第9章 图像分割2——基于边缘的分割
- 格式:ppt
- 大小:2.48 MB
- 文档页数:54
基于边缘的分割方法
基于边缘的分割方法,是一种采用边缘检测来实现图像分割的技术。
这种技术可以将图像中相邻的不同区域分别分割出来,从而更好
地提取图像信息,使得后续的处理任务更加简便有效。
其原理是通过
对图像边缘的检测,找到不同区域之间的显著分割线,从而实现图像
的分割和提取。
基于边缘的分割方法通常包括以下几个步骤:首先,对原始图像
进行加噪声、平滑滤波等预处理操作,使图像边缘更加清晰明显。
然后,采用某种边缘检测算法,如Sobel、Prewitt等,检测出图像中所
有的边缘信息。
接着,采用某种分割算法,如基于阈值的分割、基于
区域的分割等,根据边缘信息实现图像分割。
最后,进行后续的图像
处理、分析、应用等工作。
基于边缘的分割方法的优点是可以对复杂图像进行有效的分割,
具有较高的准确性和稳定性。
同时,由于采用了较为普遍的边缘检测
算法,因此在实现过程中较为简单,易于理解和使用。
但是,基于边缘的分割方法也存在一些不足之处。
例如,在图像
边缘比较弱或边缘不连续的情况下,边缘检测会出现错误或漏检情况。
此外,图像中的噪声等干扰信息也会影响到分割的准确性。
总之,基于边缘的分割方法是一种基本的图像分割技术,其应用
范围广泛,包括计算机视觉、医学图像处理、人脸识别、动态图像分
析等领域。
随着分割算法的不断改进和完善,基于边缘的分割方法将
继续发挥重要的作用,为图像处理和分析提供更加高效便捷的解决方案。
图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
医疗影像处理中的图像分割算法使用方法与技巧医疗影像处理是一种应用广泛的技术,为临床诊断和治疗提供了重要支持。
在医疗影像中,图像分割是一个关键的步骤,它能够将影像中的不同区域或结构进行提取,为医生提供更准确的信息。
图像分割算法的使用方法和技巧对于提高分割效果具有重要意义。
本文将介绍医疗影像处理中常见的图像分割算法及其使用方法与技巧。
一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法。
它通过设定一个或多个阈值来将图像分割为不同的区域。
在医疗影像处理中,通过选择适当的阈值,我们可以将感兴趣的区域从背景中分离出来,例如分割出肿瘤或器官。
在使用基于阈值的算法进行图像分割时,以下几点技巧是需要注意的:1. 预处理:在进行图像分割之前,通常需要对图像进行一些预处理操作,例如去噪、增强对比度等。
这样可以提高分割的结果质量。
2. 自适应阈值:在某些情况下,图像中的亮度和对比度可能会发生变化。
为了应对这种情况,可以使用自适应阈值的算法,根据图像不同区域的统计信息来选择合适的阈值。
3. 多阈值分割:有时候,一个阈值无法对图像进行有效分割。
这时可以尝试使用多阈值分割算法,根据不同的阈值对图像进行多次分割,然后结合结果。
二、基于边缘的图像分割算法基于边缘的图像分割算法是利用图像中的边缘信息来分割图像的一种常见方法。
边缘是图像中灰度值变化较大的地方,通过检测图像中的边缘,可以将物体与背景分离出来。
以下是使用基于边缘的图像分割算法时的几个技巧:1. 边缘检测:为了得到图像的边缘信息,需要使用边缘检测算法,例如Canny算法、Sobel算法等。
在使用这些算法时,需要调整参数,以得到最佳的边缘检测结果。
2. 边缘连接:边缘检测算法有时会产生不连续的边缘线段。
为了得到完整的边缘,需要对边缘进行连接操作,将不连续的线段连接起来。
3. 边缘融合:在某些情况下,图像中的边缘可能会有重叠或交叉的情况。
为了解决这个问题,可以使用边缘融合算法,将重叠的边缘进行合并,提高分割的准确性。
图像处理中的图像分割算法使用方法图像分割是图像处理中的重要任务之一,它的目的是将图像划分为多个具有独立语义信息的区域。
图像分割在许多应用领域中都有广泛的应用,例如医学图像分析、计算机视觉、图像识别等。
本文将介绍几种常见的图像分割算法及其使用方法。
一、阈值分割算法阈值分割算法是图像分割中最简单且常用的方法之一。
它基于图像中像素的灰度值,将图像分成多个区域。
该算法的基本思想是,选择一个合适的阈值将图像中低于该阈值的像素设为一个区域,高于该阈值的像素设为另一个区域。
常用的阈值选择方法包括固定阈值选择、动态阈值选择等。
使用方法:1. 预处理:对图像进行灰度化处理,将彩色图像转化为灰度图像。
2. 阈值选择:选择一个合适的阈值将图像分割为两个区域。
可根据图像的直方图进行阈值选择,或者使用试探法确定一个适合的阈值。
3. 区域标记:将低于阈值的像素标记为一个区域,高于阈值的像素标记为另一个区域。
4. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。
二、基于边缘的分割算法基于边缘的分割算法利用图像中边缘的信息来进行图像分割。
该算法的基本思想是,根据图像中的边缘信息将图像分成多个区域。
常用的基于边缘的分割方法有Canny边缘检测、Sobel边缘检测等。
使用方法:1. 预处理:对图像进行灰度化处理。
2. 边缘检测:利用Canny或Sobel等边缘检测算法提取图像中的边缘信息。
3. 边缘连接:根据提取到的边缘信息进行边缘连接,形成连续的边缘线。
4. 区域生成:根据边缘线来生成图像分割的区域。
5. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。
三、基于区域的分割算法基于区域的分割算法是将图像划分为多个具有独立语义信息的区域,其基本思想是通过分析像素之间的相似性将相邻像素组合成一个区域。
常用的基于区域的分割方法有均值迭代、区域增长等。
使用方法:1. 预处理:对图像进行灰度化处理。
2. 区域初始化:将图像划分为不同的区域,可按照固定大小进行划分,或根据图像的特征进行划分。
图像分割技术学习计算机视觉核心技能图像分割是计算机视觉领域中的一项核心技术,它的主要目标是将图像分割成不同的区域或物体。
准确的图像分割是实现许多计算机视觉任务的基础,包括目标检测、图像识别和图像分析等。
本文将介绍图像分割技术的相关知识和常用方法。
一、图像分割的基本概念图像分割是指将一幅图像分成若干个区域,每个区域代表着图像中的一个物体或一部分区域。
图像分割的目标是从图像中提取出感兴趣的目标,以便进一步进行分析和处理。
二、图像分割的方法1. 基于阈值的分割方法基于阈值的分割方法是最简单有效的图像分割方法之一。
它将图像中的像素值与预先设定的阈值进行比较,根据像素值的大小将图像分为不同的区域。
这种方法适用于目标与背景的灰度差异较大的情况。
2. 基于边缘检测的分割方法基于边缘检测的分割方法是通过检测图像中的边缘来实现分割。
边缘是图像中灰度变化的位置,通常在目标的边界上具有明显的变化。
通过检测这些边缘,可以将图像分割成不同的区域。
3. 基于区域的分割方法基于区域的分割方法是将图像划分为多个相连的区域,每个区域具有一定的相似性。
通过选择合适的区域特征和相似性度量准则,可以将图像中的目标和背景分开。
4. 基于神经网络的分割方法近年来,基于神经网络的分割方法在图像分割领域取得了重要的突破。
通过训练神经网络,可以实现端到端的图像分割,同时考虑到像素之间的上下文信息和全局一致性。
三、图像分割的应用图像分割技术在许多计算机视觉应用中都有广泛的应用。
以下是一些常见的应用领域:1. 目标检测与识别图像分割可以帮助识别图像中的目标,并用于目标检测和识别任务。
通过对目标进行精确的分割,可以提取出目标的特征信息,并进行进一步的分析和识别。
2. 医学图像分析在医学图像领域,图像分割可以用于识别和分割出病变区域,帮助医生进行病情诊断和治疗方案制定。
3. 自动驾驶在自动驾驶领域,图像分割可以帮助识别和分割出道路、车辆和行人等目标,为自动驾驶系统提供精确的环境感知和理解。
图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。
图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。
本文将介绍图像分割算法的原理以及评估方法。
一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。
以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。
它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。
该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。
2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子等。
该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。
优点是对于边缘信息敏感,适用于复杂场景的分割任务。
3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。
常用的方法包括区域生长、分裂合并等。
该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。
优点是在复杂背景下有较好的分割效果。
4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。
常用的方法包括图割算法和分割树算法等。
该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。
该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。
二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。
以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。
它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。
图像分割方法概述图像分割是一种基本的计算机视觉任务,旨在将图像划分成不同的区域或对象。
图像分割在许多应用领域中都有重要的应用,如医学影像分析、目标检测与识别等。
本文将概述几种常用的图像分割方法。
一、阈值分割法阈值分割法是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像按照灰度值的高低进行分类。
通过设定一个或多个阈值,将图像的像素划分为前景和背景。
根据不同的阈值选择方法,阈值分割法可以分为全局阈值分割和局部阈值分割两种。
二、基于边缘的分割法基于边缘的分割法是另一种常见的图像分割方法。
它利用图像中明显的边缘信息将图像分割成不同的区域。
常用的边缘检测方法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像中的物体从背景中分离出来。
三、区域生长法区域生长法是一种基于相似性的图像分割方法。
它从某个种子像素开始,逐渐将与其相似的像素聚合到同一区域中。
相似性度量可以基于像素的灰度值、颜色、纹理等特征来定义。
区域生长法适用于分割相对均匀的区域,但对于高噪声或复杂纹理的图像效果可能不理想。
四、基于聚类的分割法基于聚类的分割法通过将图像像素聚类成不同的类别来实现图像分割。
常用的聚类算法有K均值聚类、高斯混合模型等。
聚类分割法适用于分割具有明显不同特征的目标,如自然景观图像中的不同物体。
综上所述,图像分割方法有多种多样,每种方法都有其适用的场景和局限性。
在实际应用中,我们需要根据图像的特点和任务需求选择合适的方法。
此外,还可以通过组合多个方法或使用深度学习等方法来提高图像分割的精度和鲁棒性。
随着计算机视觉技术的不断进步,图像分割将在更多领域发挥重要作用。
计算机图像处理中的特征提取与图像分割算法计算机图像处理是人工智能领域的一个重要分支,涉及到对图像进行分析、处理和理解的技术和方法。
在图像处理中,特征提取和图像分割算法是两个关键的步骤。
本文将介绍计算机图像处理中的特征提取和图像分割算法,并讨论它们的应用和局限性。
一、特征提取特征提取是指从原始图像中选择并提取出能够描述图像内容的关键信息。
计算机视觉领域中常用的特征包括边缘、角点、纹理、颜色等。
下面将介绍几种常见的特征提取算法。
1. 边缘检测算法边缘是图像中灰度或颜色变化显著的区域,常用于图像分割和对象检测。
边缘检测算法可以通过检测图像中灰度或颜色的变化来提取出边缘信息。
常用的边缘检测算法包括Sobel算子、Canny算子等。
2. 角点检测算法角点是图像中具有显著角度变化的点,常用于图像匹配和物体追踪。
角点检测算法可以通过检测图像中灰度或颜色的变化来提取出角点信息。
常用的角点检测算法包括Harris角点检测算法、FAST角点检测算法等。
3. 纹理分析算法纹理是图像中的重要特征,用于描述图像中的细节信息。
纹理分析算法可以通过提取图像中的统计特征、频域特征或结构特征等来描述图像的纹理信息。
常用的纹理分析算法包括灰度共生矩阵、小波变换等。
4. 颜色特征提取算法颜色是图像中的一种重要视觉特征,可以用于图像分割、物体识别等任务。
颜色特征提取算法可以通过提取图像中的色彩分布、颜色矩等来描述图像的颜色信息。
常用的颜色特征提取算法包括颜色直方图、颜色矩等。
二、图像分割图像分割是指将图像划分为若干个具有独立语意的区域的过程。
图像分割在计算机视觉和图像处理领域有着广泛的应用,如目标检测、图像增强和医学图像分析等。
1. 基于阈值的分割算法基于阈值的分割算法是一种简单而有效的图像分割方法。
该方法根据像素值的灰度或颜色与设定的阈值进行比较,将图像分割为前景和背景两部分。
常用的基于阈值的分割算法包括全局阈值法、自适应阈值法等。
图像处理中的分割技术与图像重建方法摘要:图像处理中的分割技术与图像重建方法是计算机视觉领域中的重要研究课题。
图像分割旨在将一个图像划分为不同的区域,而图像重建则通过分析和处理来恢复损坏或缺失的图像信息。
本文将介绍几种常见的图像分割技术以及图像重建方法,并对它们的原理、优缺点及应用进行详细讨论。
关键词:图像处理、分割技术、图像重建方法、计算机视觉一、图像分割技术图像分割是将图像划分为若干个不同区域或者物体的过程。
它在许多领域中都有着广泛的应用,如医学图像分析、目标检测和识别等。
下面介绍几种常见的图像分割技术:1. 基于边缘的分割方法基于边缘的分割方法是通过检测图像中的边缘或者边缘连续性来实现图像的分割。
常见的边缘检测算法包括Canny算法和Sobel算法。
这些算法通过计算图像中像素灰度值的变化来确定边缘位置,并通过连接边缘点来最终划分图像区域。
2. 基于阈值的分割方法基于阈值的分割方法是将图像中的像素根据其灰度值与设定的阈值进行比较,从而实现分割。
简单的阈值分割方法包括全局阈值分割和自适应阈值分割。
全局阈值分割是将整个图像使用一个固定的阈值进行分割,而自适应阈值分割则根据图像局部区域的特点而动态调整阈值。
3. 基于区域的分割方法基于区域的分割方法是通过将图像分为具有一定连续性和相似性的区域来实现分割。
常见的基于区域的分割算法有区域生长算法和分水岭算法。
区域生长算法是从种子点开始将与之相邻的像素区域逐渐加入,而分水岭算法则是通过将图像看作一个地形图来实现分割。
二、图像重建方法图像重建是通过分析和处理来恢复损坏或缺失的图像信息。
在实际应用中,经常会遇到图像损失或者噪声干扰的情况,因此图像重建技术具有重要的意义。
下面介绍几种常见的图像重建方法:1. 插值方法插值方法是通过对已有图像像素间的空间关系进行分析,从而推理出缺失像素的值。
常见的插值方法包括最近邻插值、双线性插值和三次样条插值。
这些方法可以根据不同的具体情况选择合适的插值方式来重建图像。
医学影像处理中的图像分割方法综述概述医学影像处理在现代医学中扮演着重要的角色,它为医生提供了获取、分析和解释医学影像的工具。
图像分割是医学影像处理中的一个核心任务,它的目标是将医学影像中的不同组织和结构分割出来,以便医生能够更准确地进行疾病诊断和治疗。
本文将综述几种在医学影像处理中常用的图像分割方法。
常用的图像分割方法1. 基于阈值的分割方法阈值分割是一种简单而常用的图像分割方法。
该方法根据像素值与预先设定的阈值进行比较,将像素分为不同的类别。
阈值可以手动设定,也可以通过自适应阈值和基于统计学方法的阈值选择来确定。
该方法适用于对比较明显的灰度不同的组织和结构进行分割。
2. 区域生长法区域生长法是一种基于灰度的分割方法,它从种子点出发,通过分析像素之间的相似性来生长一个区域。
这种方法可以根据像素之间的灰度、纹理、形状和空间位置等特征来确定相似性。
区域生长法适用于边界不明显、纹理复杂的医学影像分割。
3. 基于边缘的分割方法边缘是医学影像中不同组织和结构之间的边界,因此边缘检测是图像分割的关键步骤。
基于边缘的分割方法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子和拉普拉斯算子等。
这些算法可以识别出图像中的边缘,但在存在噪声的情况下容易导致边缘不连续或错过边缘。
4. 模型驱动的分割方法模型驱动的图像分割方法使用数学模型来描述图像中的组织和结构,通过对模型进行求解来实现分割。
常见的模型驱动方法包括基于统计学的方法、基于形态学的方法和基于图论的方法。
这些方法具有较好的分割准确性,但在计算复杂度和参数选择上具有一定挑战。
5. 基于机器学习的分割方法机器学习方法可以通过训练样本来学习医学影像中的组织和结构特征,从而实现图像分割。
例如,支持向量机(SVM)和随机森林(Random Forest)等分类器可以用于像素级别的分类分割。
深度学习方法,尤其是卷积神经网络(CNN),在医学影像分割中取得了显著的进展。
图像分割的基本方法图像分割是计算机视觉中的一个重要研究领域,其目的是将图像划分为若干个具有独立语义的区域。
图像分割的基本方法可以分为几种:基于阈值、基于边缘、基于区域和基于深度学习方法。
基于阈值的图像分割是最简单的一种方法,其思想是将图像中的像素根据灰度值与预先设定的阈值进行比较,大于或小于阈值的像素会被分配到不同的区域。
这种方法适用于目标区域与背景区域的灰度值有明显差异的情况,例如二值图像分割和基于灰度级的分割。
基于边缘的图像分割方法是通过检测图像中物体的边缘来实现分割。
基于边缘的分割方法通过对图像进行边缘检测,得到图像中物体的轮廓线,然后将轮廓线闭合,将图像分割为不同的区域。
经典的边缘检测算法有Canny算法和Sobel算法,这些算法能够检测出图像中的边缘,但是由于噪声和干扰的存在,往往会产生许多无关的边缘。
基于区域的图像分割方法是将相邻像素归为同一区域的方法。
这种方法首先将图像划分为若干个初始区域,然后通过迭代合并或分割这些区域,直到满足一定的停止准则。
基于区域的方法对噪声和局部干扰具有较强的鲁棒性,能够得到更连续、更具有区域特征的分割结果。
常用的基于区域的分割算法有区域增长法、分水岭算法和均值漂移算法。
基于深度学习的图像分割方法近年来得到了广泛的研究和应用。
深度学习通过建立深度神经网络模型,可以自动学习和提取图像的特征表示。
常用的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)和自编码器(Autoencoder)等。
通过训练这些模型,可以得到更准确、更精细的图像分割结果。
目前,深度学习在图像分割领域的应用已经取得了许多突破,例如语义分割、实例分割和全景分割等。
除了上述基本方法,图像分割领域还有一些其他的研究方法和技术,例如基于能量优化的分割方法、基于图割的分割方法和基于马尔科夫随机场(MRF)的分割方法等。
这些方法多是以数学建模和优化算法为基础,用于解决特定的图像分割问题。
基于边缘的分割边缘检测是图像分割的另⼀种重要⽅法,利⽤图像灰度级在边缘处的突变,找到⽬标物体的边缘,图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。
对于阶跃状边缘,其位置对应的,对应的过零点(零交叉点)。
因此常⽤进⾏边缘检测。
常⽤的⼀阶有Roberts算⼦、Prewitt算⼦和Sobel算⼦,⼆阶微分算⼦有Laplace算⼦和Kirsh算⼦等。
在实际中各种微分算⼦常⽤⼩区域模板来表⽰,微分运算是利⽤模板和图像来实现。
这些算⼦对噪声敏感,只适合于噪声较⼩不太复杂的图像。
边缘检测可分为滤波,增强,检测,定位四个步骤。
在实际的图像分割中,往往只⽤到⼀阶和⼆阶导数,虽然,原理上,可以⽤更⾼阶的导数,但是,因为噪声的影响,在纯粹⼆阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应⽤价值。
⼆阶导数还可以说明灰度突变的类型。
在有些情况下,如灰度变化均匀的图像,只利⽤⼀阶导数可能找不到边界,此时⼆阶导数就能提供很有⽤的信息。
⼆阶导数对噪声也⽐较敏感,解决的⽅法是先对图像进⾏平滑滤波,消除部分噪声,再进⾏边缘检测。
不过,利⽤⼆阶导数信息的是基于过零检测的,因此得到的边缘点数⽐较少,有利于后继的处理和识别⼯作。
微分边缘检测算⼦⼀阶微分算⼦1 Roberts算⼦Roberts算⼦是利⽤局部差分算⼦来寻求边缘的算⼦。
公式:因为从图像处理的实际效果来看,边缘定位较准,对噪声敏感。
适⽤于边缘明显且噪声较少的图像分割。
Roberts边缘检测算⼦是⼀种利⽤局部差分算⼦寻找边缘的算⼦,Robert算⼦图像处理后结果边缘不是很平滑。
经分析,由于Robert算⼦通常会在图像边缘附近的区域内产⽣较宽的响应,故采⽤上述算⼦检测的边缘图像常需做细化处理,边缘定位的精度不是很⾼。
2prewittPrewitt算⼦是⼀种⼀阶微分算⼦的边缘检测,利⽤像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作⽤。