《矩阵分析》考试题A 2016
- 格式:pdf
- 大小:494.54 KB
- 文档页数:6
北京交通大学2002008-20098-2009学年第一学期硕士研究生学年第一学期硕士研究生矩阵分析矩阵分析矩阵分析考试试卷考试试卷考试试卷(A)(A)专业班级学号姓名题号一二三四五六七总分得分一、(8分)设线性映射A :]4R x ⎡→⎣]3R x ⎡⎣且T (())()d f x f x dx=,对任意∈)(x f ]4R x ⎡⎣.求线性映射T 在基2323,,,x x x 及基22,3,x x 下的矩阵表示.其中,]210121{|}n n i nR x a a x a x a x a R −−⎡=++++∈⎣⋯.二(共14分,问题(1)4分,问题(2)10分)(1)叙述矩阵范数的定义(2)设3201i A i −⎛⎞=⎜⎟⎝⎠,求矩阵范数1A ,∞A ,2A ,F A .(这里12−=i );三求解题(共18分)(1)(6分)求矩阵的满秩分解。
(2)(4分)设三阶矩阵的特征多项式与最小多项式分别是:证明:13214261073931114128510A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 322()5()5f m λλλλλλ=−=−与4125A A=(3)(8分)求矩阵1010111A i i −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠的正交三角分解UR A =,其中U 是酉矩阵,R 是正线上三角矩阵.四证明题(共16分,每小题各8分):1设n 阶矩阵002,()k A A k ≠=≥.证明:A 不能与对角矩阵相似.2设,A B 是n 阶正规矩阵,试证:A 与B 相似的充要条件是A 与B 酉相似.五(14分)设01010i A i i i −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,验证A 是Hermite 矩阵并求酉阵U 使得1U AU −是对角矩阵.六(共30分,每小题6分)设308316205A ⎛⎞⎜⎟=−⎜⎟⎜⎟−−⎝⎠,(1)求A E −λ的Smith 标准形(写出主要步骤);其中E 为3阶单位阵。
(2)写出A 的初等因子和A 的最小多项式;(3)求相似变换矩阵P 和A 的Jordan 标准形J ,使得J AP P =−1;(4)求2008J 和矩阵函数)(A f ;(5)求2ln()A E +计算行列式2sin()A π.。
北京邮电大学《矩阵分析与应用》期末考试试题(A 卷)2015/2016学年第一学期(2016年1月17日)注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。
一、已知的两组基:22R ⨯,,,;111000E ⎡⎤=⎢⎥⎣⎦120100E ⎡⎤=⎢⎥⎣⎦210010E ⎡⎤=⎢⎥⎣⎦220001E ⎡⎤=⎢⎥⎣⎦,,,。
111000F ⎡⎤=⎢⎥⎣⎦121100F ⎡⎤=⎢⎥⎣⎦211110F ⎡⎤=⎢⎥⎣⎦221111F ⎡⎤=⎢⎥⎣⎦求由基到的过渡矩阵,并求矩阵11122122,,,E E E E 11122122,,,F F F F 在基下的坐标。
3542A -⎡⎤=⎢⎥⎣⎦11122122,,,F F F F 二、假定是的一组基,试求由,123x x x ,,3R 112323y x x x =-+,;生成的子空间2123232y x x x =++312413y x x =+的基。
()123,,L y y y 三、求下列矩阵的Jordan 标准型(1) (2)1000210013202311A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦3100-4-1007121-7-6-10B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦四、设是的任意两个向量,矩阵()()123123,,,,,x y ξξξηηη==3R ,定义 210=120001A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(),T x y xAy =(1) 证明在该定义下构成欧氏空间;n R (2) 求中由基向量的度量矩阵;3R ()()()1231,0,0,1,1,0,1,1,1x x x ===五、设是欧氏空间中的单位向量,,定义变换y V x V ∈2(,)Tx x y x y=-证明:是正交变换。
T六、求矩阵和的。
[]=132A -1=203j B j -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦12,,∞g g g 七、求证:若A 为实反对称矩阵( A T = - A) , 则eA 为正交矩阵。
错误!2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A)一、(共30分,每小题6分)完成下列各题:(1)设4R 空间中的向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23121α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=32232α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=78013α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=43234α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=30475αSpan V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的维数.解:=A {}54321,,,,ααααα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→00000410003011020201 21V V +和21V V 的维数为3和1(2) 设()Ti i 11-=α,()Ti i 11-=β是酉空间中两向量,求内积()βα,及它们的长度(i =). (0, 2, 2);(3)求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A 的满秩分解. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→0000747510737201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=775211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----747510737201* (4)设-λ矩阵⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子.解:⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ()()⎪⎪⎪⎭⎫ ⎝⎛++→2111λλλλ(5)设*A 是矩阵范数,给定一个非零向量α,定义 *Hx x α=,验证x 是向量范数.二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基.解:(1)由题意知 T [ε1,ε2,ε3]=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++(2)矩阵A的核为AX=0的解空间。
矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。
第三章1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ== 定义内积为(,)H A αβαβ=(1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。
2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。
提示:即求方程0AX =的基础解系再正交化单位化。
3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HU AU 是上三角矩阵。
提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。
5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HU AU 为对角矩阵,已知131(1)612A ⎡⎢⎢⎢=⎢⎢⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQ AQ 为对角矩阵,已知220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
重庆邮电大学 级研究生(矩阵分析)考卷( A 卷)参考答案及评分细则一 、 已知 1(1,2,1,0)T α=, 2(1,1,1,1)T α=-, 1(2,1,0,1)T β=-, 2(1,1,3,7)T β=-求12{,}span αα与12{,}span ββ的和与交的基和维数。
( 10分) 解: 因为12{,}span αα+12{,}span ββ=1212{,,,}span ααββ (2分)由于秩1212{,,,}ααββ=3, 且121,,ααβ是向量组1212,,,ααββ的一个极大相信无关组, 因此和空间的维数是3, 基为121,,ααβ。
(2分) 设{}1212{,},span span ξααββ∈于是由交空间定义可知11221122k k l l ξααββ=+=+ 此即121211212111011030117k k l l -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪+--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解之得1122122,4,3(k l k l l l l =-==-为任意数) (2分) 于是11222[5,2,3,4]T k k l ξαα=+=-, 1122l l ξββ=+(很显然)因此交空间的维数为1, 基为T [-5,2,3,4] (2分)二、 证明: Jordan 块 10()0100a J a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似于矩阵 0000a a a εε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 这里0ε≠为任意实数。
( 10分) 证明: 由于容易求出两个λ-矩阵的不变因子均为31,1,()a λ-, 从而这两个λ-矩阵相似,于是矩阵10()0100a J a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与0000a a a εε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似.三、 求矩阵101120403A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的(1)Jordan 标准型; ( 2) 变换矩阵P ; ( 3) 计算100A 。
华南理工大学研究生课程考试题(A)
《矩阵分析》2016年12月
姓名院(系)学号成绩
注意事项:1.考试形式:闭卷(√)开卷()
2.考生类别:博士研究生()硕士研究生(√)专业学位研究生()
3.本试卷共四大题,满分100分,考试时间为150分钟。
一、单项选择题(每小题3分,共15分):
1、设,,是的两个不相同的真子空间,则下列不能构成子空间的是。
(A);(B);(C);(D)。
2、设,为阶酉矩阵,则下列矩阵为酉矩阵的是。
(A);(B);(C);(D)。
3、设矩阵的秩为,则下列说法正确的是。
(A)的所有阶子式不等于0;(B)的所有阶子式等于0;
(C)的阶子式不全为0;(D)的阶子式不全为0。
4、下列命题不正确的是。
(A)行数相同的两个矩阵一定存在最大右公因子;
(B)列数相同的两个矩阵一定存在最大右公因子。
(C)特征多项式的根一定是最小多项式的根;
(D)最小多项式的根一定是特征多项式的根;
5、设,则。
(A)1;(B);(C);(D)。
二、填空题(每小题3分,共15分):
1、设,,和,,是的
两个基,则从第一个基到第二个基的的过渡矩阵为。
2、实线性空间的映射称为内积运算,如果满足下列条件:。
3、奇异值分解定理内容为。
4、设,则。
5、设,则。
三、计算题(每小题14分,共56分):
1、设,,;,,
,。
求和的一个基。
2、求欧氏空间的一个标准正交基(从基,,,出发),内积定义为。
3、求的若当标准形和可逆矩阵,
并计算。
4、1)写出的求解公式。
2)已知,计算。
四、证明题(第一小题8分,第二小题6分,共14分):
1、设,是维线性空间,证明都。
2、设方阵满足,且,证明。