二元一次方程教学设计
- 格式:doc
- 大小:60.00 KB
- 文档页数:5
二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
二元一次方程组教学设计篇1:二元一次方程组教学设计教学目标1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
二元一次方程教案教学目标:1. 理解二元一次方程的定义和性质。
2. 掌握解二元一次方程的方法。
3. 能够应用二元一次方程解决生活中的实际问题。
教学重点:1. 解二元一次方程。
2. 运用解二元一次方程解决实际问题。
教学难点:运用解二元一次方程解决实际问题。
教学准备:1. 教师准备演示材料,包括黑板或白板、彩色粉笔或白板笔。
2. 学生准备纸和笔。
教学过程:Step 1:引入讨论教师可以通过提问的方式引导学生思考:什么是二元一次方程?有什么特点?我们能够应用它解决哪些问题?Step 2:解二元一次方程1. 观察和分析给定的二元一次方程。
2. 使用“消元法”或“代入法”解决方程,得到解集。
3. 检验解集是否满足原方程。
Step 3:应用解二元一次方程解决实际问题教师出示或讲解一些实际生活中涉及到二元一次方程的问题,如两个人的年龄、两个商品的价格等等。
学生可以运用所学的解二元一次方程的方法解决这些问题。
Step 4:巩固练习教师布置一些练习题,让学生独立或小组完成,并核对答案。
可以将解题过程和答案展示在黑板或白板上,便于学生理解和学习。
Step 5:总结与评价教师与学生一起总结解二元一次方程的要点和方法,并对学生的学习进行评价和反馈。
Step 6:拓展延伸教师可以提供更多的实际问题,让学生运用解二元一次方程的方法解决,进一步巩固和应用所学知识。
教学结束提示:为了让学生更好地理解和应用解二元一次方程的方法,教师可以设计一些实际例题,让学生进行解答和思考。
同时,鼓励学生多加练习,提高解问题的能力。
二元一次方程大班教案教学目标:1. 理解二元一次方程的概念和表示方法;2. 学会解二元一次方程;3. 能够应用解二元一次方程解决实际问题。
教学准备:1. 教师准备PPT或者黑板,用于呈现教学内容;2. 教师准备练习题,用于学生课堂练习。
教学过程:一、导入(5分钟)1. 教师通过提问的方式,复习一元一次方程的知识点,引导学生回忆并巩固已学内容;2. 教师介绍二元一次方程的概念,并与一元一次方程进行对比,激发学生的学习兴趣。
二、概念解释与示例(10分钟)1. 教师以具体的例子说明二元一次方程的表示方法,例如:2x + 3y = 8;2. 教师解释方程中的未知数、系数及常数项的意义;3. 教师给出几个实际问题,引导学生将问题转化为二元一次方程,并解释方程的含义。
三、解二元一次方程的方法(15分钟)1. 教师介绍两种解二元一次方程的方法:代入法和消元法;2. 教师以示例详细讲解代入法和消元法的步骤和注意事项;3. 教师鼓励学生多思考、多练习,熟练掌握解二元一次方程的方法。
四、课堂练习(15分钟)1. 教师出示多个二元一次方程的实际问题,让学生运用所学知识解题;2. 学生独立完成练习题,教师巡视并指导学生的解题思路;3. 教师选取几道典型题目,与学生一起讨论解题过程。
五、实际应用(10分钟)1. 教师以实际生活中的应用问题,如购买文具、购买食物等,引导学生运用所学知识解决问题;2. 学生积极参与,提出解题思路和答案,教师引导学生深入思考并给予认可。
六、拓展延伸(10分钟)1. 教师介绍更高级的二元一次方程,如含参数的二元一次方程等;2. 学生思考高级问题,并与同学一起合作解决;3. 教师提供实际生活中更复杂的二元一次方程问题,并鼓励学生尝试解决。
七、总结归纳(5分钟)1. 教师带领学生总结本节课学到的知识要点,并进行复习;2. 学生积极回答教师提问,巩固所学内容;3. 教师对学生的学习表现给予肯定和鼓励。
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
7.1二元一次方程及二元一次方程组的解一、教学目标1.了解二元一次方程、二元一次方程组和它的解的概念.2.会检验一对数值是不是某个二元一次方程组的解.3.使学生体会二元一次方程组是刻画现实生活中某些实际问题的有效手段.二、教学方法讨论法、练习法、尝试指导法.三、重点及难点重点:使学生体会二元一次方程组是刻画现实生活中某些实际问题的有效手段,会检验一对数值是否是某个二元一次方程组的解.难点:使学生体会二元一次方程组是刻画现实生活中某些实际问题的有效手段.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.七、教学步骤(-)明确目标本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.(二)整体感知由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.(三)教学过程1.创设情境、复习导入(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?回答老师提出的问题并自由举例.【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.(2)列一元一次方程求解.香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?学生活动:思考,设未知数,回答.设买了香蕉千克,那么苹果买了千克,根据题意,得解这个方程,得答:小华买了香蕉3千克,苹果6千克.上面的问题中,要求的是两个数,能不能同时设两个未知数呢?设买了香蕉千克,买了苹果千克,根据题意可得两个方程观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?观察、讨论、举手发言,总结两个方程的共同特点.方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.这节课,我们就开始学习与二元一次方程密切相关的知识—二元一次方程组.【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.2.探索新知,讲授新课(1)关于二元一次方程的教学.我们已经知道了什么是二元一次方程,下面完成练习.练习一判断下列方程是否为二元一次方程,并说明理由.①②③④⑤⑥练习二分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.学生活动:以抢答形式完成练习1,指定几组同学完成练习2.【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.练习三课本第6页练习1.提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数(或)每取一个值,另一个未知数(或)就有惟一的值与它相对应.练习四填表,使上下每对、的值满足方程.师生共同总结方法:已知,求,用含有的代数式表示,为;已知,求,用含有的代数式表示,为.【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解二元一次方程组奠定了基础.(2)关于二元一次方程组的教学.上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成这两个方程合在一起,就组成了一个二元一次方程组.方程组各方程中,同一字母必须代表同一数量,才能合在一起.练习五已知、都是未知数,判别下列方程组是否为二元一次方程组?①②③④【教法说明】练习五有助于学生理解二元一次方程组的概念,目的是避免学生对二元一次方程组形成错误的认识.对于前面的问题,列二元一次方程组要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即,,这里,既满足方程①,又满足方程②,我们说是二元一次方程组的解.学生活动:尝试总结二元一次方程组的解的概念,思考后自由发言.教师纠正、指导后板书:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.例题判断是不是二元一次方程组的解.学生活动:口答例题.此例题是本节课的重点,通过这个例题,使学生明确地认识到:二元一次方程组的解必须同时满足两个方程;同时,培养学生认真的计算习惯.3.尝试反馈,巩固知识练习:(1)课本第6页第2题目的:突出本节课的重点.(2)课本第7页第1题目的:培养学生计算的准确性.4.变式训练,培养能力练习:(1)P8 4.【教法说明】使学生更深刻地理解二元一次方程组的解的概念,并为解二元一次方程组打下基础.(2)P8 B组1.【教法说明】为列二元一次方程组找等量关系打下基础,培养了学生分析问题、解决问题的能力.(四)总结、扩展1.让学生自由发言,了解学生这节课有什么收获.2.教师明确提出要求:弄懂二元一次方程、二元一次方程组和它的解的含义,会检验一对数值是不是某个二元一次方程组的解.3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.八、布置作业(一)必做题:P7 3.(二)选做题:P8 B组2.(三)预习:课本第9~13页.参考答案略.教案点评:本教案的设计有以下特点:能根据教材编写思路,自制教具创造性使用新教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受.有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现的.教师根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者.。
初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。
用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。
本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。
以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。
结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。
初二数学二元一次方程教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初二数学二元一次方程教案教案标题:初二数学二元一次方程教学目标:1.理解二元一次方程的概念;2.掌握解二元一次方程的基本方法;3.能够应用二元一次方程解决实际问题。
初中二元一次方程数学教案范文模板优秀3篇【教学目标】读书破万卷下笔如有神,以下内容是本文范文为您带来的3篇《初中二元一次方程数学教案最新范文模板》,如果对您有一些参考与帮助,请分享给最好的朋友。
元一次方程教学设计篇一教学目标:1、会用加减消元法解二元一次方程组。
2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。
3、了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。
教学重点:加减消元法的理解与掌握教学难点:加减消元法的灵活运用教学方法:引导探索法,学生讨论交流教学过程:一、情境创设买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?设苹果汁、橙汁单价为x元,y元。
我们可以列出方程3x+2y=235x+2y=33问:如何解这个方程组?二、探索活动活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?2、这些方法与代入消元法有何异同?3、这个方程组有何特点?解法一:3x+2y=23①5x+2y=33②由①式得③把③式代入②式33解这个方程得:y=4把y=4代入③式则所以原方程组的解是x=5y=4解法二:3x+2y=23①5x+2y=33②由①—②式:3x+2y-(5x+2y)=23-333x-5x=-10解这个方程得:x=5把x=5代入①式,3×5+2y=23解这个方程得y=4所以原方程组的解是x=5y=4把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。
三、例题教学:例1.解方程组x+2y=1①3x-2y=5②解:①+②得,4x=6将代入①,得解这个方程得:所以原方程组的解是巩固练习(一):练一练1。
《二元一次方程组》(人教版课程标准实验教科书数学七年级下册)哈尔滨市依兰县宏克力镇第二中学左湘茹【摘要】本课的设计是“让学生成为课堂的真正主体”,学生在原有知识的基础上用类比的方法探索新知、运用新知,体验成功的喜悦。
【关键词】二元一次方程(组)二元一次方程(组)的解1、教材的地位及作用《二元一次方程组》是人教版《数学》七年级(下)第八章第一节的内容。
它是在学生已解决了小学数学与中学数学的衔接问题,并已掌握了有理数、整式的加减、一元一次方程的基础知识后予以展开的,二元一次方程组是学习线性方程组和三元一次方程组的基础,在进一步学习一次函数的部分内容时,也要经常遇到二元一次方程组和它的求解问题;因此,二元一次方程组在初中数学中起着承上启下的作用。
2、教学目标1、知识技能:(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义。
(2)理解二元一次方程(组)解的特殊性。
2、数学思考:能用类比思想迁移知识,通过自主对知识进行归纳总结,培养其动手动脑能力。
3、解决问题:(1)会验证一对数是否为某个二元一次方程(组)的解。
(2)给出一对值,能说出相应的二元一次方程(组)。
4、情感态度价值观:在探讨解决问题的过程中,敢于发表自已的见解,理解他人的看法并与他人交流。
3、重点、难点:教学重点:二元一次方程(组)的定义及其解的意义。
教学难点:二元一次方程组解的概念的理解。
【分情分析】学生们已经掌握整式的加减、一元一次方程、一元一次方程的解等知识,而七年级的学生还具备孩子的心理,对新事物充满好奇,喜欢探索,所以我采用故事激趣的方法,引出课题,鼓励学生用类比的方法获得新知。
【教学策略】本课先采用故事激趣法,并使用类比法与启发式教学相结合,通过类比方法实现知识的迁移,旁征博引,举一反三,充分发挥学生的主体地位,培养其发散思维能力;在教学中运用多媒体辅助教学,循循善诱,直观生动,突出了教学得重点和难点,并增大了教学容量。
【教学过程】(一)、创设情境,引入新课幻灯片11、周未的阳光暖暖的照着大地,喜洋洋和美洋洋决定去郊游,他们一共带了8个鲜草果冻,你知道他们每个人带了多少个鲜草果冻吗?注意:这个问题中有几个未知量?你能设两个未知数来解决吗?(1)如果设美洋洋有x 个果冻,喜洋洋有y 个果冻,用方程如何表示?(x+y=8) (2)这是我们所学过的方程吗?同学们回忆一下我们所学过的一元一次方程。
[设计意图:选取生活中的数据,让学生体验到数学知识无处不在。
] (二)、温故知新,探究新课 (1)、二元一次方程的概念 幻灯片2——31、下列哪些方程是一元一次方程?3x=5 x+y=23 2a+b=cx2=x+3 xy+6=34 2、什么叫一元一次方程?它有什么样的特点呢?(含有一个未知数,未知数的项的次数是一次;分母中不含未知数。
)3、同学们还能举出哪些一元一次方程的例子呢。
[设计意图:对旧知识的复习提问,加深对“元”和“次”的理解,对二元一次方程结论的推出水到渠成。
]4、类比一元一次方程,你认为方程x+y=8应叫做什么方程呢?(板书课题二元一次方程,并在“元”和“次”的下面标上重点号。
)5、类比一元一次方程你能说出二元一次方程的概念吗。
(找出关健词,教师板书。
) 幻灯片4——51、练一练:下列方程属于二元一次方程的有?①2m+3=6 ②x+2y=z ③7u+5v=3 ④ab+3b=4 ⑤xy=12 ⑥x+y 21=7 2、你还能举出二元一次方程的例子吗?(同桌互动)[设计意图:对新知识及时巩固,加深对概念的理解,让所有学生都参与到活动中来。
] 3、已知3x2m+5-4y 2n-1=7是二元一次方程,则m= ,n= 。
4、若3mxy+2x+4y=8是关于x 、y 的二元一次方程,则m=。
[设计意图:加深学生对元和次的理解。
] 幻灯片6——9 (2)、二元一次方程解的概念1、在得到的方程x+ y = 8中 ,符合实际意义的 x , y 的值有哪些? 把它们填入表格中。
未知数的值有许多对,考虑实际意义,此题有9对。
]2、类比一元一次方程解的概念,你能说出什么是二元一次方程的解吗? 3、如果不考虑题中的实际意义,猜想一下,二元一次方程有多少组解呢? 4、小结二元一次方程解的特点。
(二元一次方程的解是一对数值,并且二元一次方程有无数对解。
)5、对于一个一元一次方程如何检验它的解是否正确。
5、用类比的方法检验下列各组数是不是方程2x=4y+20的解?X=20 x=50Y=3 y=20练一练:1、下列4组数值中哪些是二元一次方程2x+y=2的解()。
A. X=1B. x=0C. x=-1 x=1Y=0 y=2 y=4 y=22、已知二元一次方程3x-2y=8中,x=4,则方程3x-2y=8的解是。
3、请写出一个以x=1 ,Y=2为一组解的二元一次方程。
[设计意图:使学生理解二元一次方程的解有无数个,而每一对解都是用大括号连接的一对数值,并为方程组的公共解做铺垫。
](3)、二元一次方程组的概念幻灯片10——121、美洋洋高兴的说,今天正好赶上商品促销,我再去买7个鲜草果冻,这样我的果冻正好是你的二倍。
这回你们知道他们各自有多少个果冻吗?依题意可列:x+7=2y.2、两个方程中x都表示什么?y都表示什么?象这样同一个未知数表示相同的量,我们就应该用大括号把他们连起来组成一个方程组。
x+y=8x+7=2y (教师完善板书课题:二元一次方程组)3(教师板书关健词)需要注意的是,二元一次方程组中的方程不一定都必须是二元一次方程,只要满足方程组中一共有两个未知数,并且每个未知项的次数都是1,这样的方程组就叫二元一次方程组。
形如X+y=5 x=4X=2 y=12:.]4、下列方程组是二元一次方程组的有?(A)x+y=1 (B) xy=1 (C) x+y=3 (D) x+y=5 (E) 2x+y=5x-2y= -1 x+y=2 z+3=1 y2-1=0 2-x=2学生做出判断,并要给出理由。
(4)、二元一次方程组解的概念。
幻灯片12——16x=3Y=5。
并且再次强调方程组的解是一对数值,必须用大括号括起来。
[设计意图:引导学生注意方程组的解是其中每个方程的公共解,即这对数值必须满足方程组中的每一个方程。
]4、类比一元一次方程的解,给出方程组的解的概念。
(教师板书要点)5、小结:二元一次方程有无数组解,二元一次方程组有唯一一组解。
6、练一练:下列各组数中,哪些是方程x-3y=2的解,哪些是方程2x-y=9的解。
A.x= -1 B x=5 C x=3 D. x=2y= -1 y=1 y=2 y= -5方程x-3y=2的解是上面的哪一项?2x-y=9[设计意图:充分理解二元一次方程组解的唯一性](三)应用新知,解决问题幻灯片17——181、篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?①用一元一次方程如何列式?②用二元一次方程呢?胜的场数+负的场数=总场数胜场积分+负场积分=总积分思考:设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?如果用一元一次方程如何表示呢?从中你能体会出列二元一次方程组解决问题的优越性吗?由学生探究合作完成。
[设计意图:培养学生分析等量关系并列方程组的能力;体验用方程组解应用题在列法上的优越性。
](四)反馈调节,检验新知幻灯片九(小测试)19——211、下列各式是二元一次方程的是()。
○13x+2y ○22x+35=0 ○33x-4y=z○4x+xy=1 ○5x2+3x=5y ○67x-y=02、下列方程组是二元一次方程组的是()。
(1) x+3y=4 (2) xy=6 (3) x-y=4 (4) x2-3y=122x-5y=7 2x+y=3 x+y=103、以下4组x、y的值,哪组是方程组3x+4y=5 的解?-7x+9y=-2.5(1) x=2 (2) x=-0.55 (3) x=1 (4) x=-1Y=-0.25 y=4 y=0.5 y=-0.54、若3x m+1+5y2-n =3是一个二元一次方程,则m=_______,n=________.5、给你一对数值x=1Y=3②、你能写出一个二元一次方程组,使这对数值是满足这个方程组的解吗?[设计意图:逆向思维再一次加深对本节四个知识点的理解和掌握。
][设计意图:小测试的安排是检验学生对本节知识的掌握情况,是对知识的一个梳理和巩固。
](五)课堂总结,布置作业1、结合上面的练习,谈谈你的收获。
2、必做题:95页2题。
选做题:我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”?你能用二元一次方程组表示题中的数量关系吗?试找出问题的解。
[设计意图:充分调动学生积极性,发展学生思维,使不同的学生在数学上得到不同的发展,并感受到祖国文化的源远流长。
]板书设计:8.1二元一次方程组1、二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解:使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解。
3、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
强调象也是二元一次方程组。
4、二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。