点火波形分析
- 格式:doc
- 大小:606.50 KB
- 文档页数:4
汽车点火系统波形分析现代汽车使用了大量的电子操纵系统,以往常规的检测方式已无法习惯现代汽车的要求。
特别是在直接点火系统的检查中,常规的断缸测试已经无法精确推断系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。
由于点火次级波形受到各类不一致的发动机、燃油系统与点火条件的影响,因此示波器能够有效地检测出发动机机械部件与燃油系统部件与点火系统部件的故障。
而且一个波形的不一致部分还能够分别指明在汽缸中的哪个部件或者哪个系统有故障。
点火次级单缸波形测试要紧用途有:1.分析单缸的点火闭合角(点火线圈充电时间分析);2.分析点火线圈与次级高压电路性能(燃烧线或者点火击穿电压分析);3.检查单缸混合气空燃比是否正常(燃烧线分析);4.分析电容性能(白金或者点火系统分析);5.查出造成汽缸断火的原因(燃烧线分析,如污染或者破裂的火花塞)。
分电器点火次级标准波形如图1所示。
通过观察该波形,能够得到击穿电压、燃烧电压、燃烧时间与点火闭合角等信息。
由于点火次级波形受到发动机、燃油系统与点火条件的影响,因此它对检测发动机机械部分与燃油系统部件及点火系统有关部件的故障非常有用。
同时每个点火波形的不一致部分还能分别说明其相应汽缸点火系统的相应部件与系统的故障。
对应于每一部分,能够通过参照波形图的指示点及观看波形特定段相应的变化来判定。
一、分电器点火次级波形分析1.充磁开始:点火线圈在开始充电时,应保持相对一致的波形下降沿,这说明各缸闭合角相同而且点火正时准确。
2.点火线:观察击穿电压高度的一致性,假如击穿电压太高(甚至超过了示波器的显示屏),说明在点火次级电压电路中电阻值过高(如断路或者损坏的火花塞、高压线或者是火花塞间隙过大);假如击穿电压太低,说明点火次级电路电阻低于正常值(污浊与破裂的火花塞或者漏电的高压线等)。
3.跳火或者燃烧电压;跳火或者燃烧电压的相应一致性,它说明火花塞工作各缸空燃比正常与否。
点火系统波形分析1.点火次级波形你如同大多数技术人员一样,或许已熟悉了一种类型的示波器,例如在车间使用发动机分析仪里的示波器,正如现在已经知道的发动机分析仪中的示波器是专用的,它被设计成用来测量一个特殊系统--点火系统。
在大多数情况下,发动机分析仪不能提供足够的功能用以诊断当今轿车的所有电气系统。
因为汽车示波器具备测试当今轿车所有必要的功能--包括点火系统,所以这是它胜过发动机分析仪的地方。
用专门设计的点火探头,能够容易地使用汽车示波器去完成通常要用大型昂贵的发动机分析仪才能做到的许多相同的试验和程序,测试例如初级和次级点火阵列波形,单独气缸的初级波形,急加速高压值--至点火系统的输出等等,这些都是汽车示波器容易完成的测试,并且,由于汽车示波器完全是便提式的,所以可以用汽车示波器来进行路试检查在行驶条件下很有可能发生的点火故障,所以在任何有公路的地方,汽车示波器就像一个公路上的“诊所”。
在这一部分中,将看到为测试典型点火系统而设置在汽车示波器中的测试程序一部分,还将学会用它独特的性能去诊断当今汽车的点火系统故障。
①分电器点火次级阵列波形,参见图7。
用点火次级阵列波形显示测试作为有效的行驶能力检查,已有三十年的历史了。
点火的次级阵列波形主要被用来检查短路或开路的火花塞高压线,或引起点火不良的污损火花塞。
这个试验可以为提供一个关于各个气缸燃烧质量情况有价值的资料。
由于点火二次波形明显地受到各种不同的发动机、燃油系统和点火条件的影响,所以它能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件,故障波形的不同部分能够指明在任何气缸中的某一部件或系统的故障。
试验方法:起动发动机或驾驶汽车使行驶性能故障或点火不良等情况出现,调整触发电平直到波形稳定和发动机转速可以清楚的在显示屏上显示出来。
波形结果:确认幅值、频率、形状和脉冲宽度等判定性尺度,在各缸上都是一致的,各缸的点火峰值电压高度应该相对一致、基本相等,任何峰值高度相互之间的差到都表明有故障,一个相比高出很多的峰值,指示在该气缸点火二次系统中存在着高的电阻,这可能意味着点火高压开路或电阻太大,一个相比低出很多的峰值指示出点火高压线短路或火花塞间隙过小,火花塞污损或破裂。
点火系统检测与波形分析2.3.4.1 点火系检测在汽油机各系统中点火系对发动机性能影响最大,统计数值表明有将近一半的故障是因为电器系统工作不良而引起的,因此发动机性能检测往往从点火系统开始。
首先,使用先进电子技术的当属点火系统。
形式结构和工作原理更新最快的非点火系统莫属。
现用点火系统大体分为以下四类;它们在检测时的接线有所不同,必须区别对待:(1)由电磁、红外或霍尔元器件构成的非接触式断电器组成的点火系统称为无触点点火器,其放大电路又分为晶体管电路和电容放电电路两种。
(2)ECU(Electronic Control Unit)控制的点火系,ECD中的微处理器根据曲轴转角传感器的信号确定点火时刻,因而它没有断电器,只有分电器,根据ECD送来的信号直接控制点火线圈初级电路的通断。
(3)无分电器点火系统(Distributor-Less Ignite)是当前最先进的点火系统,曲轴传感器送来的不仅有点火时刻信号,而且还有气缸识别信号,从而使点火系统能向指定的气缸在指定的时刻送去点火信号,这就要求每缸配有独立的点火线圈,但如果是六缸机则1,6缸、2,5缸和3,4缸分别共用一个点火线圈,即共有三个点火线圈,显然每一个点火线圈点火时,总有一个缸是空点火,检测时应注意到这一点。
无触点点火系统能使用低阻抗电感线圈,从而大幅度提高初级电流,使次级电压高达30kv以上,增强点火能量以提高点燃稀混合气的能力,在改善燃油经济性的同时也降低排气污染。
无分电器点火系统完全是电子器件无机械运动部件,彻底解决了凸轮和轴承磨损以及点接触烧蚀间隙失调而引起的一系列故障。
图2-29 机械点火系和晶体管点火系信号提取接头的连接方法检测点火系首先将信号提取系统连接到发动机线路上,图2-29是机械点火系和晶体管点火系信号提取接头的连接方法,图2-30是电容放电式点火系统的信号提取接头连接方法。
图2-30 电容放电式点火系统的信号提取接头连接方法无分电器点火系统是将高压通过独立式点火线圈连接送向火花塞,当高压感应夹难以找到可夹持的位置时,可用一种专用感应夹具夹持于独立式点火线圈上以感应出高压信号,如图2-31所示。
D I A G N O S I S&INSPECTION最初的内燃机结构很简单,但为了增加动力和提高效率,人们已对其进行了许多次的改进,结构也就越来越复杂了。
当今的内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。
在此,我们要探究的是汽油机。
要懂得在汽油机中能量是怎样释放出来的,这一点很重要。
对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。
当混合气被压缩时,其分子被迫进入一个很小的空间。
这就使得分子之间相互碰撞,从而产生了摩擦力和热。
燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。
为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。
燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。
这种被释放的能量就为内燃机提供了动力。
● 文/Bernie C. Thompson 译/朱之亚 王鸣鸿对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。
传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。
要将两个扭打在一起的人分开是件很不容易的事。
要把他们拉开,你所用的力要大于他们扭在一起的力。
采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kV。
电击枪的势能大于两个扭打在一起的人所用的能量,因此,那两人就会松手而分开。
尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。
点火系统所产生的高能电火花可以提供这个力。
点燃混合气需要高能量的电火花,为此人们采用了多种不同的点火系统。
升压变压器是当今较常用的一种点火系统。
这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。
它是由两个不同的线圈组成的。
第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。
为了增加磁场,初级线圈绕在一个铁芯上。
在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。
点火波形是用于控制火花塞跳火的关键电力波形。
根据发动机的工作状况,点火波形会在特定的时间间隔内发生连续的变化。
这种波形是由多种类型组成,主要分为脉冲式点火波形、准脉冲式点火波形、可变周期的脉冲式点火波形和正弦式点火波形四种类型。
首先是脉冲式点火波形,这种波形在发动机的每个工作周期内都会产生一系列高电压的脉冲,使火花塞在脉冲结束时跳火。
这种点火方式常见于传统点火线圈的工作方式,具有高电压和电流幅值的特点,适合于低转速的发动机。
准脉冲式点火波形与脉冲式相似,但在每个工作周期内会插入一个较小的非脉冲电压,使火花塞在非脉冲期间不跳火。
这种点火方式有助于降低发动机的噪音,对于追求噪音较低的车辆来说是一种不错的选择。
可变周期的脉冲式点火波形是一种更为先进的点火方式,其周期会随着发动机转速的变化而变化。
这种点火波形可以更好地利用火花能量,提高燃烧效率,同时降低油耗和排放。
这种点火方式常见于一些高端车型上,如电动汽车等。
最后是正弦式点火波形,这是目前最为常见的点火方式。
其周期与发动机转速呈正弦曲线关系,能够更加均匀地分布火花能量,使燃烧更加充分,同时降低了发动机的噪音和振动。
这种点火方式适用于各种类型的发动机,具有较高的稳定性和可靠性。
总之,点火波形是控制火花塞跳火的关键电力波形,根据发动机的工作状况和需求,会选择不同类型的点火波形。
脉冲式、准脉冲式、可变周期的脉冲式以及正弦式是常见的四种类型,每种类型都有其独特的优点和适用范围。
在实际应用中,需要根据车辆类型、发动机类型以及工作需求来选择合适的点火波形,以达到最佳的燃烧效率和性能表现。
点火波形分析及故障波形分析
一、概述
上节课我们学习了示波器的使用,那同学们谁能说一下示波器在汽车上是干什么用的呢?
示波器就是专门用来检测点火波形的,我们上节讲的是普通的数字示波器,可以完成汽车点火波形的检测,但是操作相对比较复杂,效果不太明显,目前汽车上有专门的示波器来检测点火波形
用专门设计的点火探头,能够容易地使汽车示波器去完成通常要用大型昂贵的发动机分析仪才能做到的许多相同的试验和程序,测试例如初级和次级点火阵列波形,单独气缸的初级波形,急加速高压值--至点火系统的输出等等,这些都是示波器容易完成的测试,并且,由于示波器完全是便提式的,所以可以用示波器来进行路试检查,在行驶条件下很有可能发生的点火故障,所以在任何有公路的地方,汽车示波器就像一个公路上的“诊所”
二、点火系统的组成
电子点火系统组成 1 电源(蓄电池、发电机)
2 点火开关
3 点火线圈
4 点火控制器
5 分电器(加点火信号发生器)
6 火花塞
三、点火波形分析
初级波形
1、开路(A-B)此时电路没有闭合,初级线圈没有流过电流,只有开路电压
2、点火线圈充电(B-C)驱动电路闭合,电压会突然下降,初级线圈对地构成回
路,电压降到接近于零电位
3、保持电压(C-D)固有的电压降取决于电路控制电流部分,三极管0.7-1V
场效应管是0.1-0.3V
4、(E-F)线圈充电饱和后流进初级线圈的电流收到限制,但磁场仍处于最大状态,此时电流受到限制,电压仍然低于开路电压,这个电压克服三极管基极电阻,
使电流流动,电流流过初级线圈的绕组,就会产生磁场,电流越大,磁感应越强。
5、开始点火(燃烧电压)(F-G)f点为点火电压,观察G的高度一致性,一个太高的跳火电压(它甚至超过了示波器的显示屏)表明在点火次级电路中存在着高电阻(例如开路或损坏的火花塞、高压线或是火花塞过大时间隙),一个太短的跳火电压线,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞和漏电的火花塞高压线等)
1、闭合段(f - a′):当传统点火系的触点闭合或电子点火系的晶体管导通时,点火线圈初级绕组开始通电。
2、点火线(a - b):点火线的高度代表火花塞击穿电压(点火电压),一般在7~11KV 之间。
电子点火的汽车一般在8~16KV之间
3、火花线(c - d):火花击穿后,维持火花放电所需电压;
4、低频振荡段(d - f):火花消失后,点火线圈中仍有一些残余能量继续释放,它使线圈和电路中的分布电容形成低频衰减振荡,直至能量耗尽。
四、故障波形举例
1、击穿电压和火花线太低
原因:火花塞间隙太小或积炭较严重
2、完全没有高压击穿和火花线波形
原因:次级高压线接触不良或断路,火花塞间隙过大
3、整个次级电压波形上下颠倒
原因:点火线圈初级两端接反或电源极性接反
4、重叠波
原因:在标准重叠波中,闭合段应占全部
若闭合段太短,一般是触点间隙过大造成的。
它将导致点火储能不足。
反之,
若闭合段过长、则在发动机低速时点火线圈可能会发热
5、并列波
原因:图上3缸击穿电压太低,是因为火花塞间隙太小或有漏电得可能。