概率论与数理统计第八章习题答案
- 格式:pdf
- 大小:61.52 KB
- 文档页数:8
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第八章由于工作太忙,现在才把答案更新完整,多谢广大网友的支持与厚爱。
为简化计算,将原表各数据减去40,然后计算,结果如下:方差来源平方和自由度均方和F(α=0.05)因素A615.6s-1=2SˉA=307.8SˉA/SˉE≈17.0684因素E216.4n-s=12SˉE≈18.0333F0.05(2,12)=3.89总和T832n-1=14F=17.0684>3.89由上表可知,拒绝H0,即认为电池一平均寿命有显著差异.由于置信度为0.95的置信区间为(Xj?ˉ-Xk?ˉ±ta2(n-r)SE(1nj+1nk)ˉ),且t0.025(12)=2.1788,SE(1nj+1nk)ˉ=18.033×(25)≈2.6858,X1?ˉ=2.6,X2?ˉ=-10,X3?ˉ=4.4,则μA-μB的置信值为0.95的置信区间为(2.6+10±2.1788×2.6858)=(2.6+10±5.852),即(6.75,18.45);μA-μC的置信度为0.95的置信区间为(2.6-4.4±5.852),即(-7.652,4.052);习题8.2 双因素试验的方差分析习题1酿造厂有化验员3名,担任发酵粉的颗粒检验. 今有3位化验员每天从该厂所产的发酵粉中抽样一次,连续10天,每天检验其中所含颗粒的百分率,结果如下表所示.设α=5%,试分析3名化验员的化验技术之间与每日所抽取样本之间有无显著差异?SB=13∑i=13T?j2-130T2=13×3662.12-130×1782≈164.57,SE=ST-SA-SB=0.13833.从而得方差分析表(见下表)T?1=∑i=1rXi1=5.46,T?2=∑i=1rXi2=4.88,T?3=∑i=1rXi3=5.08, T1?=∑i=1sX1i=4.88,T2?=∑i=1sX2i=3.86,T3?=∑i=1sX3i=3.6,T4?=∑i=1sX4i=3.71,T=∑i=1r∑j=1sXij=15.42,ST=∑i=1r∑j=1sXij2-T2rs=1.632+?+1.322-15.42212=0.2007, SA=1s∑i=1rTi?2-T2rs=13(4.252+3.862+3.62+3.712)-15.42212=0.0807,SB=1r∑j=1sT?j2-T2rs=14(5.462+4.882+5.082)-15.42212=0.0434,SE=ST-SA-SB=0.0766,得方差分析表如下习题8.3 一元线性回归习题1F~F(1,n-2),且此检验问题的拒绝域为F>Fα(1,n-2). n=12,所需计算如下表所示:F=S回\DivS剩(n-2)≈27.15,查表知F0.05(1,10)=4.96.显然F=27.15>4.96=F0.05(1,10),说明F落在拒绝域中,从而拒绝H0,即认为β1≠0,认为某商品的供给量s与价格p间存在近似的线性关系,设线性关系为s=β0+β1p,则β1=Lps/Lpp≈3.27,β0=112∑i=112si-(112∑i=112pi)β1=112×732-112×112×3.27≈30.48,即近似的线性关系为s=30.48+3.27p.习题4有人认为,企业的利润水平和它的研究费用间存在近似的线性关系,下表所列资料能否证实这利论断(α=0.05)?时间1955195619571958195919601961196219631964研究费用10108881212121111利润(万元) 100150200180250300280310320300解答:n=10,所需计算如果下表所示:xi12121111∑i=110xi=102yi280310320300∑i=110yi=2390xi2144144121121∑i=110xi2=1066yi2784009610010240090000∑i=110yi2=624300xiyi3360372035203300∑i=110xiy i=25040Lxx=∑i=110xi2-110(∑i=110xi)2=1066-110×1022=25.6,Lxy=∑i=110xiyi-110(∑i=110xi)(∑i=110yi)=25040-110×102×2390=662Lyy=∑i=110yi2-110(∑i=110yi)2=624300-110×23902=53090.设研究费用x与利润y之间有线性关系y=a+bx,检验假设H0:b=0,H1:b≠0,H0的拒绝域为F>Fα(1,n-2),其中F=UQ/(n-2),U=Lxy2/Lxx=17118.90625,Q=Lyy(1-Lxy2LxxLyy)=35971.094,则F=UQ/(n-2)≈3.807,查表知F0.05(1,8)=5.32.显然F=3.807<5.32=F0.05(1,8),说明F没有落在拒绝域中,从而接受H0,即认为b=0,这说明用原表中所列资料不能证实企业的利润水平和它的研究费用之间存在线性关系.习题5在钢线碳含量对于电阻的效应的研究院中,得到以下的数据:。
第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。
当时,因而时,拒绝当时,因而时,接受。
0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。
已知将以上数据代入得观察值()作出判断。
当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。
26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。
概率统计——习题八参考答案8.1 设t (单位:公斤)表示进货数,],[21t t t ∈,进货t 所获利润记为Y ,则有:⎩⎨⎧<<≤<--=21,,)(t X t at t X t b X t aX Y 又X 的密度函数为 ⎪⎩⎪⎨⎧<<-=其它,0,1)(2112t x t t t x f所以 ⎰⎰-+---=21121211])([)(t t t t dx t t at dx t t b x t ax Y E 1221212]2)(2[t t t b a t at bt t b a -+-+++-= 令 dt Y dE )(0])([1221=-+++-=t t at bt t b a ,得驻点b a bt at t ++=12。
所以该店应该进ba bt at ++12公斤商品,才可使利润的数学期望最大。
8.2 设⎩⎨⎧=,,,0,1否则只球与盒配对第i X i n i ,,2,1 = 则.1∑==n i i X X ∑===∴===n i i i i X E X E n X P X E 1.1)()(,1}1{)( 8.3 ∑∑∞=∞=--=--⋅-=--=-=0121,1)]1(1[1)1()1()1()1()(k k k k p p p p p p k p p p kp X E )()]1([])1([)(2X E X X E X X X E X E +-=+-=∑∑∞=∞=--+---=-+--=02221)1)(1()1(1)1()1(k k k k p p p k k p p p p p p k k ,)2)(1(])1(2[11)]1(1[2)1(2232p p p p p p p p p p p p --=+--=-+---= .11)2)(1()]([)()(22222p p p p p p p X E X E X D -=⎪⎪⎭⎫ ⎝⎛----=-=∴ 8.4 μ+μ-===⎰⎰⎰+∞∞-μ--+∞∞-μ--+∞∞-dx e x dx e x dx x xf X E x x 21)(21)()(μ=μ+=⎰+∞∞--dt e t t 21 ⎰⎰⎰+∞∞--+∞∞-μ--+∞∞-=μ-=-=dy e y dx e x dx x f X E x X D y x 2222121)()()]([)(202==⎰+∞-dy e y y 8.5 用切比雪夫不等式即得,2)(1}2|)({|}2|{|212X D X E X P X P -≥<-=<= 故 .2)211(4)(=-≥X D 8.6 (1)1=ρXY ; (2)73.0)(=+Y X D ;(3))()(),(y F x F y x F Y X Y X =⇔相互独立与;0=ρ⇔XY Y X 不相关与;=⋂⇔B A B A 互不相容与事件∅; =⋂Ω=⋃⇔B A B A B A 且互为对立事件与事件∅或A B =;)()()(B P A P AB P B A =⇔相互独立与事件。
第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差2= ,随机抽取6件,记录其长度(毫米)分别为,,,,,在显著性水平 = 下,能否认为这批零件的平均长度为32.50毫米 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α>查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:、54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平 = 下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i ix x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ()9(025.0t t >可知,t 落入拒绝域中,故在的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
由于工作太忙,现在才把答案更新完整,多谢广大网友的支持与厚爱。
为简化计算,将原表各数据减去40,然后计算,结果如下:方差来源平方和自由度均方和F(α=0.05)因素A615.6s-1=2S¯A=307.8S¯A/S¯E≈17.0684因素E216.4n-s=12S¯E≈18.0333F0.05(2,12)=3.89总和T832n-1=14F=17.0684>3.89由上表可知,拒绝H0,即认为电池一平均寿命有显著差异.由于置信度为0.95的置信区间为(Xj⋅¯-Xk⋅¯±ta2(n-r)SE(1nj+1nk)¯),且t0.025(12)=2.1788,SE(1nj+1nk)¯=18.033×(25)≈2.6858,X1⋅¯=2.6,X2⋅¯=-10,X3⋅¯=4.4,则μA-μB的置信值为0.95的置信区间为(2.6+10±2.1788×2.6858)=(2.6+10±5.852),即(6.75,18.45);μA-μC的置信度为0.95的置信区间为(2.6-4.4±5.852),即(-7.652,4.052);习题8.2 双因素试验的方差分析习题1酿造厂有化验员3名,担任发酵粉的颗粒检验. 今有3位化验员每天从该厂所产的发酵粉中抽样一次,连续10天,每天检验其中所含颗粒的百分率,结果如下表所示.设α=5%,试分析3名化验员的化验技术之间与每日所抽取样本之间有无显著差异?SB=13∑i=13T⋅j2-130T2=13×3662.12-130×1782≈164.57, SE=ST-SA-SB=0.13833.从而得方差分析表(见下表)T⋅1=∑i=1rXi1=5.46,T⋅2=∑i=1rXi2=4.88,T⋅3=∑i=1rXi3=5.08, T1⋅=∑i=1sX1i=4.88,T2⋅=∑i=1sX2i=3.86,T3⋅=∑i=1sX3i=3.6,T4⋅=∑i=1sX4i=3.71,T=∑i=1r∑j=1sXij=15.42,ST=∑i=1r∑j=1sXij2-T2rs=1.632+⋯+1.322-15.42212=0.2007,SA=1s∑i=1rTi⋅2-T2rs=13(4.252+3.862+3.62+3.712)-15.42212=0.0807,SB=1r∑j=1sT⋅j2-T2rs=14(5.462+4.882+5.082)-15.42212=0.0434,SE=ST-SA-SB=0.0766,得方差分析表如下习题8.3 一元线性回归习题1F∼F(1,n-2),且此检验问题的拒绝域为F>Fα(1,n-2). n=12,所需计算如下表所示:F=S回\DivS剩(n-2)≈27.15,查表知F0.05(1,10)=4.96.显然F=27.15>4.96=F0.05(1,10),说明F落在拒绝域中,从而拒绝H0,即认为β1≠0,认为某商品的供给量s与价格p间存在近似的线性关系,设线性关系为s=β0+β1p,则β1=Lps/Lpp≈3.27,β0=112∑i=112si-(112∑i=112pi)β1=112×732-112×112×3.27≈30.48,即近似的线性关系为s=30.48+3.27p.习题4有人认为,企业的利润水平和它的研究费用间存在近似的线性关系,下表所列资料能否证实这利论断(α=0.05)?时间1955195619571958195919601961196219631964研究费用10108881212121111利润(万元) 100150200180250300280310320300解答:n=10,所需计算如果下表所示:xi12121111∑i=110xi=102yi280310320300∑i=110yi=2390xi2144144121121∑i=110xi2=1066yi2784009610010240090000∑i=110yi2=624300xiyi3360372035203300∑i=110xiy i=25040Lxx=∑i=110xi2-110(∑i=110xi)2=1066-110×1022=25.6,Lxy=∑i=110xiyi-110(∑i=110xi)(∑i=110yi)=25040-110×102×2390=662Lyy=∑i=110yi2-110(∑i=110yi)2=624300-110×23902=53090.设研究费用x与利润y之间有线性关系y=a+bx,检验假设H0:b=0,H1:b≠0,H0的拒绝域为F>Fα(1,n-2),其中F=UQ/(n-2),U=Lxy2/Lxx=17118.90625,Q=Lyy(1-Lxy2LxxLyy)=35971.094,则F=UQ/(n-2)≈3.807,查表知F0.05(1,8)=5.32.显然F=3.807<5.32=F0.05(1,8),说明F没有落在拒绝域中,从而接受H0,即认为b=0,这说明用原表中所列资料不能证实企业的利润水平和它的研究费用之间存在线性关系.习题5在钢线碳含量对于电阻的效应的研究院中,得到以下的数据:(2)待解决的原假设为H0:β1=0的显著性假设检验问题,检验统计量是F=U/Qn-2,检验水平为α的拒绝域为{F>Fα(1,n-2)},由所给数据可得Lyy=∑i=110yi2-10(y¯)2=48.129,U=β1∧Lxy=0.3713×63.72≈23.6592,Q=Lyy(1-Lxy2LxxLyy)≈24.4679,代入可得F=23.6592/24.467910-2≈7.736,而查表得F0.05(1,8)=5.32<7.736,因此拒绝原假设H0,即认为回归效果显著.(3)Y0的置信度为1-α的预测区间为(y0∧-tα2(n-2)σ∧^2(1+1n+(x0-x¯)2Lxx),y0∧+tα2(n-2)σ2∧(1+1n+(x0-x¯)2Lxx))现在x0=69,Y0的置信度为0.95的预测区间可计算如下y0∧=41.7072+0.3713×69=67.3269,σ2∧=Qn-2=24.46798=3.0585,t0.025(8)σ2∧(1+110+(x0-x¯)2Lxx)=2.3063.0585(1+0.1+(69-66.8)2171.6)=4.2836,所以x0=69时,Y0的置信度为0.95的预测区间为(63.0433,71.6105).8.4 多元线性回归习题1一种合金在某种添加剂的不同浓度之下,各做三次试验,得数据如下:。
《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性⽔平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域.解 00:H λλ≥ 选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性⽔平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因 22χχ>,所以2222((2))((2))n n ααχχχχ≥?≥,从⽽ 2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥ 可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺⼨⽅差为21.21σ=,对⼀批这类零件检查6件得尺⼨数据(毫⽶):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。
设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是32.50毫⽶(0.05α=).解问题是在2σ已知的条件下检验假设0:32.50H µ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -===-0.0251.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺⼨是32.5毫⽶。
3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平0.05α=下,能否认为这批产品的指标的期望值µ不低于1600。
解问题是在2σ已知的条件下检验假设0:1600H µ≥0H 的否定域为/2u u α<-,其中 158016005.1 1.02100X u -==?=-.0.051.64u -=-.因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值µ不低于1600.4.⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为100σ=⼩时的正态分布,问这批元件是否合格?(0.05α=)解设元件寿命为X ,则2~(,100)X N µ,问题是检验假设0:1000H µ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -===-0.05 1.64u = 因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=?解问题是在2σ未知的条件下检验假设0: 3.25H µ=0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-?==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==?=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖⼚⽤⾃动打包机打包,每包标准重量为100公⽄,每天开⼯后要检验⼀次打包机⼯作是否正常,某⽇开⼯后测得9包重量(单位:公⽄)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 问该⽇打包机⼯作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H µ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==?=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该⽇打包机⼯作正常.7.按照规定,每100克罐头番茄汁中,维⽣素C 的含量不得少于21毫克,现从某⼚⽣产的⼀批罐头中抽取17个,测得维⽣素C 的含量(单位:毫克)如下22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维⽣素C 的含量服从正态分布,试检验这批罐头的维⽣素含量是否合格。
第八章 假设检验1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3。
25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0。
01下能否接受假设:这批矿砂的含镍量的均值为3。
25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3。
25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0。
01,由计算知01304.0)(11,252.3512=--==∑=i iX Xn S x查表t 0.005(4)=4。
6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21≈-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0。
05)H 0:μ = 0。
618H 1:μ≠0。
6180。
693 0。
749 0.654 0。
670 0。
662 0.672 0.615 0.606 0。
690 0.628 0。
6680。
611 0。
606 0。
609 0.601 0。
553 0。
570 0。
844 0。
576 0。
933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=20 α = 0。
第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。
当时,因而时,拒绝当时,因而时,接受。
0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。
已知将以上数据代入得观察值()作出判断。
当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。
26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。
当时,10222000292221022/21/22221/2/2096,|| 1.96,2(): 1.2.1()()~()()01,(),()(()())1.()100 1.ii u H i H ii n iii n n P n n iv αααασσχξµχσααχχχχχαµσ=−−<===−<<<<=−==∑因而接受,即灌装量符合标准。
()提出假设,找统计量。
确定统计量求临界值。
给定显著性水平()查正态分布表求使求观察值。
已知,221221/21/222222/2/21/21/20029,8.17.()0.05()(9) 2.7,()(9)19,()(),n v n n n n H ααααααχχαχχχχχχχ−−−=======<<,将以上数据代入得观察值作出判断。
当时,因而接受,即灌装精度在标准范围内。
250010()495 510 505 498 503 492 502 505 497 506N(,),0.0515;(2)g g g µσασσ==某工厂用自动包装机包装葡萄糖,规定标准重为袋净重,现随机地抽取袋,测得各袋净重为,,,,,,,,,设每袋净重服从正态分布问包装机工作是否正常(取显著性水平)如果:()已知每袋葡萄糖净重的标准差未知。
00/2/2/20.0251i :500.(ii)~(0,1)(iii)0.05,(||)1.1.96H U N u P U u u u αααµµξαα====<=−==解:()()提出假设,找统计量。
确定统计量求临界值。
给定显著性水平查正态分布表求使01011/20.02510(iv)500510,1=501.3.10=0.822v 0.05 1.96,|| 1.96,0.05i i n U u u u u H αµσξξξαα==========<=∑求观察值。
已知,,计算将以上数据代入得观察值()作出判断。
当时,因而时,接受。
000/221(2)i :500.(ii)~(1)(iii).(iv)i H t n T u S αµµξ===−=()提出假设,查1/20.025100=5.620.73v 0.05()(9) 2.26,|| 2.26,0.05S t t t n t t H αξαα======<=,将以上数据代入得观察值()作出判断。
当时,因而时,接受。
10.5(0.05)1500;(2)g g σαµµ===在上题中,能否认为每袋葡萄糖净重的标准差取显著性水平?如果:()已知每袋葡萄糖净重的均值未知。
002102221022/21/22221/2/202211()()~()()01,(),()(()())1.()500510,12.04.(ii ii n iii n n P n n iv n ααααχξµχσααχχχχχαµσχχ=−−=−<<<<=−====∑找统计量。
确定统计量求临界值。
给定显著性水平()查正态分布表求使求观察值。
已知,,将以上数据代入得观察值221/21/222222/2/21/21/2022200021022210)0.05()(10) 3.25,()(10)20.5,()(),5(2)():5.1()()~(1)()ii v n n n n H g i H ii n iii αααααααχχχχχχχσσσχξξχσ−−−======<<====−−∑作出判断。
当时,因而接受,即可认为每袋葡萄糖净重的标准差为。
提出假设,找统计量。
确定统计量求临界值。
给定显22222/21/21/2/20221221/21/2222/2/21/201,(),()(()())1.()510,501.311.365.()0.05()(9) 2.7,()(9)19,()n n P n n iv n v n n n αααααααααααχχχχχασξχχαχχχχχ−−−−−<<<<=−=========著性水平()查正态分布表求使求观察值。
已知,计算得,将以上数据代入得观察值作出判断。
当时,221/200(),5n H g αχχσ<<=因而接受,即可认为每袋葡萄糖净重的标准差为。
112211.9,39,316,35,50.05.n n ξσησα=======两家工厂用同样的生产过程生产塑料,假定两个工厂的塑料强度都服从正态分布,生产已定型且方差都已知,收集到的数据如下:问两个工厂塑料的平均强度是否相等?取显著性水平012/2/212112211/20.025(2)(3),(||)(4)35,52.5.(5)U P U u U u u u u ααξησ−=<===>=找统计量使,计算得的观察值作出判断。
01.96,,H =所以拒绝即认为两个工厂塑料的平均强度不相等。
51,540 533 525 520 545 531 541 529 534565 577 580 575 556 542 560 532 570 561g g 某种橡胶配方中,原用氧化锌,现改为今分别对两种配方各作若干试验,测得橡胶伸张率如下:原配方:,,,,,,,,现配方:,,,,,,,,,设同一批橡胶伸张率服从正态分布,问在两种配方下,橡胶伸张率是否服从同0.01α=分布(取显著性水平)?122212210222221111122221221/212/2121/21.1: 1.(2)1((1)~(1,1).1()(1)(3)0.01(1,1),(1,1),((1n i i n i i H n S F F n n S n F n n F n n P F n ααασσσσξξσηησα==−−==−−==−−−−=−−−−−∑∑解:检验分两步。
第一步:检验检验步骤为()提出假设。
找统计量。
求临界值。
对给定的的显著性水平,查表求使2/2121/2120.995/2120.005,1)(1,1))1.(1,1)(8,9)0.136,(1,1))(8,9) 6.69n F F n n F n n F F n n F αααα−−<<−−=−−−==−−==在Excel 中输入:=FINV (0.995,8,9)的0.136;输入:FINV(0.005,8,9)得:6.69()()92211102221211221(4)511/8,9112132/9,1010.27.ii i i S S S F F S ξξηη===−=−=−=−==∑∑求观察值。
由给定的样本得算出统计量的值1/2120.9950.005/2120.0051/2121/2120(5)(1,1)(8,9)1/(9,8)0.136(1,1)(8,9) 6.69(1,1)(1,1),F n n F F F n n F F n n F F n n H αααα−−−−===−−==−−<<−−作出判断。
,,,因而,接受即认为橡胶伸张率方差相同。
120012.1:0.H µµµµ=−=第二步:检验检验步骤为()提出假设,222t ξη−=()找统计量。
/20.005/2(3)(17) 2.9,(||)1.t t P t t αααα==<=−求临界值。
对给定的显著性水平,查表求得使得在Excel 中输入:=TINV(0.01,17)得2.9()()()91102212121212211221211(4)=53391=56209,10511/8,2132/9,1091511/81012132/9(1)(1)12.47,291025335620()()i i i i w n n S S n S n S S n n t t ξξηηµµξηµµ====−=====−×+−×−+−===+−+−−−−−−==∑∑求观察值。
由所给的样本得,,,,求得的观察值为 5.063.=−/2120.0051/200(5)(2)(17) 2.9.||,,t n n t t t H αα+−==>作出判断。
因而,拒绝即认为橡胶伸张率均值不相同。