包括RANS、LES和DNS等。
《湍流基础知识的综合性概述》一、引言湍流是自然界和工程技术领域中普遍存在的一种复杂流动现象。
从大气中的风云变幻到海洋中的波涛汹涌,从飞机在天空中的飞行到管道中流体的流动,湍流无处不在。
对湍流的研究不仅具有重要的理论意义,还对众多工程领域的发展起着至关重要的作用。
本文将对湍流的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 定义湍流是一种高度复杂的三维非定常流动,其特征是流体的速度、压力等物理量在时间和空间上呈现出随机的、不规则的变化。
与层流相比,湍流具有更高的雷诺数,流体质点的运动更加混乱和无序。
2. 特征(1)随机性:湍流中的流体质点运动具有很大的随机性,速度和压力等物理量的变化无法用确定的函数来描述。
(2)三维性:湍流是三维的流动,在三个方向上都存在着复杂的运动。
(3)非定常性:湍流的流动状态随时间不断变化,具有很强的时间依赖性。
(4)扩散性:湍流能够促进流体中物质和能量的混合与扩散。
3. 雷诺数雷诺数是判断流体流动状态的重要参数。
当雷诺数小于某一临界值时,流体为层流;当雷诺数大于临界值时,流体可能转变为湍流。
雷诺数的计算公式为:$Re=\frac{\rho vL}{\mu}$,其中$\rho$为流体密度,$v$为流体速度,$L$为特征长度,$\mu$为流体动力粘度。
三、核心理论1. 统计理论由于湍流的随机性,统计理论成为研究湍流的重要方法之一。
统计理论通过对湍流中物理量的统计平均来描述湍流的特性,如平均速度、脉动速度、雷诺应力等。
常用的统计方法包括相关分析、谱分析等。
2. 湍流模型为了在工程计算中模拟湍流流动,人们提出了各种湍流模型。
湍流模型主要分为两大类:一类是基于雷诺平均的湍流模型,如$k-\epsilon$模型、$k-\omega$模型等;另一类是大涡模拟(LES)和直接数值模拟(DNS)。
雷诺平均的湍流模型通过对湍流脉动进行统计平均,将湍流问题转化为求解平均流动方程和湍流模型方程的问题。