1、狭义相对论效应与加速度之间的关系
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
爱因斯坦的相对论物理学的知识点相对论是爱因斯坦创立的一套物理理论体系,它在20世纪的物理学发展中具有重要地位。
相对论主要包括狭义相对论和广义相对论两部分,下面将介绍这两个方面的主要知识点。
一、狭义相对论(Special Theory of Relativity)狭义相对论是爱因斯坦于1905年提出的,它主要涉及到时空观念的变革,包括以下几个主要知识点:1. 时间和空间的相对性:狭义相对论认为,时间和空间不是绝对的,而是相对于观察者的参考系而言的。
不同的观察者在不同的参考系中测量时间和空间的长度会产生偏差。
2. 光速不变原理:狭义相对论提出了光速不变的原理,即光在真空中的速度是恒定的,与观察者的运动状态无关。
这一原理引起了许多有关时间膨胀和长度收缩等概念的推导。
3. 相对论速度叠加原理:相对论速度叠加原理指出,当两个物体以相对于某一观察者的速度相对运动时,它们的速度并不是简单地相加,而是按照相对论公式进行运算。
二、广义相对论(General Theory of Relativity)广义相对论是爱因斯坦于1915年提出的,相对于狭义相对论而言,广义相对论更加普适,涵盖了引力和引力场的描述,主要包括以下几个知识点:1. 引力的等效原理:广义相对论提出引力的等效原理,即在引力场中的物体的运动情况与处于等加速度情况下的自由下落物体的运动情况是完全相同的。
这一原理有效地将引力与惯性运动相统一。
2. 弯曲时空:广义相对论认为物质和能量会使时空产生弯曲,形成引力场。
物体沿着弯曲的时空轨迹运动,同时也会影响周围的时空结构。
3. 爱因斯坦场方程:广义相对论使用爱因斯坦场方程描述了物质和能量分布对时空的影响,并得到了描述引力场的具体数学形式。
爱因斯坦的相对论物理学在当代物理学中具有极其重要的地位,不仅为人类对宇宙的认识提供了基础框架,还推动了一系列科学研究的发展。
通过狭义相对论和广义相对论的学习,可以更好地理解时空、运动和引力等基本物理概念,并为进一步研究和探索开辟了新的路径。
狭义相对论加速度变换推导引言狭义相对论是爱因斯坦于1905年提出的一种描述物理现象的理论。
它改变了我们对时间、空间和相对运动的观念,为物理学的发展带来了革命性的影响。
在狭义相对论中,加速度是一个重要的概念,它描述了物体运动状态的变化率。
本文将从狭义相对论的角度出发,推导出加速度变换公式。
狭义相对论基本原理回顾在狭义相对论中,有两个基本原理需要回顾一下。
原理1:光速不变原理光速不变原理是指在任何惯性参考系中,光在真空中的传播速度都是恒定不变的,即$ c = 3.00 ^8 , $。
原理2:等效原理等效原理认为,在任何惯性参考系中,物体受到的惯性力与其所处的引力场完全等效。
也就是说,在一个加速运动的参考系中观察到的物体受到的力和在一个静止参考系中观察到的物体受到的重力是相同的。
加速度变换推导现在我们来推导加速度变换的公式。
假设有两个惯性参考系S和S’,分别以速度$ v 相对于彼此运动,其中S′相对于S沿x$轴正方向运动。
我们需要推导出在S’系中观察到的物体的加速度与在S系中观察到的加速度之间的关系。
我们首先假设物体在S系中以加速度$ a 运动,其速度为 u_x。
根据等效原理,物体在S′系中受到的力应该与其所处引力场等效。
由于S′系相对于S系沿x轴正方向运动,所以物体在S′系中应该受到一个额外的力,记作F’ $。
根据牛顿第二定律,在S系中物体受到的合力为$ F = ma,而在S′系中受到的合力为F’ = ma’ ,其中a’ $是物体在S’系中观察到的加速度。
由于光速不变原理,在两个参考系中光传播速度都是不变的。
在一个时间间隔内光传播距离应该相同。
设光源位于距离观察者x0处,在时间t0发出的光经过时间t后到达观察者。
在S系中,光的传播速度为c,所以有ct=x−x0。
在S’系中,光的传播速度为c′,所以有c′t=x′−x0。
将上述两个式子相减并整理可得:c(t−t′)=(x−x′)−(x0−x0′)其中t′是物体在S’系中观察到的时间。
物理学中的相对论和狭义相对论相对论是物理学中一种关于时间、空间、质量和能量等物理量的理论,它是现代物理学的基础,对物质的本质性质产生了深远的影响和重要的启示。
狭义相对论则是相对论的一个分支,主要研究的是相对论的基础理论,如光速不变性、时空的相对性等。
下面,我们将深入了解一下相对论和狭义相对论。
相对论的基本概念相对论是经典物理学与量子力学的桥梁,它对物理学的发展产生了深远的影响。
相对论的基本概念包括:时间的相对性、长度的相对性、物质的相对性、光速的不变性和能量-动量的相对性。
相对论中最基本的概念是时间的相对性,即时间不是一个普遍的或绝对的物理量,而是取决于观察者的参考系。
在相对论的视角下,时间与空间相互关联,形成时空的统一。
这就意味着,两个不同参考系下的事件,可以在时间和空间上发生不同的排序。
长度的相对性是相对论中的另一个基本概念。
同一物体的长度也会因为观察者的不同而发生变化。
在相对论的视角下,物体的长度会随着它的速度而发生变化,这是因为它们越接近光速,它们的相对长度就会越短。
物质的相对性是相对论中最奇妙的概念之一。
它表明,不同的参考系下,物体的质量可能会发生变化。
此外,质量和能量被认为是相互转换的。
根据爱因斯坦的公式,能量等于质量乘以光速的平方,这表明任何物体都可以被视为能量的形式。
相对论中的光速不变性是一个基本的定理,表明在任何参考系中,光速都是相同的。
很长一段时间里,人们认为光速是相对的,而爱因斯坦的理论却彻底改变了这种看法,证明了光速的绝对不变性。
能量-动量的相对性表明,能量和动量同样不是绝对的,而是相对于观察者的参考系。
换句话说,在不同的参考系下,同一物体所具有的能量和动量可以发生变化。
这些变化可能会导致质量、长度和时间等物理量出现异于预期的值。
狭义相对论的基本原理狭义相对论是相对论的一个分支,主要研究相对论的基础理论。
它最初由爱因斯坦提出,是解释光的行为的唯一与时俱进的理论。
狭义相对论的基本原理包括:光速不变性、相对性原理和加速度原理。
狭义相对论公式及证明单位符号单位符号坐标: m (x, y, z) 力: N F(f)时间: s t(T) 质量:kg m(M)位移: m r 动量:kg*m/s p(P)速度: m/s v(u) 能量: J E加速度: m/s^2 a 冲量:N*s I长度: m l(L) 动能:J E k路程: m s(S) 势能:J E p角速度: rad/s ω力矩:N*m M角加速度:rad/s^2α功率:W P一:牛顿力学(预备知识)(一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt(2)a=dv/dt, v=v0+∫adt(注:两式中左式为微分形式,右式为积分形式)当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动。
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动。
(2)牛二:物体加速度与合外力成正比与质量成反比。
F=ma=mdv/dt=dp/dt(3)牛三:作用力与反作与力等大反向作用在同一直线上。
(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r2,G=6.67259*10-11m3/(kg*s2)动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化)机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。
同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。
)二:狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。
狭义相对论与广义相对论的基本概念和区别相对论是现代物理学的基石之一,分为狭义相对论和广义相对论两个部分。
狭义相对论是爱因斯坦于1905年提出的,广义相对论则是在狭义相对论的基础上于1915年由爱因斯坦进一步发展而成。
本文将分别介绍狭义相对论和广义相对论的基本概念和区别。
狭义相对论是描述物体在相对运动中的物理规律的理论。
它的核心概念是“相对性原理”和“光速不变原理”。
相对性原理指出,物理定律在所有惯性参照系中都是相同的,也就是说,物理定律不依赖于运动的观察者的参照系。
光速不变原理是指光在真空中的速度在任何参照系中都是恒定的,不受观察者运动方向或速度的影响。
根据狭义相对论,时间和空间是相互关联的,同时事件在不同的惯性参照系中的时间和空间间隔会有所不同。
狭义相对论中最著名的公式是爱因斯坦的质能关系,即著名的E=mc²。
它表明能量和物质之间存在着等价转换的关系,质量可以转化为能量,而能量也可以转化为质量。
这个公式颠覆了牛顿力学中质量守恒的观念,对后来的原子核物理学和核能的发展起到了重要的推动作用。
广义相对论是描述物质和引力相互作用的理论,它是狭义相对论的扩展。
广义相对论的核心概念是“等效原理”和“时空弯曲”。
等效原理指出,物质的引力场效应等同于加速度场中某种等效的非引力场效应。
时空弯曲是指物质和能量的分布会改变周围时空的几何性质,形成了时空的弯曲效应。
根据广义相对论,质量和能量决定了时空的几何性质,而时空的几何性质又影响了质量和能量的运动轨迹。
广义相对论最著名的预言之一是黑洞的存在。
根据爱因斯坦的方程组解析,当物质过于密集时,时空会弯曲到一定程度,形成一个无法逃脱的引力峰,即黑洞。
黑洞具有极强的引力,能够吞噬周围的物质和光线,同时也是宇宙中一些最明亮和最强烈的天体现象的源头。
狭义相对论和广义相对论之间的区别主要表现在以下几个方面:首先,狭义相对论适用于惯性参照系,即没有受到外力作用的参照系。
而广义相对论则适用于包含引力场的非惯性参照系,也就是说包含重力或加速度的参照系。
狭义相对论的原理狭义相对论的原理狭义相对论是爱因斯坦于1905年提出的一种物理学理论,它是描述物质和能量之间关系的一种理论。
狭义相对论的原理可以分为以下几个方面:一、光速不变原理光速不变原理是狭义相对论的核心原理之一。
它认为在任何惯性参考系中,光速都是恒定不变的,即无论光源和观察者相对运动的状态如何,光速都保持不变。
这个原理可以用以下公式来表示:c = λf其中c代表光速,λ代表波长,f代表频率。
这个公式说明了在任何情况下,光速都是定值。
二、等效性原理等效性原理认为,在任何加速度下观察到的现象与在重力场中观察到的现象是等价的。
这个原理意味着重力可以被视为加速度。
三、时空相对性原理时空相对性原理认为,在所有惯性参考系中物理规律都应该具有相同的形式。
这个原理意味着时间和空间是相互关联且互不可分割的。
四、质能等价原则质能等价原则是狭义相对论的另一个核心原理。
它认为质量和能量是等价的,即E=mc²。
这个公式说明了质量和能量之间的转换关系。
五、洛伦兹变换洛伦兹变换是狭义相对论中最重要的数学工具之一。
它描述了不同惯性参考系之间时间和空间的变换关系。
洛伦兹变换包括时间、长度、速度和动量等方面。
六、相对性原理相对性原理是狭义相对论的基础之一。
它认为物理规律在所有惯性参考系中都应该具有相同的形式,而没有一个特定的惯性参考系是绝对正确的。
七、时间膨胀时间膨胀是狭义相对论中比较奇特的现象之一。
它指出,在高速运动状态下,时间会变慢,即观察到同一事件所需的时间会增加。
总结:以上就是狭义相对论的原理,其中包括光速不变原理、等效性原理、时空相对性原理、质能等价原则、洛伦兹变换、相对性原理以及时间膨胀等方面。
这些原理共同构成了狭义相对论的理论框架,为我们理解物质和能量之间的关系提供了重要的理论基础。
十大著名物理定理物理学是自然科学的重要分支,研究物质、能量以及它们之间的相互作用。
在物理学的发展过程中,许多重要的定理被提出并被广泛应用。
以下是十大著名物理定理的介绍。
1. 费马原理费马原理是光学中的基本原理之一,它阐述了光线在两点之间传播时所遵循的最短时间路径。
根据费马原理,光线在两点之间的传播路径是使得光程取极值的路径,这一路径被称为光线的轨迹。
费马原理在光学设计和成像中有广泛的应用。
2. 等效原理等效原理是爱因斯坦提出的一项重要物理定理,它描述了引力和加速度之间的等效关系。
根据等效原理,质量产生的引力效应与物体的加速度效应等效,即质量决定了物体对引力的响应。
这一原理是广义相对论的基础,对解释引力以及宇宙的演化具有重要意义。
3. 热力学第一定律热力学第一定律,也称为能量守恒定律,阐述了能量在物理系统中的转化和守恒关系。
根据热力学第一定律,一个系统的内能变化等于吸收的热量与做功的和。
这一定律在能量转化和热力学循环等方面有重要应用。
4. 电磁感应定律电磁感应定律是描述磁场和电场相互作用的重要定理。
法拉第定律和楞次定律是电磁感应定律的两个主要方面。
根据法拉第定律,当一个闭合线圈中的磁通量发生变化时,将在线圈中产生感应电动势。
根据楞次定律,感应电动势的方向使得感应电流产生的磁场抵消磁通量的变化。
5. 熵增定律熵增定律是热力学中的重要定理,描述了在孤立系统中熵的增加趋势。
根据熵增定律,封闭系统的熵总是趋向于增加,而不会减少。
这一定律对解释自然界中的不可逆过程和热力学平衡有重要意义。
6. 相对论狭义和广义相对论是爱因斯坦提出的一套重要物理理论,包括狭义相对论和广义相对论。
狭义相对论描述了高速运动物体的相对性原理,推翻了牛顿力学的观念。
广义相对论则是更一般的相对论理论,描述了引力的几何性质和时空的弯曲。
7. 不确定性原理不确定性原理是量子力学中的基本原理之一,提出了测量精度的限制。
根据不确定性原理,无法同时准确测量粒子的位置和动量,以及能量和时间。
爱因斯坦的相对论爱因斯坦的相对论无疑是现代物理学的里程碑之一,无论在学术界还是在大众心中都有着重要的地位。
他的相对论颠覆了牛顿经典物理学的观点,开辟了一条新的研究物质和能量的道路。
本文将介绍爱因斯坦相对论的基本概念、主要内容以及其在科学和日常生活中的应用。
首先,我们需要了解相对论的基本概念和背景。
爱因斯坦的相对论包括狭义相对论和广义相对论两个部分。
狭义相对论主要研究的是在相对运动中的自然规律,而广义相对论则在此基础上进一步研究了引力和曲率的关系。
相对论的核心思想是时空的相对性,即物质和能量的存在会扭曲时间和空间的结构。
在狭义相对论中,爱因斯坦提出了两个重要的理论:相对性原理和光速不变原理。
相对性原理指出,物理定律在一切惯性系中都适用,即没有特定的参考系,自然规律具有普遍性。
光速不变原理则断定,光在真空中的速度是不受参照物运动状态的影响的,始终保持不变。
基于这两个原理,爱因斯坦进一步推导出了著名的质能关系公式E=mc²,其中E表示物体的能量,m表示物体的质量,c为光速。
这个公式表明,质量和能量是相互转化的,质量能被转化为能量,而能量也能转化为质量。
这个公式的推导源于对相对论的深入研究和推敲,是现代物理学中最重要的公式之一。
除了质能关系公式外,相对论还提出了相对论力学,也就是相对论中的动力学。
在牛顿经典物理学中,质点的运动是被牛顿力学所描述的,而在相对论中,质点的运动则是受到相对论力学的影响。
相对论力学中包括了质点的相对论动能、相对论动量等概念,这些概念与牛顿经典物理学中的动能、动量有着本质的不同。
在广义相对论中,爱因斯坦进一步研究了引力和时空的关系。
他提出了著名的等效原理,该原理指出,在加速运动的参考系中,物体沿直线运动时会感受到与引力相同的力。
这个原理揭示了引力与加速度之间的关联,并将引力看作是时空弯曲的结果。
基于等效原理,爱因斯坦提出了广义相对论的场方程,描述了物质和能量分布如何影响时空的弯曲。
相对论的基本原理及应用相对论是物理学的重要分支,是由爱因斯坦提出的一种描述物质和能量的理论。
相对论的核心概念是空间和时间的相对性,它对牛顿力学提出了挑战,并在现代科学中扮演着重要的角色。
本文将介绍相对论的基本原理,并探讨其在现实世界中的应用。
一、狭义相对论狭义相对论是相对论的基础,它主要研究相对运动的物体在相对惯性参考系下的物理规律。
相对论的核心观点是光速不变原理,即光在真空中的速度是恒定不变的。
基于这一观点,相对论提出了时间的相对性和长度的收缩效应。
狭义相对论的公式包括洛伦兹变换和质能方程,它们在高速运动的物体以及微观领域的粒子物理学中具有广泛的应用。
二、广义相对论广义相对论是相对论的拓展,它主要研究物质和能量与时空的相互作用关系。
广义相对论的核心概念是引力的等效原理,即加速度和引力场之间不存在本质区别。
根据这一原理,相对论提出了时空弯曲的概念,并由爱因斯坦场方程给出了描述引力的数学表达式。
广义相对论的成果包括引力透镜效应、黑洞论、宇宙膨胀等。
现代天体物理学和宇宙学的研究常常基于广义相对论的框架。
三、相对论与实际应用1. 卫星导航系统:全球定位系统(GPS)是相对论的实际应用之一。
由于地球上的卫星相对于地面观测站具有高速运动,必须考虑相对论修正才能准确计算信号的传播时间和位置信息。
如果不考虑相对论效应,GPS的定位精度将大幅下降。
2. 粒子加速器:粒子加速器是研究微观世界的重要工具,其中的粒子以极高的速度运动。
在这种情况下,相对论效应变得显著,需要使用相对论的数学框架来描述粒子的行为,如粒子在加速器中的运动轨迹、撞击效应等。
3. 导航系统的时钟校正:相对论还用于导航系统的时钟校正。
由于物体在高速运动中时钟会发生变化,而导航系统需要准确的时间同步来进行定位计算。
因此,相对论提供了对卫星时钟进行校正的方案,确保导航系统的精度和可靠性。
4. 太空探索与引力波探测:相对论对于太空探索和引力波探测也有着重要的应用。
狭义相对论公式及证明单位符号单位符号坐标: m (x,y,z)力: N F(f)时间: s t(T)质量:kg m(M)位移: m r 动量:kg*m/s p(P)速度: m/s v(u)能量: J E加速度: m/s^2 a 冲量:N*s I长度: m l(L) 动能:J E k路程: m s(S) 势能:J E p角速度: rad/s ω力矩:N*m M角加速度:rad/s^2α功率:W P一:牛顿力学(预备知识)(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt(2)a=dv/dt,v=v0+∫adt(注:两式中左式为微分形式,右式为积分形式)当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动.只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动.(2)牛二:物体加速度与合外力成正比与质量成反比.F=ma=mdv/dt=dp/dt(3)牛三:作用力与反作与力等大反向作用在同一直线上.(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r2,G=6。
67259*10—11m3/(kg*s2)动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化)机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。
同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。
)二:狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c,u为惯性系速度.)(一)基本原理:(1)相对性原理:所有惯性系都是等价的.(2)光速不变原理:真空中的光速是与惯性系无关的常数。
相对论的基本原理公式相对论是20世纪初由爱因斯坦提出的一种描述物理现象的理论,它在物理学领域产生了深远的影响。
相对论的基本原理是相对性原理和等效原理,而相对论的基本公式则是著名的质能关系公式和洛伦兹变换公式。
首先,让我们来看一下相对性原理。
相对性原理是指物理定律在所有惯性参考系中都具有相同的形式。
也就是说,无论我们处于静止状态还是匀速运动状态,物理定律都是一样的。
这一原理的提出打破了牛顿力学中绝对时间和绝对空间的观念,为后来的相对论奠定了基础。
接下来,我们来讨论等效原理。
等效原理是指在加速运动的参考系中,重力场的效应可以等价于该参考系的加速度。
简单来说,等效原理表明,重力场和加速度是等效的。
这一原理的提出为广义相对论的发展提供了基础,也为黑洞、引力波等现象的研究奠定了基础。
相对论的基本公式中,最著名的莫过于质能关系公式E=mc^2。
这个公式表明了质量和能量之间的等价关系,也就是说,质量可以转化为能量,能量也可以转化为质量。
这个公式的提出颠覆了经典物理学中质量和能量是两个独立的物理量的观念,为核能、核武器等领域的发展带来了深远的影响。
此外,洛伦兹变换公式也是相对论中的重要公式之一。
这个公式描述了时间和空间的相对性,在高速运动参考系中,时间和空间会发生扭曲。
洛伦兹变换公式的提出为狭义相对论的发展提供了重要的数学工具,也为后来的时空结构、时间旅行等概念的研究提供了基础。
总的来说,相对论的基本原理和公式为我们解释了宇宙中许多奇特的现象,也为科学技术的发展提供了重要的理论基础。
通过对相对论的研究,我们可以更深入地理解宇宙的运行规律,也可以更好地利用科学知识为人类社会的发展做出贡献。
相对论的基本原理和公式,正是人类对宇宙进行探索的重要成果,也是人类智慧的结晶。
狭义相对论的四维时空观狭义相对论的四维时空观狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。
在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。
现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。
我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。
四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。
在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。
在四维时空里,动量和能量实现了统一,称为能量动量四矢。
另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。
值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。
四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。
可以说至少它比牛顿力学要完美的多。
至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。
这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。
在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
--------------------------------------------------------------------------------狭义相对论基本原理物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。
大学物理知识点总结大学物理是一门重要的基础课程,涵盖了众多的知识点,下面就为大家总结一下其中的主要内容。
一、力学1、运动学位移、速度和加速度:位移是位置的变化,速度是位移对时间的变化率,加速度是速度对时间的变化率。
匀变速直线运动:速度与时间的关系、位移与时间的关系等公式要牢记。
曲线运动:平抛运动、圆周运动的特点和规律,如线速度、角速度、向心加速度等。
2、牛顿运动定律牛顿第一定律:惯性定律,物体不受力或所受合外力为零时,将保持静止或匀速直线运动状态。
牛顿第二定律:力与加速度的关系,F = ma。
牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在同一直线上。
3、功和能功:力在位移方向上的积累,W =Fs cosθ。
动能定理:合外力对物体做功等于物体动能的变化。
重力势能、弹性势能:其表达式和特点要清楚。
机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。
4、动量动量和冲量:动量 p = mv,冲量 I = Ft。
动量定理:合外力的冲量等于物体动量的变化。
动量守恒定律:系统不受外力或所受合外力为零时,动量守恒。
二、热学1、热力学第一定律内能的改变:包括做功和热传递两种方式。
热力学第一定律表达式:ΔU = Q + W 。
2、热力学第二定律两种表述方式:克劳修斯表述和开尔文表述。
揭示了热现象的方向性和不可逆性。
3、理想气体状态方程表达式:pV = nRT ,其中 p 为压强,V 为体积,n 为物质的量,R 为普适气体常量,T 为温度。
三、电磁学1、静电场库仑定律:描述真空中两个点电荷之间的静电力。
电场强度:定义为电场力与电荷量的比值。
电场线:形象地描述电场的分布。
电势和电势能:电势是电场的属性,电势能与电荷和电势有关。
电容:电容器容纳电荷的本领。
2、恒定电流电流:电荷的定向移动形成电流,I = q / t 。
电阻定律:R =ρL / S ,ρ 为电阻率。
欧姆定律:U = IR 。
焦耳定律:电流通过导体产生的热量 Q = I²Rt 。
请教⼏个理论物理问题(1)请教⼏个理论物理问题卢鹤绂说过:“物理学中最难的就是理论物理,它完全是理论性的,没有实验可做,要靠脑⼦的思维,要靠对整个物理学知识的融会贯通.理论物理是物理学的基础,只有学好它,才能弄懂其他学科.”Ⅰ、狭义相对论⽅⾯1.按照经典电磁辐射理论,如果粒⼦的加速度与运动速度平⾏,⽐如电⼦在电场中的运动,辐射功率为:3223220)/1(3241c V c a q dt dU **-=πε ,如果加速度与速度垂直,⽐如电⼦在磁场中的运动,辐射功率为:2223220)/1(3241c V c a q dt dU **-=πε ,式中*V 是推迟速度,*a 是推迟加速度.如何解释下⾯的理想实验:假设在⼀个封闭系统中有两个物体,⼀个不带电荷也没有磁矩,另⼀个带有电荷,它们的引⼒质量相等,分别位于A 、B 两点,观察者处于线段AB 的中点,两个物体同时由静⽌出发相向运动,它们所受的⼒⼤⼩相等.按照狭义相对论,它们的引⼒质量在任何时刻都相等,引⼒能量相等,可是根据经典电动⼒学由带电的物体将不断地辐射电磁波,那么能量从何⽽来?如果能量守恒把物体辐射的电磁波考虑在内,由于电磁⼒满⾜宇称守恒,因此辐射电磁波的总动量应当为0,由带电的物体速率应当⼤,能量仍然不守恒.笔者通过电磁质量的量⼦化以及电磁质量不是引⼒质量的⼀部分,圆满地解释了这个问题,不知是否正确?2.现代物理学认为在引⼒场中下落的电⼦速度远低于电磁场的传播速度,即使没有外来电磁场,电⼦在⾃⼰激发的电磁场中的异步运动就导致电磁阻尼使电⼦的下降速度远落后于⾃由落体的速度,其在引⼒场中失去的势能只是部分地转化为它的动能,其余的转化为其内能(σT 4),其温度升⾼,它将有热辐射,这⼜导致其温度下降,但内能不会全转化为辐射能,故其温度仍会继续升⾼,从⽽其热辐射频率和强度也越来越强,从⽽该电⼦在引⼒场中失去的势能只是部分地转化为它的动能,其余部分⼀部分作为辐射能辐射出去,其余的保留为由其升⾼的温度表征的内能.3.狭义相对论框架下如何认识万有引⼒定律?在狭义相对论框架下,功能原理和机械能守恒定律是否也有类似形式?如何证明洛伦兹变换构成⼀个变换群?4.假设真空那个中有两个相对静⽌物体质量均为M,以系统的质⼼(两个物体连线的中点)为参照系,它们在万有引⼒作⽤下开始加速运动,根据狭义相对论物体的质量将不断增加,增加的质量应该来源于引⼒场,如何⽤数学定量表达?5.经典⼒学中处理⾮惯性系中两体问题时,引⼊折合质量.狭义相对论和经典⼒学都是在惯性系中成⽴,那么在狭义相对论框架内是否也可以引⼊折合质量的问题?Ⅱ、⼴义相对论与宇宙学⽅⾯1、⼴义相对论从引⼒质量与惯性质量相等得到了⼴义相对论,⼴义相对论适⽤于任何参考系,在双星现象中假设两个星体的质量相等,如果以其中⼀个星体为参照系,考察另⼀个星体的运动,此时显然引⼒质量是惯性质量(应该是系统的折合质量或者说约化质量)的⼆倍.如果考虑到⼴义相对论加速运动相当于引⼒场的话,引⼒质量与惯性质量相等,之间的误差相当⼤. 如何理解这个问题?如何从⼴义相对论解释双星现象?2、⼴义相对论认为没有物质时空不存在,同时认为质量改变了时空结构,这两种表述之间的关系如何理解?笔者认为引⼒场是相对时空,物体的质量改变了附近的时空结构,⼀个物体不存在时,时空依然存在,其它物体产⽣的引⼒场,只有所有物质不存在时,时空才不存在(这种情况不可能存在).这种理解是否正确?3、⼴义相对论认为存在奇点,可是在微观世界存在强相互作⽤与弱相互作⽤,如果考虑到这两种相互作⽤,是否仍然存在奇点?⿊洞是根据万有引⼒定律或者说⼴义相对论得出的结论,没有考虑到电磁相互作⽤(例如分⼦之间的斥⼒)、强相互作⽤和弱相互作⽤、宇宙常数等⽅⾯,如果考虑到这些因素,是否存在⿊洞?物质在塌缩到⿊洞的过程中,费⽶⼦是否仍然满⾜泡利不相容原理?现代物理学研究⿊洞向外辐射粒⼦,这是否与⿊洞的定义⽭盾?万有引⼒定律对于运动质量是否近似成⽴?4、⼴义相对论认为⼀切参考系都等价,⽆法确定整个宇宙的运动状态,可是⼤爆炸理论却认为这个宇宙处于膨胀阶段,如何理解这⼀关系?5、根据对Seeliger佯谬的讨论看到,如果宇宙学原理假设成⽴,宇宙中物质是均匀分布,则在宇宙中任意⼀个空间点都不应当存在引⼒场.我们还可以换个⾓度来讨论这个问题:如果宇宙中引⼒场不为0,则根据宇宙学原理,引⼒场⾄少应当是均匀的.因为引⼒场是⼀个⽮量场,如果宇宙中存在有均匀的引⼒场,则宇宙就不可能是各向同性.因为引⼒场的⽮量⽅向就是⼀个特殊的⽅向.因此如果宇宙学原理成⽴,宇宙中任意⼀个空间点都不应当存在有强度不为0的引⼒场.6、⼤爆炸理论认为在⼤爆炸初期,没有时间和空间,根据⼴义相对论也就不存在物质,能量守恒定律认为能量是不可创造,质量守恒定律认为质量是不可创造,电荷守恒定律认为电荷是不可创造,⼤爆炸理论认为能量、物质(质量)、空间、时间已经被⼀个⽆限⼩的点爆炸创造,并且是在四⼤皆空发⽣的,如何理解这些关系?7、⼤爆炸理论和动量守恒定律以及⾓动量守恒都是不相容的.宇宙学观测表明宇宙是膨胀着的,通过对微波背景辐射和宇宙⼤尺度结构等的观测,宇宙的历史可以追溯到极早期发⽣的⼤爆炸.我们所知的基本物理,⽐如⼴义相对论和粒⼦物理标准模型,在那⾥都不适⽤,这显然与Einstein的思想相悖.为理解宇宙起源,需要了解⼤爆炸时期的基本物理量,可是根据相对论时间不能倒流,如何了解⼤爆炸时期的基本物理量?8、现代物理学认为物质之间有四种相互作⽤,可是⼤爆炸理论没有提及⼤爆炸是何种相互作⽤.泡利不相容原理背后是否有更本质的内容,是否也是⼀种相互作⽤,是哪⼀种⼒?9、爱因斯坦在⼴义相对论中只研究了⼆体问题,即开普勒问题.在经典⼒学万有引⼒定律中三体问题⽆法求精确解,在⼴义相对论中是否也存在三体问题?10、根据爱因斯坦⼴义相对论,运动⽅程是测地线⽅程.可是当粒⼦沿着测地线运动时,粒⼦会发出引⼒波.因此应该有⼀个引⼒辐射反作⽤⼒粒⼦反应.然⽽,爱因斯坦没有发现辐射反作⽤⼒的存在,如何理解这个问题?11、量⼦⼒学中的算符通常是不可对易的,⽽相对论中的时空度规是⾮正定的.量⼦⼒学的发展表明,算符的⾮对易性⾮但不是理论的缺陷,恰恰是其精华所在,⽽度规的⾮正定性是否会进⼀步揭⽰相对论的某种内在的物理本质呢?Ⅲ、⼴义相对论与电磁场综合问题1、Einstein晚年致⼒于引⼒场与电磁场统⼀的研究,如果统⼀场论按照⼴义相对论的基础建⽴,那么电磁场也应当满⾜⼴义相对论的等效原理.根据Einstein的⼴义相对性原理,物理定律对于任何参照系都成⽴,那么下⾯的理想实验如何解释:现代物理学认为“⼀个粒⼦惯性质量为m,是指在⽆穷远处观察该粒⼦,粒⼦携带的质量加上它的场能之和才是它的惯性质量m.”假设在真空中相距充分远处有两个质点A、B,惯性质量均为m,带有等量的同种电荷,它们在万有引⼒和静电⼒的共同作⽤下处于平衡状态,能否根据等效原理相当于它们的惯性质量为0?如果把其中的⼀个质点的电荷换成异种电荷,能否根据等效原理相当于它们的惯性质量为2m? 在Klein-Kluza理论理论中,引⼒和电磁⼒可以通过统⼀的⽅式结合在⼀起.在那⾥,最重要的也就是所谓的“荷质⽐”.KK理论中时空是五维的,⽽第五个维度则必须是卷曲维度,即必须具有有限⼤⼩的半径,⽽且这个半径必须⾜够⼩.KK理论的问题在于得到的与事实相符的⼒学⾏为所对应的荷质⽐,却和真实粒⼦不同.从⽽⼀段时间内⼈们普遍认为电磁⼒和⼴义相对论⽆法融合.但后来⼈们却发现在11维的KK理论中,⼀切就会变得和现实相符,但必须引⼊超对称性,从⽽11维的KK理论⼜称为超引⼒理论.随后⼈们发现超引⼒理论和10维的超弦理论的11维拓展版本具有相似性,从⽽在11维的M理论中,超弦理论和超引⼒理论被结合在了⼀起,成为同⼀种理论.可是现代弦论越到了难以逾越的困难,尤其是引⼒场的量⼦化不可重整化.2、现代物理学认为不但粒⼦会受到引⼒,电磁场也会受到引⼒,参见强引⼒场下的电磁场分布,这是⼴义相对论结合⾮线性数学物理⽅法的基本问题,以及带电引⼒场,⽐如柯尔-纽曼度规.为何电磁场的运动速率不发⽣变换呢?3、在⾃由降落的升降机内能否测量到静⽌电荷的辐射?如果测量到说明⼴义相对性原理存在问题,如果测量不到说明经典电动⼒学存在问题,电荷在引⼒场中做变速运动是否辐射电磁波?4、Einstein在创⽴⼴义相对论的过程中通过电梯说明了等效原理,可是当电梯如果带有电荷,特别是当电荷的电性相反时和相同时,强等效原理显然不成⽴,这说明⼴义相对论仅仅适⽤于引⼒场,不适⽤于电磁场.5、如果两个电荷都具有引⼒质量,那么它们之间除了具有电磁相互作⽤之外还具有万有引⼒作⽤,两种作⽤显然不⼀致,不满⾜简单性原则.6、现代物理学认为引⼒场的能量为负值,根据质能⽅程引⼒场的质量为负值.⼀个物体与其激发的引⼒场的能量之和是否为0,为何现代物理学计算的引⼒场能量与质能⽅程计算的物体的能量不是⼀个数量级?Ⅳ、狭义相对论与⼴义相对论的综合问题1、狭义相对论认为运动物体的时钟延缓,⼴义相对论认为强引⼒场中时钟延缓,两种效应能否统⼀?是否可以从⼴义相对论⽅程推导出狭义相对论效应?只有把两种效应统⼀在⼀起,才符合Einstein科学简单性原则.狭义相对论框架内是否也存在机械能守恒定律,如果存在,如何证明?2、⼴义相对论和狭义相对论的最⼤不同,在于对于真空绝对速度C(真空绝对速度和⼀般所⾔的“电磁波真空波速”不是⼀个概念,只不过后者在数学上恰好等于前者⽽已)只能在局部观测者上定义.也就是说,狭义相对论可以定义⼀个全局观测者,⽽在⼴义相对论中只能使⽤局部观测者,⽽参照系的选择就体现了观测者的选择(两者还不完全相同).在⼴义相对论中,从始⾄终所说的是:在局部观测者⾃⼰看来,⾃⼰所在位置的电磁波的真空光速等于真空绝对速度C,这才是⼴义相对论中对于光速所说的全部内容.在⾮本地观测者看来,⾃⼰所在位置以外的别的地⽅的光速完全可以不是光速,这是⼴义相对论的⼀个很常见的结果.可是现代宇宙学却是利⽤⼴义相对论研究,笔者认为⼴义相对论尽管从局域开始研究,也应该适⽤于⼤尺度的空间也应该有⼀个全局观测者,否则如何理解⼤爆炸理论?⼆者之间是否存在着⽭盾?Ⅴ、量⼦⼒学与量⼦场论问题1、在相对论量⼦⼒学中,⼀个粒⼦的能量不但可以为正值,也可以为负值,负值对应于反粒⼦.根据质能⽅程反粒⼦的惯性质量是为负值,可是1960年数学家和物理学家提出并证明了⼀条定理:在⼴义相对论(GR)中⼀个孤⽴物体的质量必定是⾮负的.这些关系如何理解?仅仅靠⼀个空⽳的概念了之?真空破缺的动⼒学机制是什么?基本粒⼦是如何⽣成的?真空为何存在零点振荡能?能量来⾃何处?2、现代物理学认为反粒⼦携带正能量,由于数学上的性质的差异,其数学表征为负频率,从⽽在原先的相对论性量⼦⼒学中认为是负能量与负概率,⽽采⽤了场论中的算符表述,这些就都变成了正常的正能量与正概率,只不过相同的粒⼦却带有相反的电荷(包括QCD中的⾊荷,以及弱相互作⽤中的同位旋).这与Einstein的科学思想是相悖的,是否说明量⼦场论和相对论量⼦⼒学有着不可调和的⽭盾?3、经典电动⼒学认为加速运动的电荷能够辐射电磁波,⽽量⼦⼒学指出电⼦在同⼀能级内做加速运动不能辐射电磁波,如何把它们统⼀在⼀起?根据经典电动⼒学,⾃由真空中的电⼦,如果给它⼀个加速度,它也能发射电磁波,进⼀步造成⾃我加速,⼀边加速,⼀边产⽣电磁波,这⾥能量的确不守恒.4、假设⼀个中性的氢原⼦在电磁场中作变速运动,根据经典电动⼒学应当不辐射电磁波,可是如果我们把电⼦和质⼦分开来分析,那么它们应该都辐射电磁波,如何解释这个问题?5、量⼦⼒学的有效范围是⾼能领域,⼀般来说微观物理是⾼能范围,所以量⼦⼒学适⽤于微观领域.从数学上可以知道,在最低能级层⾯,⽆论是强⼒、弱⼒还是电磁⼒,带同种性质的⼒荷的粒⼦之间都是排斥⼒,⽽带不同性质⼒荷的粒⼦之间是吸引⼒.这是数学上的必然结果.随着能量的增⾼,各种量⼦修正都会逐渐变得越来越重要,强⼒是吸引的,弱⼒是排斥的,是⼀种近似说法.各种量⼦修正把现代量⼦⼒学变得⽇益复杂,是否类似于当年托勒密的天体⼒学?现代⾼能物理的所谓量⼦修正有两个来源,⼀个是量⼦场论本⾝要求的圈图展开,更⾼阶的圈图会对低阶结果给出量⼦修正,⽽这仅仅是因为现在的数学⽆法计算不做展开的⾮微扰量⼦场论,和量⼦场论的基础做出修正是两个截然不同的概念.另⼀个,是源⾃量⼦场论的重整化,对于重整化的本质我们还有很多不知道的东西,这也是现代弦论、圈量⼦、⾮对易⼏何等等理论在做的事情,从后者来说,弦论等理论的确是⼀种“重新思考”,然⽽现代弦论等理论也遇到了难以克服的困难.是否应当重新考虑其基础?6、量⼦统计物理证明了,任何具有上限能量且有有限个能级的平衡孤⽴系统,可以出现负绝对温度.当温度T→+∞后,系统内能再增⼤,温度跳变到T<0,这就是负温度状态.负温度的存在,不仅在理论上得到证明,⽽且在核磁共振与激光技术中已有应⽤.由量⼦统计物理可知,粒⼦具有的统计平均速率与系统温度的平⽅根成正⽐, V∝T0.5,当T>0时,V 为实速率;当T<0时,V=vi为虚速率.此时洛伦兹变换是否仍然成⽴?Ⅵ、相对论与量⼦⼒学之间的问题1、希格斯粒⼦解释了宇宙质量之源,是否具有反粒⼦,说明宇宙质量消失的途径?质量守恒定律和希格斯机制是否⽭盾?根据狭义相对论,运动物体的质量增加,是否与希格斯粒⼦有关?2、量⼦⼒学中的真空并⾮⼀⽆所有,它们和光⼦之间根据现代物理学理论应当有相互作⽤,可是狭义相对论认为在真空中的光速是不变的,显然存在着⽭盾.如何理解这些关系?量⼦⼒学认为宏观物体存在物质波,显然这与⼴义相对论是⽭盾的,如何理解这些关系?3、在⽜顿动⼒学中,暗含着将以下⼀点视为当然的事,即同时测量(即知道)⼀个粒⼦(⼀个质点)的位置和动量在原则上是可能的.这种可能性隐含在运动定律本⾝中:运动的⼆阶微分⽅程的解要求知道x和px的某个同⼀时刻的初始值,但是这种可能性在量⼦⼒学中从根本上被否定.⽜顿动⼒学中运动⽅程是决定论的和因果律的,即从⼀个由系统的粒⼦之坐标和动量所规定的已知初态出发,运动⽅程以⼀种决定论的⽅式导致⼀切其后时刻的确定状态.导致拉普拉斯宣称:⼀旦给出了某⼀瞬间宇宙中所有星星的位置和动量,那么宇宙过去和未来的状态都将完全被决定,但这种决定论和因果律在量⼦⼒学中基本上被否定.4、对于⼀个宏观物体来说,P=h/λ,当物体静⽌时,P=mv=0,此时λ为⽆穷⼤?E=mc 2=h ν=hc/λ,所以λ=h/mc ≠0. 假设P=MV= h/λ=h/(V/ν)=h ν/V,则h ν=MV 2.这与E=mc 2是⽭盾的.这说明宏观物体的能量不仅仅是物质波的能量,它们之间的关系是什么? 5、设原来静⽌的氯离⼦与光⼦碰撞后吸收了光⼦⽽以u 的速度运动,则由能量守恒定律有:22202201c u c m m c c m hv -==+ (1),式中0m 和m 分别是氯离⼦的静⽌质量和运动质量,ν为⼊射光⼦的频率.⼜由动量守恒定律有:==mu c h ν2201c u u m - (2),由(1)式得:2020222c m hv c hvm v h c u ++= ,由(2)式得:42022c m v h hvcu +=.显然,分别由能量守恒定律和动量守恒定律决定的氯离⼦运动速度不相同.假设碰撞前氯离⼦的运动速度与⼊射光⼦的速度相互垂直,光⼦与处于运动状态的氯离⼦碰撞后被吸收,则由能量守恒定律应有:2222022211c u c m c m c m hv -==+ (3),式中0m 为氯离⼦的静⽌质量,1m 为氯离⼦碰撞前的动质量,2m 为氯离⼦碰撞后的动质量.⼜由动量守恒定律有:X ⽅向:22220221cos cos c u u m u m c hv -==θθ;Y ⽅向:2222022111sin sin cu u m u m u m -==θθ;将两式取平⽅并相加,得:222222021121)()(c u u m u m c h -=+ν(4),由式(3)得:2121420212222)(cm hv c hvm c m m v h c u ++-+=,由式(4)得:221214202222121222c u m c m v h c u m v h c u +++=,可见,由式(3)和式(4)决定的速度不同.6、 Einstein 的⼴义相对论是引⼒理论,把引⼒场量⼦化给出引⼒场的量⼦成为引⼒⼦,它应具有⾃旋为2,和lectriec field 的量⼦——光⼦性质很不相同.近年来理论上对超对称性的探讨提供了新的可能性,超对称性在⾃旋不同的粒⼦间建⽴了联系,因此就有可能把引⼒相互作⽤和其它相互作⽤联系起来,通过超对称性建⽴的四种相互作⽤的统⼀理论称为超⼤统⼀理论.但是根据对称的相对性与绝对性原理,超对称的⼯作是没有⽌境的.超对称要求除引⼒⼦外,还应当有⾃旋3/2的引⼒微⼦存在,但是实验上并没有发现它的存在.7、根据质速关系引⼒质量可以连续变化,⽽电荷和电磁场呈量⼦化分布,现代物理学未让量⼦⼒学进⼊的唯⼀领域是引⼒和宇宙的⼤尺度结构,将引⼒场量⼦化遇到⽆穷⼤的困难.重整化可以消除⽆限⼤的问题,但是由于重整化意味着引⼒质量作⽤⼒的强度的实际值不能从理论上得到预⾔,必须被选择以去适合观测,因此重整化有⼀严重缺陷.⽬前要取得进展,能够建议采⽤的最有⼒的⽅法,就是在企图完成和推⼴组成理论物理现有基础的数学形式时,利⽤纯数学的所有源泉,并在这个⽅⾯取得每次成功之后,试着⽤物理的实体来解释新的数学特⾊.如何把量⼦论和弯曲时空(即⼴义相对论)结合起来却是⼗分困难的事情.到现在为⽌,虽然学术界在电磁场、电⼦场等各种物质场的量⼦化中取得了极其成功的进展,但引⼒场量⼦化的⼯作却遇到了意想不到的巨⼤困难.到⽬前为⽌,所有试图把引⼒场量⼦化的理论(包括超弦和圈量⼦引⼒理论)都存在问题.在物理学发展过程中,量⼦论引起的疑义始终多于相对论.量⼦论留给了⼈们太多的争议.Einstein 曾经说过,我思考量⼦论的时间⼏乎是思考相对论的100倍,但是我还是不清楚什么是光量⼦.Ⅶ、热学与光学问题1、经典物理学认为温度是分⼦平均动能的标志,对⽓体分⼦来说,根据分⼦热运动规律,采取统计平均的⽅法,可以导出热⼒学温度T 与⽓体分⼦运动的平均平动动能的关系为理想⽓体分⼦的平均平动动能为每个分⼦平均平动动能只与温度有关,与⽓体的种类⽆关,k =1.380662×10-23JK -1,为玻尔兹曼常数. 按照传统的定义,在⼤洋深处海⽔的压强⼤,分⼦的动能也应该⼤,可是温度并不⾼,这说明传统关于温度的定义不严密,需要进⾏修正.根据柯尼希定理随着观察者的运动速度不同,分⼦的平均动能也不同,可是物体的温度是不变的,也就是说温度与系统的质⼼相对于观察者的运动速度⽆关,是否把温度定义为相对于质⼼的分⼦平均动能的标志或者放弃这种定义法?在某⼀温度和压强下,某个化学反应的平衡常数为⼀定值,这是否也反映了温度的本质?现代物理学认为在没有实物粒⼦的真空也有温度的概念,⽽是通过光谱定义,波长与温度成反⽐.哪⼀个才是温度的本质?如何把传统定义与现代物理学定义统⼀起来?如果微观粒⼦不辐射电磁波,例如中微⼦,根据现代物理学的观点是否存在温度的概念?2、热⼒学第⼆定律的实质:⾃然界⼀切与热现象有关的实际宏观过程都是不可逆的.不可逆性的微观本质:⼀切⾃然过程总是沿着分⼦热运动的⽆序性增⼤的⽅向进⾏.在化学kT kT 23321=?=µµ221v µε=变化中在温度、压强⼀定的条件下,⾃发反应总是向△H-T△S<0的⽅向进⾏,⼆者如何统⼀?薛定谔认为:⽣命之所以免于死亡,其主要原因就在于他能不断地获得负熵”.⽣命的本质是否就是能够不断负熵?⼈们发现⽆机界、⽆⽣命的世界总是从有序向⽆序变化,但⽣命现象却越来越有序,⽣物由低级向⾼级发展、进化.以致出现⼈类这样⾼度有序的⽣物.意⼤利科学家普⾥⾼津提出了耗散结构理论,解释了这个问题.现代物理学认为宇宙中存在熵增原理,这背后是否有更本质的内涵?根据对称性原理也应当存在熵减的现象,如何理解这些关系?3、光⼦是电中性粒⼦,为什么有电磁波的特性?现代物理学认为光⼦不带有电量也不具有磁矩,作为创建“量⼦场论路径积分”的核⼼⼈物费曼先⽣,认为两个静电荷之间的相互作⽤的传递过程是交换虚光⼦来完成的,可⽤费曼图形象地表⽰.简单说来,规范场负责传递相互作⽤,⽽场的量⼦化的稳定态对应了粒⼦,所以规范场的量⼦化必然就对应了某种场媒介粒⼦,⽐如电磁场的量⼦化对应了光⼦.传播相互作⽤的时候的光⼦,和独⽴被激发时候的光⼦还有不同,术语叫做“虚光⼦”和“实光⼦”.虚光⼦只在相互作⽤的过程中出现,对应到费曼图,就是虚光⼦只是费曼图中的内线,⽽实光⼦则对应了费曼图的外线.在量⼦⼒学中,粒⼦是场的激发态,⽽场传播⼒,所以这种激发态既可以是稳定的激发态,对应实光⼦,也可以是被别的粒⼦激发⽽导致的激发态,对应虚光⼦.在虚光⼦过程中,只要在相互作⽤过程中符合能量守恒(具体说来就是费曼图的顶⾓上能量总和不变),怎么样的光⼦都可以出现.量⼦理论中的激发态,如果是对应虚光⼦的被动激发态,那么其实是没有除了能量守恒以外更多的限制的——当然,严格说来还需要满⾜对称性与规范条件,以及反常消除条件等等,不过都是量⼦化以后的,没有经典对应.实光⼦与虚光⼦有何区别,它们是如何转化的?所谓虚光⼦的概念以及正负电⼦对的湮灭和创⽣的概念仅仅是量⼦场论的理论概念,是否已经为实验证实的事实?笔者认为光⼦不具有引⼒质量(惯性质量),⽽具有电磁质量(电量),只是太⼩,实验中可能观察不到.质⼦与电⼦辐射的光⼦的能量相反,便可以圆满解释上⾯的理想实验,进⼀步否定了“超光速问题”,解释了光速不变性原理、光速为物体运动的极限速度的原因与⼴义相对论的红移危机.4、⼴义相对论中时间是时刻存在的,⼴义相对论⽅程中没有时间⽅向,⽽热⼒学中时间存在着⽅向,如何理解这些关系呢?Ⅷ、电⼦的电磁质量问题1.现代物理学认为电磁质量由电荷附近的电磁场分布结构决定,与电荷没有多⼤的直接关系,只是间接关系.电荷附近的电磁场的源是电荷,但当电荷运动的时候,电荷附近的电磁场分布结构会发⽣变化,如发⽣压缩畸变,其分布结构是速度的函数,这可见⼀般教材,因此电磁质量也是速度的函数,满⾜.当运动速度为0时,电⼦和质⼦的电磁质量是否相等?当⼀个质⼦与电⼦组成11H 时,总体看不带电,电磁质量为0,可是两个微观粒⼦均具有电磁质量,如何理解?2.您认为静⽌电⼦的电磁质量与静⽌质量⽐值的多少?现代物理学认为电⼦的电磁质量是电⼦静⽌质量的⼀部分现代物理学认为电⼦的电磁质量是电⼦静⽌质量的⼀部分,Einstein 在《论动体的电动⼒学》中的原始公式如下:)111(222--=V v V W µ,式中W 为电⼦的动能;µ为电⼦质量;V 为光速;v 为电⼦的运动速度.Einstein 在论⽂中谈到:“在⽐较电⼦运动的不同理论时,我们必须⾮常谨慎.这些关于质量的结果也适⽤于有质的质点上,因为⼀个有质的质点加上⼀个任意⼩的电荷,就能成为⼀个(我们所讲的)电⼦.”Einstein 在研究统⼀场论时才认为电⼦的电磁质量是引⼒质量的⼀部分,曾经试图证明电⼦的电磁质量是电⼦质量的3/4,即宇宙的能量43起源于电磁,41起源于引⼒.但是没有成功,现代物理学中相对论和量⼦⼒学对于电⼦的电磁质量的计算是⽭盾的,彭桓武认为这个问题可能需要未来的⾼等数学来解决.Einstein 晚年进⼀步提出 electric charge 没有引⼒质量的问题,指明引⼒场和lectriec field 是逻辑上毫⽆联系的两部分.由此可见,Einstein 的⼀⽣对于这个问题是摇摆不定的.笔者通过认真地思考后认为电⼦的电磁质量不可能是引⼒质量的⼀部分,原因有七个⽅⾯:。
狭义相对论的基本概念狭义相对论是由爱因斯坦在20世纪初提出的一种物理学理论,它描述了质点在运动过程中的相对性质以及它们对时间和空间的影响。
这个理论可以被看做是一个旨在解释物质之间相互关系的科学思想。
“狭义”二字则指的是这个理论适用的范围是局限于惯性参考系内的相对性质。
物质的相对性质在经典物理学中,我们认为物体的速度可以相互独立地框定,即两个物体分别测得自己的速度,两者之间并没有关联。
但是,在狭义相对论中,这个概念被推翻了。
根据相对性原理,任何两个惯性参考系都是等同的,因而无法选择一个特殊的坐标系作为真实世界的标准。
假设一个人站在车上,并且车以v的速度向前飞驰。
对于这个人而言,他看到的风景跟车辆静止的场景是不同的,甚至对于他自己而言,他也可以认为自己在静止。
这两种情况都成立,没有谁对谁更正确。
时间的相对性质时间是第二个相对性质。
在经典物理学中,我们认为时间的流逝是均匀无误的。
而在相对论中,时间是跟观察者的运动状态有关系的。
假设有两个人,他们在不同的参照系中,运动状态也不同。
对于一个人来说,当他在行进过程中,看到另一个人在静止不动,那么他会认为另一个人的时间流逝得更快。
反之,如果一个人是静止状态,看到的话,他会发现另一个人的时间流逝得更慢。
光速度的相对性质相对论的第三个基本概念是光速度的相对性质。
光速是恒定不变的,不管在什么状态下,光速都是相同的。
假如我们想象一个人在飞行过程中,光和他同时发射。
对于那个人来说,光的速度看起来是由他自己的速度和光速度组成的。
而根据物理学的原理,加速度是无法超过光速的,所以无论那个人是怎么飞行的,光速度永远是一个不变的数字。
总结相对论是一个复杂而又有趣的领域,无论从理论还是实践的角度上,相对性质的概念都得到不同的发展与应用。
在物理学中,我们能够发现相对论的概念经过探索和实践具有一定的实用价值,不断提升人类对物质世界的认知,同时也为未来技术和应用带来很多有趣的可能。
相对论基本原理相对论是由爱因斯坦在20世纪提出的一种物理理论,它从根本上颠覆了牛顿力学的观念,对于我们对时间、空间和物质的认知产生了重大影响。
本文旨在介绍相对论的基本原理,包括狭义相对论和广义相对论。
1. 狭义相对论狭义相对论是相对论的最基本的版本,它主要研究的是惯性参考系中物体之间的相对运动。
狭义相对论的两个基本原理是:等效原理和光速不变原理。
1.1 等效原理等效原理认为,在任何一个加速度为零、匀速度直线运动的惯性参考系中,物理规律的形式都是相同的。
也就是说,在这样的参考系中,自然现象的规律对所有观察者都是一样的。
1.2 光速不变原理光速不变原理是狭义相对论的核心概念,它指出光在真空中的传播速度是恒定的,与光的发射源和观测者的运动状态无关。
这意味着无论观测者是以多大的速度相对于光源运动,他们所测得的光速始终是相同的。
2. 广义相对论广义相对论是相对论的进一步发展,它考虑了引力的影响。
广义相对论基于两个基本原理:等效原理和引力等效原理。
2.1 等效原理(弱等效原理)弱等效原理是广义相对论的基础,它与狭义相对论中的等效原理相似,认为在任何惯性参考系中,物理规律的形式都是相同的。
2.2 引力等效原理(等效力学方法)引力等效原理认为,质点在引力场中的运动可以等效为质点在加速度为零的惯性参考系中的自由运动。
这意味着,引力可以看作是时空弯曲导致的质点运动轨迹的变化。
综上所述,相对论的基本原理包括:等效原理、光速不变原理、引力等效原理。
通过这些基本原理,相对论解释了许多经典力学现象无法解释的现象,如光的折射、星际间的测距、引力透镜效应等。
相对论不仅仅是物理学领域的一项重要成果,也对我们的日常生活产生了深远的影响。
充分理解相对论的基本原理,有助于我们更好地认识宇宙和我们自身的存在。
相对论与粒子加速器解析相对论在粒子物理实验中的重要性与应用相对论与粒子加速器:解析相对论在粒子物理实验中的重要性与应用相对论是物理学中的重要理论之一,它在解析粒子物理实验中起着至关重要的作用。
本文将围绕这一主题,探讨相对论的一些基础知识以及其在粒子加速器实验中的应用。
1. 相对论的基础概念相对论是由爱因斯坦于20世纪初提出的,它是一种描述物质和能量相互转换、以及物体在高速运动状态下的行为的物理理论。
与牛顿力学相比,相对论更加准确地描述了宇宙的本质。
2. 狭义相对论与广义相对论相对论分为狭义相对论和广义相对论两个部分。
狭义相对论主要研究的是惯性系中的物理现象,其中包括了时间相对性、长度收缩以及质量与能量之间的等价关系(E=mc^2)。
广义相对论则更进一步,研究引力对时空的影响,并提出了时空弯曲的概念。
3. 粒子加速器的基本原理粒子加速器是用来加速微观粒子,使其具有高能量以进行实验研究的设备。
其基本原理是利用静电场和磁场的组合,使粒子获得加速度。
粒子在加速器中绕弯时,其质量会增加,这符合相对论中质量与能量之间的等价关系。
4. 相对论对粒子加速器的重要性相对论对粒子加速器的重要性体现在几个方面。
首先,相对论的质量-能量关系使得粒子能够被加速器加速到非常高的能量,从而能够研究到更多微观粒子的性质和行为。
例如,粒子对撞机利用相对论的关系可以加速质子或其他粒子到接近光速,使得实验可以观察到更精细的物理现象。
其次,相对论还揭示了时间与空间的相互关系,这对于粒子加速器中的实验设计和结果解释至关重要。
实验数据的分析需要考虑到粒子在运动过程中时间的膨胀和空间的收缩效应,只有在相对论的框架下,才能得出准确的结果。
此外,相对论还揭示了质能转换的本质,即质量和能量之间的等价关系。
在粒子加速器中,加速粒子的能量往往相当巨大,相对论则提供了粒子能量与其质量之间转换的重要理论基础。
最后,相对论还引出了引力对时空的弯曲,这对于研究黑洞等极端物理现象具有重要意义。
1、狭义相对论效应与加速度之间的关
系
物理学是一门自然科学,它的理论和应用基础是建立在实验和观测上的.而实验和观测总是离不开某一个具体的参考系(或坐标系),加上历史上把惯性系之间的伽利略相对性原理和伽利略变换推广到狭义相对性原理和洛伦兹变换,从而建立狭义相对论这样的背景,许多物理学工作者以参考系的属性(惯性系或非惯性系)来界定狭义相对论的范畴是自然的,不足为怪.至于这种界定的优劣,那就是属于“仁者见仁,智者见智”的事情了.
1966年,人们做过实验让粒子做接近光速的高速圆周运动,粒子既有很高的速度,也有很高的加速度。
实验表明,粒子寿命的变化只与速度有关,而与加速度无关。
在验证时间膨胀效应的实验中,有许多实验涉及到加速过程,覆盖的加速度范围非常广。
例如在原子钟
环球航行实验中,时钟经受的向心加速度为
3
10 g(g代表地球表面的重力加速度);在转
动圆盘的实验中,光源的向心加速度达
5
10g;在穆斯堡尔效应的温度依赖性实验中,晶格
中原子核振动的加速度以及作圆周运行的μ介子的向心加速度都高达
16
10g 以上。
尽管加
速度范围这么广,但最终,几乎所有的实验都得到了与狭义相对论预言的由速度引起的时间膨胀效应基本相符的结果。
这一事实表明,加速度对实验中的时间膨胀没有任何贡献。
即使我们承认时间膨胀效应的存在,也只能说这些效应都是由速度引起的时间膨胀效应,而“非加速度效应”。
相对论中引起广泛兴趣的一个问题是“孪生子佯谬”问题,它曾困扰了物理学界几十年,特别是50年代掀起了空前激烈的争论,发表了许许多多的文章.然而时至今日,“孪生子佯谬”的问题,可以说不但在实验上而且在理论上都已经很好地解决了,因而不妨将之改称为“孪生子效应”.可是,近年国内有人认为“孪生子效应”并没有从理论上得到解决,而且沿用当今的理论(相对论)可能导致某观测者看到“返老还童”的荒谬结果.这种见解其实是把两个坐标系中观测到的钟慢效应,误认为是某个观测者所“看到”的结果.
根据Einstein的观点,狭义相对论效应不具有累积效应。
如果不具有累积效应,那么在实验中怎么测量狭义相对论效应?时间与长度的变换符合洛沦兹变换,您如何理解双生子佯谬和潜水艇悖论?假设一个物体在运动方向上的长度为l,开始由静止做加速运动,当速度达到0.99c时开始减速直到静止,那么开始与最后的长度是否相等?如果速度相等说明不具有累积效应,时间变换也符合洛沦兹变换,为什么现代物理学的实验证明时间膨胀(譬如μ子绕地运行)具有累积效应,而长度收缩是瞬时效应?
从Einstein狭义相对论我们知道,运动物体发生“尺缩”、“钟慢”等效应。
运动物体“尺缩”效应在狭义相对论看来并不是动体自身物质的收缩,只是时空的一种性质,是时空测量中必然产生的效应,动体的内部结构不会发生任何变化;按Einstein自己的说法:狭义相对论是涉及到刚性棒、理想钟和光信号的理论,根本不考虑动体物质的具体结构和动力学效应问题,这样狭义相对论中动体的“尺缩”“钟慢”等效应是不是一种伴随动体物质结构变化的物理实在以及动体运动过程中基本性物理量的真实变化,在狭义相对论中,根据洛伦兹变换运动物体的长度在运动方向上收缩,是观察效应,还是本质规律?洛伦兹认为这种收缩效应是实在的、客观的,是真实的动力学效应,这种收缩效应引起物质内部结构和物理性质变化,对物质来说具有普遍意义。
狭义相对论中‘钟慢、尺缩’属运动学效应,而广义相对论中。
它们已属动力学效应,不应该是观察效应,而是物理的真实性。
Einstein曾说过:“……仅仅是外部关系的结果,不是一种真正的物理变化”。
如果仅仅是观测效应,显然不符和Einstein的哲学观——“有一个独立于知觉之外的客观世界是一切自然科学的基础”。
为了导出狭义相对论,爱因斯坦作出了两个假设:运动的相对性(所有匀速运动都是相对的 ) 和光速为常数 ( 光的运动例外 ,它是绝对的 ). 他的好友物理学家P.Ehrenfest 指出实际上蕴涵着第三个假设, 即这两个假设是不矛盾的.物体运动的相对性和光速的绝对性, 两者之间的相互制约和作用乃是相对论里一切我们不熟悉的时空特征的根源. (李新洲, 《寻找自然之律 --- 20 世纪物理学革命》)。