西南交大《高等数学IB》离线作业-完整答案
- 格式:doc
- 大小:1.23 MB
- 文档页数:39
试卷1 一、一选择题1..A.正确B.不正确答案:B2.函数在点处可导.A.正确B.不正确答案:A3.函数在内连续.A.正确B.不正确答案:B4.函数的定义域为.A.正确B.不正确答案:A二、二选择题5.是有界函数.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:B8..A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.是微分方程的解.A.正确B.不正确答案:A三、三选择题11.极限().A.B.C.D.答案:B12.不定积分( ).A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:D14.定积分=().A.B.C.D.答案:A15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:C16.设函数,则().A.B.C.D.答案:A四、四选择题17.曲线在点处切线的方程为().A.B.C.D.答案:B18.定积分=().A.B.C.D.答案:D19.微分方程的通解是().A.B.C.D.答案:A20.不定积分().A.B.C.D.答案:C试卷2 一、一选择题1.函数在处可导.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处连续.A.正确B.不正确答案:A4.函数的定义域为.A.正确B.不正确答案:B二、二选择题5.是周期函数.A.正确B.不正确答案:A6..A.正确B.不正确答案:A7.设函数,则.A.正确B.不正确答案:B8.是微分方程的解.A.正确B.不正确答案:B9.设函数,则.A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:B三、三选择题11.极限().A.B.C.D.答案:A12.设函数,则().A.B.C.D.答案:B13.不定积分().A.B.C.D.答案:C14.定积分=().A.B.C.D.答案:C15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:B16.设函数,则().A.B.C.D.答案:D四、四选择题17.微分方程的通解是().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:A19.不定积分().A.B.C.D.答案:D20.定积分=().A.B.C.D.答案:B试卷3 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.函数在内连续.A.正确B.不正确答案:B3.定积分.A.正确B.不正确答案:A4.函数在点处可导.A.正确B.不正确答案:B二、二选择题5.不是一阶微分方程.A.正确B.不正确答案:B6.设函数, 则.A.正确B.不正确答案:B7.是奇函数.A.正确B.不正确答案:A8.设函数,则.A.正确B.不正确答案:A9..A.正确B.不正确答案:B10.是函数的一个原函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:B12.不定积分().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:A14.定积分=().A.B.C.D.答案:B15.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C16.极限().A.B.C.D.答案:D四、四选择题17.定积分=().A.B.C.D.答案:D18.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:A19.微分方程的通解是().A.B.C.D.答案:B20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷4 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处可导.A.正确B.不正确答案:B4.函数在点处连续.A.正确B.不正确答案:A二、二选择题5.设函数, 则.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.是偶函数.A.正确B.不正确答案:B8.不是一阶微分方程.A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:A三、三选择题11.不定积分().A.B.C.D.答案:C12.设函数,则().A.B.C.D.答案:A13.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:B14.定积分=().A.B.C.D.答案:D15.设函数,则().A.B.C.D.答案:A16.极限().A.B.C.D.答案:B四、四选择题17.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:B18.微分方程满足的特解是().A.B.C.D.答案:A19.定积分=().A.B.C.D.答案:D20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷5 一、一选择题1.函数在点处连续.A.正确B.不正确答案:A2.函数在处可导.A.正确B.不正确答案:A3.函数的定义域为.A.正确B.不正确答案:B4.定积分.A.正确B.不正确答案:B二、二选择题5.是可分离变量微分方程.A.正确B.不正确答案:A6..A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:A8.设函数, 则.A.正确B.不正确答案:B9.不定积分,其中为任意常数.A.正确B.不正确答案:B10.是奇函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:A12.定积分=().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:B14.极限().A.B.C.D.答案:B15.不定积分().A.B.C.D.答案:C16.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C四、四选择题17.定积分=().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:B19.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:C20.微分方程满足的特解是().A.B.C.D.答案:A。
奥鹏西安交通大学2020年秋季学期在线作业 11192553751.A.AB.BC.CD.D【参考答案】: A2.设全集E={0, 1,2,3,…,9, 10},A={2,4},B={4, 5, 6, 7},则(A∪B)∩~A=()A.{5,6,7}B.{2,5,6,7}C.{2,4,5}D.{6,7,8}【参考答案】: A3.如果命题公式G=P∧Q,则下列之一哪一个成立()。
A.AB.BC.CD.D【参考答案】: B4.如下哈斯图所对应的偏序集中,哪个不是格?()A.AB.BC.CD.D【参考答案】: C5.量词的约束范围称为量词的( )A.定义域B.个体域C.辖域D.值域【参考答案】: C6.A.AB.BC.CD.D【参考答案】: C7.A.自由变元B.约束变元C.既是自由变元,又是约束变元D.既不是自由变元,又不是约束变元【参考答案】: C8.设T是一棵树,有两个顶点度数为2,一个顶点度数为3,三个顶点度数为4,则T有()片树叶。
A.9B.8C.10D.7【参考答案】: A9.下列关系中哪一个能构成函数,其中N是自然数集,R是实数集。
()A.{x, y| x, yN, xy 10 }B.{x, y| x, yR, y= x2 }C.{x, y| x, yR, x= y2 }D.{x, y| x, yN, x=小于y的素数个数}【参考答案】: B10. .A.AB.BC.CD.D【参考答案】: D11.。
A.2B.8C.16D.24【参考答案】: C12.无向图G有6条边,各有一个3度和5度顶点,其余均为2度顶点,则G的阶数是()。
A.2B.3C.4D.5【参考答案】: C13.A.AB.BC.CD.D【参考答案】: C14.每个非平凡的无向树至少有()片树叶。
【参考答案】: B15.在任意n阶连通图中,其边数()。
A.至多n-1条B.至少n-1条C.至多n条D.至少n条【参考答案】: B16.A.恒真的B.恒假的C.可满足的D.前束范式【参考答案】: C17.在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。
西南交通大学高等数学考试一、选择题(每题4分,共16分)1.函数222222 0(,)0 0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0, 0)点 .(A) 连续,且偏导函数都存在(B) 不连续,但偏导函数都存在;(C) 不连续,且偏导函数都不存在; (D) 连续,且偏导函数都不存在。
2.设f 为可微函数,(,)z f x y z xyz =++,则z x ∂=∂ 。
(A )12121f yz f f x y f ''+''+- (B )12121f x y f f yz f ''--''+ (C )12121f yz f f x y f ''+''-- (D )1212f xzf f yzf ''+''+。
3.设),(y x f 在()22:24D x y +-≤上连续,则二重积分⎰⎰D y x f σd ),(表示成极坐标系下的二次积分的形式为 。
(A ). 220 0d (cos ,sin )d f r r r rπθθθ⎰⎰;(B ). 2d (cos ,sin )d f r r r rπθθθ⎰⎰;(C ). 4cos 00d (cos ,sin )d f r r r rπθθθθ⎰⎰;(D ). 4sin 0d (cos ,sin )d f r r r rπθθθθ⎰⎰4.幂级数0(1)nn n a x ∞=+∑在3x =处条件收敛,则幂级数0nnn a x∞=∑的收敛半径为 。
(A ).3; (B ).4;(C ).1; (D ).5。
二、填空题(每题4分,共20分)1.设函数y z x =,则函数yz x =的全微分 。
2.函数222u x y z =++在点)1,1,1(0P 处沿0OP 方向的方向导数为 ,其中O 为坐标原点。
西南交《高等数学IIB》离线作业一、单项选择题(只有一个选项正确,共10道小题)1. A(A) 1(B) 0(C) 2(D) 32. 在点(2,1,0)的法向量为()B(A) (1,1,0)(B) (1,2,0)(C) (0,1,2)(D) (1,1,1)3. B(A) 1(B) 2(C) 3(D) 44. 微分方程的通解是()A(A)(B)(C)(D)5. B(A) 1(B) 2(C) 3(D) 46. 微分方程的通解为(D )(A)(B)(C)(D)7. B(A) 1(B) -1(C) 0(D) -28. 微分方程的通解为(A )(A)(B)(C)(D)9. 微分方程的通解为(C )(A)(B)(C)(D)10. D(A) 1(B) 2(C) 3(D) 4四、主观题(共7道小题)11.求下列微分方程的通解:12.求下列一阶微分方程的通解:13.求下列二阶微分方程的通解:14.求下列各函数的定义域:15.求下列函数的偏导数:16.求下列函数的17.验证:一、单项选择题(只有一个选项正确,共6道小题)1. 设D是矩形区域,则D(A) 1/2(B) 2(C) 1/4(D) 42. 曲面在(2,1,2)点的法向量为(A )(A) (1,4,-1)(B) (1,0,0)(C) (1,4,1)(D) (-1,2,0)3. 设D是矩形区域,则C(A) 1/3(B) 2/3(C) 1/4(D) 3/44. 若,则C(A)(B)(C)(D)5. 若则D(A) 0(B) 1(C) 2(D) 36. 若则B(A)(B)(C)(D)四、主观题(共7道小题)7.设,则,求8.设,而,求9.求函数的极值.10.求函数的极值.11.计算下列二重积分(1),其中D是由两坐标轴及直线x+y=2所围成的闭区域;(2) ,其中D是矩形闭区域: ;(3),其中D是顶点分别为(0,0),(π,0),(π,π)的三角形闭区域.12.利用格林公式, 计算下列曲线积分:13.用比值审敛法判别下列级数的收敛性:一、单项选择题(只有一个选项正确,共4道小题)1. A(A) 3/2(B) 1/2(C) 1(D) 22. B(A) 1/4(B) 1/3(C) 1(D) -13. D(A)(B)(C)(D)4. C(A) x<2(B)(C) |x|<2(D) |x|>2四、主观题(共6道小题)5.利用极坐标计算下列各题:6.计算下列对弧长的曲线积分:7.计算下列对坐标的曲线积分: (3)8.利用格林公式, 计算下列曲线积分:9.判别下列级数的收敛性:10.判别下列级数是否收敛? 如果是收敛的, 是绝对收敛还是条件收敛?。
《高等数学(Ⅱ)》B 类练习题答案一、单项选择题1—5:CCCCC 6—10:BBCCA 11—15:AAABD二、填空题1、xy e yz x z z -=∂∂ ,xy e xz y z z -=∂∂ ;2、yzxy z y z z x z x z 2+=∂∂+=∂∂, ; 3、)()(,)()(xyz xysin 1xyz xzsin 1y z xyz xysin 1xyz yzsin 1x z -+=∂∂-+=∂∂ ; 4、dz x ylnx dy x zlnx dx yz.x du yz yz 1yz ⋅⋅+⋅⋅+=- ; 5、dy -dx dz -= ; 6、dy 12dx 41-2dz +-=),( 7、()⎰⎰313ydx y x f dy , ; 8、⎰⎰y-2y10dx y x f dy),( ;9、⎰⎰2x x1dy y x f dx ),( ; 10、)()(2yx 121e 1y +=+- ; 11、1x y 22+= ; 12、1y x 5y 325=-;三、判断题1--5:对 对 对 错 错 6—10:对 对 错 对 对 11—15:对 错 对 对 对四、计算题1、求下列函数的偏导数(1)、22232232()2 (2) (3)()2(2)(6)xy xy xy xy xy xy ze y x y e x xe yx y x ze x x y e y ye x xy y ∂=⋅⋅++⋅∂=++∂=⋅⋅++⋅∂=++分分(2)、(3)(6)x y x y x y x y x y x y z e e x e z e e y e ++++++∂=∂=∂=∂=分分(3)、222222222222222222212ln(12[ln()](3)2ln(2ln( (6)z x xx y x y y x y x x y y x y z x x y x y y y y x y x x x y x y y ∂=⋅+⋅∂+=++∂=-⋅+⋅∂+=-++)+)+分)+)分(4)22222212ln ()2ln(3)12ln(6)x y y z x x y x x y x yx x xy z y x y x y '=⋅+⋅-+=-'=⋅+⋅+()分+()分(5)22221[sin()]2 (3)1[sin()]22 (6)x y z x y z x y y'=-+='=-+⋅=分分(6)22221cos()22(3)1cos()2(6)xyz x y xz x y'=+⋅='=+=分分(7)2222221ln1(ln) (3)12ln1(2ln) (6) x y x yxx yx y x yyx yz e xy exe xyxz e xy eye xyy++++++'=⋅+⋅=+'=⋅⋅+⋅=+分分(8)22222222222222222ln()2[ln()] (3)2ln()2[ln()] (6) xy xyxxyxy xyyxyxz e y x y ex yxe y x yx yyz e x x y ex yye x x yx y'=⋅⋅++⋅+=+++'=⋅⋅++⋅+=+++分分(9)sin 2cos 22 22cos 2)(3)sin 2cos 22 22cos 2) (6x y z xy xy yxy y xy z xy xy xxy x xy '=+⋅=+'=+⋅⋅=+分)分(10)2222222222222222sin()cos()2 [sin()2cos()] (3)sin()cos()2 [sin()2cos()](xy xy x xy xy xy y xy z e y x y e x y x e y x y x x y z e x x y e x y y e x x y y x y '=⋅⋅++⋅+⋅=+++'=⋅⋅++⋅+⋅=+++分6)分2、求下列函数的全微分 (1)222222222222222 (2(3)2 (2(5)(2x y x y x y x y x y xy xy z e x e y x ez ey e x ye dz e +++++++∂=⋅∂=∂=⋅∂=∴=分分22(2(6)x y dx e dy ++分(2)2222222222242233()2 (2)(3)2()2 2()(5)xy xy xy xy x xy xy ze y x y e x xe x y y x z e xy x y e y ye x y xy y dz e ∂=⋅⋅++⋅∂=++∂=⋅⋅++⋅∂=++∴=分分2222433(2)2()(6)y xy x y y x dx e x y xy y dy +++++分(3)2221ln (1ln )(3)11 ln ()1 (ln 1)(5)1(1ln )(ln 1)z y x y x x y x xy xx y z x y y x y x yxx y y x xdz dx dy x y x y ∂=-⋅⋅∂=-∂=⋅⋅-∂=-∴=-+-+分+分(6)分(4)22211ln ()1 (ln 1)(3)1 ln (1ln )(5)1(ln 1)(1ln)z y x x y x y xyyx z x y xy y x y yx yy x y x ydz dx dy yx y x ∂=⋅⋅-∂=-∂=-⋅⋅∂=-∴=-+-+分+分(6)分(5)sin (3)sin 2(5)2)x y z z ydz dx ydy '=-='=-==+分分(6)分(6)2(3)(5)) (6) xyz xzdz xdx dy'=='===+分分分(7)1ln1) (3)1ln()1) (5)1)xyxzy xxy xxzy yxy yx xdz dxy x'=+⋅=+'=+⋅-=-=++分分1)(6)dyy y-分(8)221ln1(ln(3)()ln(5)1(x xy yxxyx xy yyxyx xy yz e eyeyxz e eyxeydz e dx ey'=⋅⋅='=⋅-⋅==+分分2ln(6xdyy-分(9)22221sin + cos ()(3)1(sin cos )1()sin + cos1(cos sin )(5)x xyy x x yx xyy y x yy y yz e e y x x x y y ye y x x xx y y z e e y x x x y x ye x x y xd '=⋅⋅⋅⋅-=-'=⋅-⋅⋅⋅=⋅-分分2211(sin cos )(cos sin )(6)x xyy y y y y x yz e dx e dy y x x x x x y x=-+⋅-分(10)3、计算下列二重积分 (1)解:D 的图形(略),{}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰--=--=xx D dy y x dx dxdy y x I 2)2(21)2(2110……2分⎰++-=1432)412147(x x x x 12011=……2分 (2)解: D 的图形为: (略){}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰==xx Dxydy dx xydxdy I 21……2分⎰-=153)(21dx x x ……1分241=……1分 (3) 解:D 的图形为: (略){}1,11),(≤≤≤≤-=y x x y x D ……2分⎰⎰-=Dd y x y I σ)(22⎰⎰-=-12211)(xdy y x y dx ……2分⎰---=1122)1(41dx x 154-=……2分(4)解:D 的图形为: (略)⎭⎬⎫⎩⎨⎧≤≤≤≤=y x y y y x D 1,21),(……2分 ⎰⎰Dd y x σ22⎰⎰=21122yydx y x dy ……2分 ⎰-=215)313(dy y y ……1分6427=……1分(5)解:⎰⎰⎰⎰-++==210222x y x D y x dy edxdxdy eI ……2分⎰-=22)(dx e e x ……2分2=……2分(6)解:⎭⎬⎫⎩⎨⎧≤≤≤≤=20,10),(πy x y x D ……2分 ⎰⎰⎰⎰=2212sin sin πσydy x dx yd xD……2分⎰=12dx x 31=……2分 (7) 解:⎭⎬⎫⎩⎨⎧-≤≤≤≤=x y x y x D 20,20),(ππ……2分⎰⎰⎰⎰-+=+xDdy y x dx d y x 22)sin()sin(ππσ……2分⎰=2cos πxdx ……1分1=……1分(8) 解:⎰⎰⎰⎰=11dx ye dy d ye xyDxyσ……2分 ⎰-=1)1(dy e y ……2分2-=e ……2分(9) 解:⎭⎬⎫⎩⎨⎧-≤≤≤≤=x y x y x D 20,20),(ππ……2分⎰⎰⎰⎰-+=+xDdy y x x dx d y x x 22)sin()sin(ππσ……1分⎰⎰=+-=-2220cos )cos(πππxdx x dx y x x x……1分12-=π……2分(10) 解:{}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰+=+xx Ddy y x xy dx y x xy 2)()(10……2分⎰⎰+--=+=146710322)652131()3121(2dx x x x dx xy y x x x ……1分 563=……1分4、求下列微分方程的通解(1)解:方程变形为23)(3)(1xy x y dxdy +=令x y u =,则ux y =,dxdux u dx dy +=,代入方程中得2331u u dx du x u +=+……2分 分离变量得x dxdu u u =-32213……1分两边积分得13ln ln )12ln(21C x u +=--……2分 微分方程的解为:Cx x y =-332……1分(2)解:方程变形为1)(2-=xy x y dx dy令x y u =,则ux y =,dxdux u dx dy +=,代入方程中得12-=+u u dx du x u ……2分分离变量得xdxdu u =-)11(……1分 两边积分得1ln ln C x u u +=-……2分 微分方程的解为:C xyy +=ln ……1分(3)解:方程变形为)ln 1(xy x y dx dy += 令x y u =,则ux y =,dx dux u dx dy +=,代入方程中得)ln 1(u u dxdu x u +=+……2分分离变量得xdxu u du =ln ……1分 两边积分得1ln )ln(ln C x u +=……2分 微分方程的解为:Cx e xy=……1分(4)解:方程变形为3)(1xx ydx dy +=令x y u =,则ux y =,dx dux u dx dy +=,代入方程中得31u u dx du x u +=+……2分分离变量得xdxu du u =+-43)1(……1分 两边积分得143ln ln 31C x u u+=-……2分 微分方程的解为:333yx Ce y =……1分(5)解:原方程变为:1sin 1222+-=++x x y x x dx dy ()122+=x x x p ,()1sin 2+-=x xx q()()⎰⎰+=+=1ln 1222x dx x xdx x p()()()x dx x dx e x x dx e x q x dxx p cos sin 1sin 1ln 22=-=+-=⎰⎰⎰⎰+所以 ()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dxx p dx x p =()()()c x x c x ex ++=++-cos 11cos 21ln 2 (c 为任意常数) (6)解:原方程变为:x x y x y 122+=-' ()x x p 2-= , ()xx x q 12+=()⎰⎰-=-=2ln 2x dx xdx x p ()()⎰⎰⎰-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰-23ln 2211112x x dx x dx e x x dx ex q x dxx p所以()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dx x p dx x p =2121232ln 2-+=⎪⎭⎫ ⎝⎛+-cx x c x x ex (c 为任意常数)(7)解:()xx p 1-= , ()x x q ln =()⎰⎰-=-=x dx x dx x p ln 1()()()()2ln ln ln 2ln x dx x x dx e x dx e x q x dx x p ===⎰⎰⎰⎰- 所以()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dx x p dx x p =()()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+c x x c x e x2ln 2ln 22ln (c 为任意常数) (8)解:原方程变为:x e x y xy 32=-' ()xx p 2-= , ()x e x x q 3=()⎰⎰-=-=2ln 2x dx x dx x p()()⎰⎰⎰-===⎰-x x x x x dxx p e xe dx xe dx e e x dx e x q 2ln 3所以 ()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dxx p dx x p =()()c e xe x c e xe e x x x x x +-=+-2ln 2(c 为任意常数)(9)解:两边积分,得⎰+-=='12ln 2ln 2c x x x xdx y两边再积分,得()dx c x x x y ⎰+-=12ln 2212223ln c x c x x x ++-= (1c ,2c 为任意常数)(10)解:两边积分,得()11cos sin sin 1cos c x x x x c x x xd dx x x y +++=++=+='⎰⎰两边再积分,得()21212sin 2cos cos sin c x c x x x x dx c x x x x y ++++-=+++=⎰(1c ,2c 为任意常数)五、应用题1、 求下列函数的极值 (1)解: 解:⎩⎨⎧=-+==++=012012y x f y x f yx解得驻点(-1,1). ……………4分 又,2,1,2======yy xy xx f C f B f A ……………7分0032>>=-A B AC 且,故0)1,1(=-f 是极小值. ……………10分(2) 解:⎪⎩⎪⎨⎧=-==+-=01230622''y f x f y x 解得驻点(3,2),(3, -2). ……………4分又 y f f f yy xy xx 6,0,2''''''==-= ……………6分关于驻点(3,2)有,,12,0,2==-=C B A,0242<-=-B AC 故函数在点(3,2)没有极值。
2009~2010学年第二学期《高等数学BII》半期试题参考答案西南交通大学2009-2010学年第(二)学期半期考试题一、单项选择题(共5个小题,每小题4分,共20分).1.累次积分cos 2(cos ,sin )d f r r rdr πθθθθ??可表示成【 D】(A )100(,)dy f x y dx ?(B )10(,)dy f x y dx(C )10(,)dx f x y dy ?(D )10(,)dx f xy dy ?解:根据该二重积分可知,积分区域为半圆域:01,0x y ≤≤≤≤,所以应选D 。
2. 两直线1112y z x λ+--==与11x y z +=-=相交,则必有【 D 】(A )1λ= (B )32λ=(C )54λ=- (D )54λ=解:直线11x y z +=-=的参数方程为:11x t y t z t =-??=+??=?,将此参数方程代入直线1112y z x λ+--==,得2122t t t λ+--==,解得654t λ=??=??,故应选(D )。
3.极限332200lim x y x y x xy y →→+-+=【 A 】(A) 0 (B) 1 (C)12(D)不存在极限解;因为33222222000000()()lim lim lim()0x x x y y y x y x y x xy y x y x xy y x xy y →→→→→→++-+==+=-+-+,故应选(A )。
4.曲面2xyz =的切平面与三个坐标面所围四面体的体积V =【 C 】 (A) 3 (B) 6 (C) 9 (D) 12解:设曲面2xyz =在第一卦限的任意一个切点为(,,)x y z ,则切平面方程为:班级学号姓名密封装订线密封装订线密封装订线()()()0yz X x xz Y y xy Z z -+-+-=,其中2xyz =,即36yzX xzY xyZ xyz ++==,则该切平面与三个坐标轴的交点分别为:6(,0,0)yz,6(0,,0)xz ,6(0,0,)xy ,则该切平面与三个坐标面所围四面体的体积221666363696()2V yz xz xy xyz ====,故应选(C )。
西安交通大学2019年春季《高等数学》在线作业及答案一、单选题(共 25 道试题,共 50 分。
)V 1. 已知y=xsin3x ,则dy=().A. (-cos3x+3sin3x)dxB. (3xcos3x+sin3x)dxC. (cos3x+3sin3x)dxD. (xcos3x+sin3x)dx正确答案:B 满分:2 分2. 函数y=3x^2-x^3在区间[1,3]上的最大值为()A. 4B. 0C. 1D. 3正确答案:A 满分:2 分3. 曲线y=x/(x+2)的渐进线为( )A. x=-2B. y=1C. x=0D. x=-2,y=1正确答案:D 满分:2 分4. M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=().A. 3B. 4C. 5D. 6正确答案:C 满分:2 分5. 两个向量a与b垂直的充要条件是().A. ab=0B. a*b=0C. a-b=0D. a+b=0正确答案:A 满分:2 分6. 若f(x)在x=x0处可导,则∣f(x)∣在处()A. 可导B. 不可导C. 连续但未必可导D. 不连续正确答案:C 满分:2 分7. 求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积.A. 1B. 8/3C. 3D. 2正确答案:B 满分:2 分8. 当x→0时,下列函数不是无穷小量的是()A. y=xB. y=0C. y=ln(x+1)D. y=e^x正确答案:D 满分:2 分9. 曲线y=2+lnx在点x=1处的切线方程是()A. y=x-1B. y=x+1C. y=xD. y=-x正确答案:B 满分:2 分10. 函数y=x^2*e^(-x)及图象在(1,2)内是( ).A. 单调减少且是凸的B. 单调增加且是凸的C. 单调减少且是凹的D. 单调增加且是凹的正确答案:B 满分:2 分11. 以下结论正确的是( ).A. 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B. 函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C. 若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D. 若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.正确答案:C 满分:2 分12. 设f(x)=2^x-1,则当x→0时,f(x)是x的()。
西南交通大学限修课数学实验题目及答案六313-+=x x f 实验课题六一元微积分第一大题函数运算1.用程序集m 文件中定义函数:键盘输入自变量x ,由下列函数求函数值:f 1 (12) f 1 (-32) function y=f1(x) if x>0y=4*x^3+5*sqrt(x)-7 else y=x^2+sin(x) end end2. 用函数m 文件定义函数f 2<+≥+=06)5sin(03232x x x x x e f x 求f 2(-6) f 2(11) function y=f2(x) if x<0y=sin(5*x)+6*x^3 else y=exp(2*x)+3*x end end3.已知求其反函数 syms xf3=(1+x)/(x-3); g=finverse(f3)%g =(3*x + 1)/(x - 1)≤+>-+=0)sin(0754123x x x x x x f4.已知:92847653423234-++=+-+=x x x g x x x f做函数运算:u1 = f 4+ g 4 ; u2 = f 4 – g 4 ; u3 = f 4 * g 4 ; u4 = f 4 / g 4u5=)(4)(4x g x f ,u6=()()x g f 44syms xf4=3*x^4+5*x^3-6*x^2+7 g4=8*x^3+2*x^2+x-9 u1=f4+g4 u2=f4-g4 u3=f4*g4 u4=f4/g4 u5=f4^g4u6=compose(f4,g4)%u1 =3*x^4 + 13*x^3 - 4*x^2 + x - 2 %u2 =3*x^4 - 3*x^3 - 8*x^2 - x + 16%u3 =(3*x^4 + 5*x^3 - 6*x^2 + 7)*(8*x^3 + 2*x^2 + x - 9) %u4 =(3*x^4 + 5*x^3 - 6*x^2 + 7)/(8*x^3 + 2*x^2 + x - 9) %u5 =(3*x^4 + 5*x^3 - 6*x^2 + 7)^(8*x^3 + 2*x^2 + x - 9)%u6 =5*(8*x^3 + 2*x^2 + x - 9)^3 - 6*(8*x^3 + 2*x^2 + x - 9)^2 + 3*(8*x^3 + 2*x^2 + x - 9)^4 + 75.已知32029660224452)(5432+-++-=x x x x x f (1)定义函数(2)给出排版形式的函数 (3)因式分解函数 (4)转换成嵌套形式(5)求解代数方程f 5( x )=0 syms xf5=-452*x^2+224*x^3+60*x^4-296*x+320 pretty(f5) factor(f5) horner(f5) solve(f5)% 4 3 2% 60 x + 224 x - 452 x - 296 x + 320 %ans =4*(3*x - 2)*(5*x - 8)*(x + 5)*(x + 1) %ans=x*(x*(x*(60*x + 224) - 452) - 296) + 320 %ans =-5 -1 2/3 8/56.求52)(62+-=x xe x g x在[-2,2]上的零点 g6='x*exp(x)-2*x^2+5'; x=fzero(g6,[-2,2])第二大题一元微积分1. 定义函数-+=-233112x x x y 计算:y y x ∞→=lim 1syms xy=x^2*(3^(1/x)+3^(-1/x)-2); y1=limit(y,x,inf) %y1 =log(3)^2 2. .求极限x x x y xx y x x /)sin 1(sin lim 22sin ln lim 21200-+==∞→+→syms xb1=x*log(sin(x));b2=sin(sqrt(x^2+1)-sin(x))/x; y21=limit(b1,x,0,'right') y22=limit(b2,x,inf) %y21 =0 %y22 =03. 对本大题第1小题定义的函数y 求导,dxdy y =3 y3=diff(y)%y3 =2*x*(3^(1/x) + 1/3^(1/x) - 2) + x^2*(log(3)/(3^(1/x)*x^2) - (3^(1/x)*log(3))/x^2) 4. 求 y 对x 的不定积分:?=dx x y y )(4 y4=int(y)5. 求y 在[3,5]上的定积分:?=53)(5dx x y yy5=int(y,3,5)6. 将函数f=sin(x)在x=0点展开成泰勒展式7项。
一、单项选择题(只有一个选项正确,共7道小题)1. A(A) x-y+1=0(B) x+y+1=02. B(A) 1(B) 1/23. A(A) 4(B) 24. A(A) 2(B) 15. B(A) 10(B) -106. A(A) -5/2(B) -3/27. B(A) 1(B) 3四、主观题(共2道小题)8.9.计算下列极限:一、单项选择题(只有一个选项正确,共8道小题)1. A(A) 4(B) 22. A(A) 1(B) 2(C) 3(D) 43. D(A)(B)(C)(D)4. 函数的单调增加区间是()C(A)(B)(C) [-1,1](D)5. B(A) 1(B) 2(C) 3(D) 46. B(A)(B)(C)(D)7. C(A)(B)(C)(D)8. D(A)(B)(C)(D)四、主观题(共6道小题)9.证明方程至少有一个根介于1和2之间.解证明: 设f(x)= , 显然是连续的, 又f(1)=1−3−1=−3<0 ,由零点定理知存在c∈(1, 2) , 使得即方程至少有一个根介于1和2之间.10.求下列函数的导数:解:(1) (2)(3)(4)(5)(6)11.求下列函数的导数:解:(1)(2) (3)(4)12.求下列函数的二阶导数:解:(1) (2)(3)13.证明方程只有一个正根.解证明: 设则f(0)=−1<0, f(1)=1>0 , 由零点定理知方程x在0和1之间有一个(正)根. 若方程有两个正根a,b,a>b>0,则由罗尔定理知存在使得但这显然是不可能的, 所以方程只有一个正根.14.用洛必达法则求下列极限:解:(1)(2) (3)(4)一、单项选择题(只有一个选项正确,共5道小题)1. A(A) 2/3(B) 3/2(C) 5(D) 62. <> C(A)(B)(C)(D)3. B(A) 0(B) 1(C) 2(D) 34. 函数的单调递减区间是()C(A) (-∞,1)(B) [0,+∞](C) (1,+∞)(D) [-1,+∞]5. B(A)(B)(C)(D)四、主观题(共10道小题)6.验证函数满足关系式:。
一、单项选择题(只有一个选项正确,共7道小题)
1. A
(A) x-y+1=0
(B) x+y+1=0
2. B
(A) 1
(B) 1/2
3. A
(A) 4
(B) 2
4. A
(A) 2
(B) 1
5. B
(A) 10
(B) -10
6. A
(A) -5/2
(B) -3/2
7. B
(A) 1
(B) 3
四、主观题(共2道小题)
8.
9.计算下列极限:
一、单项选择题(只有一个选项正确,共8道小题)
1. A
(A) 4
(B) 2
2. A
(A) 1
(B) 2
(C) 3
(D) 4
3. D
(A)
(B)
(C)
(D)
4. 函数的单调增加区间是()C
(A)
(B)
(C) [-1,1]
(D)
5. B
(A) 1
(B) 2
(C) 3
(D) 4
6. B
(A)
(B)
(C)
(D)
7. C
(A)
(B)
(C)
(D)
8. D
(A)
(B)
(C)
(D)
四、主观题(共6道小题)
9.证明方程至少有一个根介于1和2之间.
解
证明: 设f(x)= , 显然是连续的, 又f(1)=1−3−1=−3<0 ,
由零点定理知存在c∈(1, 2) , 使得即方程至少有一个根介于1和2之间.
10.求下列函数的导数:
解:(1) (2)(3)(4)(5)(6)
11.求下列函数的导数:
解:(1)(2) (3)
(4)
12.求下列函数的二阶导数:
解:(1) (2)(3)
13.证明方程只有一个正根.
解
证明: 设则f(0)=−1<0, f(1)=1>0 , 由零点定理知方程x在0和1之间有一个(正)根. 若方程有两个正根a,b,a>b>0,则由罗尔定理知存在
使得但这显然是不可能的, 所以方程只有一个正根.
14.用洛必达法则求下列极限:
解:(1)(2) (3)
(4)
一、单项选择题(只有一个选项正确,共5道小题)
1. A
(A) 2/3
(B) 3/2
(C) 5
(D) 6
2. <> C
(A)
(B)
(C)
(D)
3. B
(A) 0
(B) 1
(C) 2
(D) 3
4. 函数的单调递减区间是()C
(A) (-∞,1)
(B) [0,+∞]
(C) (1,+∞)
(D) [-1,+∞]
5. B
(A)
(B)
(C)
(D)
四、主观题(共10道小题)
6.验证函数满足关系式:。
解:
所以
7.确定下列函数的单调区间:
解:(1)
所以单增区间:
单减区间:
(2)
所以单增区间:
单减区间:
(3)
所以单增区间:
单减区间:
8.证明不等式:
证明: 设
则
所以<="" p="">
在
上单增, 从而当
时, 有<="" p="" ,="">
即.
9.求下列函数的极值:
解:(1)由
是极小值点,极小值为:2. (2)由
10.
11.
判定下列曲线的凹凸性:解:(1)由
所以函数
在定义域内是凸的。
(2)由
所以函数
在
上是凹的. 12.
求下列不定积分:解:(1)
(2)
(3)
(4)
(5)
(6)
(7)
13.
计算下列各定积分:解:(1)
(2)
(3)
(4)
14.
利用函数的奇偶性计算下列积分:解:(1) 因为
是奇函数, 所以
(2)
15.
求下列图形的面积:解:(1) 所求面积
(2)所求面积。