讲稿2(牛顿差分表及例题)
- 格式:doc
- 大小:111.50 KB
- 文档页数:7
牛顿法代数插值ndash 差商表的求法原文地址:牛顿法代数插值–差商表的求法作者:大关牛顿法代数插值–差商表的求法下面的求插商的方法并不是好的求插商的方式,因为他的效率并不是很高,不论是从空间效率还是时间效率,但是下面主要探讨的是一种将塔形的数据转换成一位数组的方式。
实际上求插商仅通过一个n个元素的一位数组就能解决,但本文强调的是一种思路,希望对大家有所借鉴。
牛顿插商公式:f[xi,xj]=(f(xj)– f(xi))/(xj– xi)f[xi,xj,xk]=(f[xj,xk]– f[xi,xj])/(xk– xi)….f[x0,x1,x2…,xn]=(f[x1,x2,…,xn]– f[x0,x1,…,xn-1])/(xn– x0)转换成均插表(或称差商表)形式如下:定义1:f[xi,xi+1,…xj]简记为f(i,j)其中i=0&&i=n&&j=0&&j=n&&i j;记f(xi)为f[xi,xi]即f(i,i)根据定义1可以推出:f[x0,x1]=f(0,1),f[x0,x1…xn]=f(0,n)….根据定义1:可以将插商表转换为如下形式。
根据上图,可以给出实际一维数组存储时的序列关系,如下图所示:此时f(0,0)位置是数组下标0,f(1,1)是数组下标为1….这样,我们从中找出相应的规律。
推论1:已知f(i,j),n为变量的数目,令k=j– i。
当k不等于0时,f(i,j)在数组中的下标通过计算得:Index=k*n–((k-1)*k)/2+i当k等于0时Index=i。
推论1很容易证明(实际就是一个等差数列求和问题)这里证明略。
推论2:n为变量的数目,则一维数组的长度可以计算得((1+n)*n)/2推论2可以通过等差数列求和得以证明。
证明略。
推论3:各阶插商就是f(0,k)k=1,2….n.推论3:根据插商的定义和定义1可以直接推出。
牛顿插值法例题求解【原创版】目录1.牛顿插值法简介2.牛顿插值法的基本原理3.牛顿插值法的例题解析4.牛顿插值法的优缺点5.总结正文一、牛顿插值法简介牛顿插值法是一种常用的数学插值方法,主要用于根据已知的函数值预测未知函数值。
牛顿插值法的基本原理是通过求解各阶差分来逼近未知函数值。
这种方法在增加插值节点时具有较好的计算稳定性,因此在实际应用中具有较高的价值。
二、牛顿插值法的基本原理牛顿插值法的基本思想是利用差商的概念,将函数在某区间中若干点的函数值用适当的特定函数表示。
通过求解各阶差分,可以得到这个特定函数的系数,从而得到插值多项式。
在给定的插值节点上,这个插值多项式可以取到已知的函数值,而在其他点上,则可以用这个多项式作为函数的近似值。
具体来说,牛顿插值法的求解过程分为以下几个步骤:1.设定插值多项式的形式,例如拉格朗日插值多项式、牛顿插值多项式等。
2.根据已知的函数值和插值节点,求解插值多项式的系数。
3.将求解得到的系数代入插值多项式,得到插值函数。
4.在给定的插值节点上,求解插值函数的值,作为预测的未知函数值。
三、牛顿插值法的例题解析假设我们有三个样本点:(1,-2),(2,-1),(3,2),我们希望通过这三个点求解一个二次函数。
我们可以用牛顿插值法来解决这个问题。
首先,我们设定插值多项式的形式为 y = ax^2 + bx + c。
然后,将三个样本点带入该方程,得到以下三个方程:- -2 = a(1)^2 + b(1) + c- -1 = a(2)^2 + b(2) + c- 2 = a(3)^2 + b(3) + c解这个方程组,我们可以得到 a = 1/2,b = 5/2,c = -3/2。
因此,我们得到插值函数为 y = 1/2x^2 + 5/2x - 3/2。
将x=1, 2, 3 代入该函数,我们可以得到 y=-2, -1, 2,与给定的样本点相符,说明我们的插值结果是正确的。
牛顿插值法例题求解牛顿插值法是一种用于多项式插值的方法。
它利用给定数据点的函数值和差商的计算来构造一个多项式函数,从而在给定数据点之间进行插值。
以下是一个求解多项式插值的牛顿插值法的例题:假设有以下给定数据点与函数值:x: 0 1 2 4 y: 1 4 11 36现在要使用牛顿插值法,通过这些数据点拟合出一个多项式函数来进行插值。
解题步骤如下:1.计算差商表:x0 f[x0] 0 1 f[x0,x1] 1 4 f[x0,x1,x2] 2 11 f[x0,x1,x2,x3] 4 36差商的计算可以使用以下公式:f[xi,xi+1,...,xi+k] = (f[xi+1,xi+2,...,xi+k] - f[xi,xi+1,...,xi+k-1]) / (xi+k - xi)2.使用差商表计算插值多项式:插值多项式P(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2)P(x)的展开式为:P(x) = 1 + 3(x-0) + 2(x-0)(x-1) + 2(x-0)(x-1)(x-2)3.使用得到的插值多项式进行插值计算。
例如,要计算在x=3 的位置的插值结果,将x 替换为3,计算P(3):P(3) = 1 + 3(3-0) + 2(3-0)(3-1) + 2(3-0)(3-1)(3-2) = 1 + 9 + 12 + 6 = 28因此,使用牛顿插值法,给定数据点(0,1), (1,4), (2,11), (4,36),在 x=3 的位置的插值结果为 28。
注意,此例仅为示例,实际问题中,使用牛顿插值法时可能需要更多的数据点和计算过程。
在实际应用中,还需要考虑插值误差、阶数选择以及数据点的分布等因素。
实验二 牛顿插值法
一、实验目的:
1、掌握牛顿插值法的基本思路和步骤。
2、 培养编程与上机调试能力。
二、牛顿插值法基本思路与计算步骤:
给定插值点序列())(,i i x f x ,,,1,0,n i =。
构造牛顿插值多项式)(u N n 。
输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶均差,而各阶均差可用均差公式来计算。
为
的 一阶均差。
为
的 k 阶均差。
均差表:
1. 输入n 值及())(,i i x f x ,,,1,0,n i =;要计算的函数点x 。
2. 对给定的,x 由
[][][]
00010101201101
()()(),()(),,()
()
(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x -=+-+--++---
计算()n N x 的值。
3.输出()n N x 。
三:程序流程图:
四、实验内容
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数
2
2511
)(x
x f += 考虑区间[-1,1]的一个等距划分,分点为
n i n i
x i ,,2,1,0,21 =+-=
选择不断增大的分点数目n=2,3….,画出原函数f(x)及插值多项式函数)(x L n 在[-1,1]上的图像,比较并分析实验结果。
故(5.3.5)式成立。
现假设 k = m -1时(5.3.5)已成立,对 k = m 由均差定义及归纳假设有第五章函数近似计算(插值问题)的插值方法5.3 Newton 插值/均值与差分lagrange 插值多项式作为一种计算方案,公式简洁,做理论分析也方便。
其缺点是,当节点 改变时,公式需要重建, 计算量大;如果还要根据精度要求, 选取合适的节点和插值多项式的次数,则只好逐次计算出 L 1(x), L 2(X )等,并做误差试算,才可以做到,这当然 是不理想的。
为次,人们从改进插值多项式的形式入手,给出另一种风格的插值公式,这就是 顿)插值公式。
Newt on 插值公式通过均差和差分的记号来表达。
1.均差的概念及其性质 定义5.3.1设函数f 在互异节点X 0,X 1^ 上的值为f(X 0), f(Xj ,等,定义(3)递推地,f在x 0, x 1^ , x k 上的k 阶均差为f[X °,X 1,上,X k 」]- f[X 1,X 2,上,X k ] f [X °,X 1, ; ,X k ]-- — ---X 。
— X k同时规定f 在X j 上的零阶均差为f[X]b f(X i )性质1 k 阶均差可以表示成k 1个函数值的线性组合,即f (X j )(5.3.5)(X j - X-p (X j - X j 4)(X j - X j.J 上(X j - X k )证明:用数学归纳法。
当 k = 1时由均差定义有f (X -) - f (xj f(x 。
)f (xjNewto n(牛(1)f 在x , x j 上的1阶均差为 f 在X,X j ,X k 上的2阶均差为f (Xib f (X j ) X - X jf[X i ,X j ,X k ]二f[X 「X j ]- f[X j ,XjX 一 X kkf [X -,X 1» ,X k ]八j=0或记为"''「(X j ) (5.3.5b )f[X o ,xJ 二X 。
牛顿差值法的原理及应用1. 牛顿差值法的原理牛顿差值法(Newton’s Divided-Difference Interpolation)是一种用于数据插值的数值方法,它是由英国科学家牛顿(Isaac Newton)在17世纪提出的。
牛顿差值法的原理基于以下两个关键思想: 1. 任意n个数据点可以通过一个n-1次多项式来精确插值。
2. 使用差商(divided differences)的概念,可以通过递推公式迭代计算差商及插值多项式的系数。
具体而言,牛顿差值法将数据点(x i,y i)表示为自变量的函数y=f(x)中的零次差商f[x i],一次差商f[x i,x i+1]等等。
插值多项式的形式如下:$$P(x) = f[x_0] + (x-x_0)f[x_0,x_1] + (x-x_0)(x-x_1)f[x_0,x_1,x_2] + \\ldots$$其中$f[x_0,x_1,\\ldots,x_n]$表示n阶差商。
通过递推公式计算差商,可以得到插值多项式。
2. 牛顿差值法的应用牛顿差值法在科学计算和工程领域有着广泛的应用。
下面列举了几个常见的应用场景:2.1 数据插值牛顿差值法最常见的应用就是对已知数据点进行插值,以估计在数据点之间的未知位置上的函数值。
通过插值多项式可以方便地计算未知位置的函数值,从而填补数据的缺失部分。
2.2 数值积分牛顿差值法在数值积分中也有出色表现。
通过构造插值多项式,可以近似计算函数在一段区间上的积分值。
这在实际问题中经常出现,特别是当无法解析求解积分时,牛顿差值法提供了一种有效的数值积分方法。
2.3 信号处理在信号处理中,牛顿差值法可以用于信号重构和信号平滑。
通过已知的零次差商和一次差商来恢复原始信号,并进行信号降噪和平滑处理。
这在图像处理和音频处理等领域中非常有用。
2.4 绘图插值对于绘制曲线的问题,牛顿差值法可以通过已知数据点插值计算出曲线上的其他点,从而绘制平滑的曲线。
向前、向后差分表
-
)j
-
)j
例:在微电机设计计算中需要查磁化曲线表,通常给出的表是磁密B每间隔100高斯磁路每厘米长所需安匝数at的值,下面要解决B 从4000至11000区间的查表问题。
为节省计算机存储单元,采用每
500高斯存入一个at值,在利用差分公式计算。
从差分表中看到三阶差分近似于0,计算时只需二阶差分。
当4000≤B≤10500时用牛顿前插公
式;当10500≤B ≤11000时用牛顿后插公式;
例如,求f (5200)时取
2
00005000, 1.58,0.11,B f f f ==∆=∆=
,h=500,B=5200,t=0.4,取n=2,由公式
000(1)
()2!
n t t N x th f t f -+=+∆+
计算得:
(0.4)(0.
(5200) 1.58(0.4)(0.11)2
f -≈++
这个结果与直接查表得到的值相同,说明用此算法在计算机上求值是可行的。