中考数学中的折叠问题
- 格式:doc
- 大小:765.00 KB
- 文档页数:30
中考数学折叠知识点总结一、折叠的基本概念1. 折叠是指将平面图形按照一定的方式对折使其成为一个新的图形的过程。
2. 折痕是指将纸张折叠成新形状所需的折痕线。
3. 折叠时需要确保折线上的点重合,折线上的两个点到折线的距离分别相等。
二、折叠和几何1. 折叠与几何题目密切相关,我们可以通过折叠的方式来解决一些几何题目。
2. 折叠可以用来求解线段的垂直平分线、两点之间的最短距离、平行线的位置关系等问题。
三、折叠的技巧1. 折叠时需要仔细测量折痕的位置,可以使用尺子或折痕工具来辅助。
2. 折叠时需要保持手的稳定,避免折痕偏差,影响折叠结果。
3. 折叠后要仔细检查折线上的点是否重合,以确保折痕的正确性。
四、折纸作图1. 折纸作图是指通过对纸张进行折叠来完成一些几何图形的作图。
2. 折纸作图可以用来完成正多边形、平行四边形、圆等几何图形的作图。
3. 折纸作图可以通过折叠来求解一些几何问题,如平行线的位置关系、角的平分线、两点之间的最短路径等。
五、折纸拼图1. 折纸拼图是指通过折叠纸张来完成一些图形拼图的过程。
2. 折纸拼图可以用来完成一些常见的几何图形,如正方形、长方形、三角形等。
3. 折纸拼图可以通过分析图形的属性和对称关系来完成,需要灵活运用折叠的技巧来完成。
六、折纸数学问题1. 折纸数学问题是指通过折叠纸张来解决一些数学问题的过程。
2. 折纸数学问题可以用来求解一些几何题目,如平行线的位置关系、角的平分线、相似三角形等。
3. 折纸数学问题需要综合运用折叠的技巧和几何知识来完成,可以帮助我们更好地理解和应用几何知识。
七、折纸的启发1. 折纸可以培养学生的空间想象和创造力,有利于学生的综合能力发展。
2. 折纸可以激发学生对数学的兴趣,通过折叠来解决数学问题,有助于学生更好地理解和应用数学知识。
3. 折纸可以激发学生对数学的好奇心和求知欲,有助于培养学生的数学思维和创新能力。
总结:折叠知识是中考数学的重要知识点,通过对折叠的基本概念、折叠和几何、折叠的技巧、折纸作图、折纸拼图、折纸数学问题和折纸的启发等方面的学习,我们可以更好地掌握折叠知识,提高数学解题的能力和创新思维。
中考数学中的折叠问题探究中考数学中,经常通过折叠操作类问题考查学生的数、形结合的数学思想方法和空间想象能力,题目灵活多变,趣味性强,更为引导学生在数学学习与生活相联系中激发兴趣,体会数学学习的快乐。
几何图形的折叠问题,实质上是轴对称问题。
解答这类问题的关键是根据轴对称的性质,找准折叠前后的两个全等图形。
确定其中对应角相等、对应线段相等。
折痕平分线段、平分角等条件。
下面分几个类型来探索这类问题的解答思路。
一、折叠求角度类此类问题往往利用折叠中的对应角相等,再通过邻补角、平行线性质等得到各角度的数量关系。
此类问题通常难度较低。
例1.将五边形abcde纸片按如图1的方式折叠,折痕为af,点e,d分别落在e′,d′。
已知∠afc=76°,则∠cfd′等于()a.31°b.28°c.24°d.22°分析:根据题意,由邻补角的关系求得∠afd=∠afd′=180°-76°=104°,则∠cfd′=104°-76°=28°,故选b。
例2.如图2,把一个长方形纸片沿ef折叠后,点d、c分别落在d′、c′的位置,若∠efb=65°,则∠aed′等于()a.50°b.55°c.60°d.65°二、折叠求线段类此类问题多通过折叠中的全等图形,确定对应线段的等量关系,再运用勾股定理或相似比寻求线段间数量关系,构建方程,从而求解。
方程建模思想的应用是解决此类问题的主要思路。
三、折叠求坐标类此类题目中勾股定理与三角函数的综合运用较多。
求坐标一般要通过求线段长来解决。
但有些题目中适当运用三角函数比运用相似图形解答会更便捷。
四、折叠求面积类此类问题的解答一般要借助线段长的求解,但问题的关键是确定所求图形的形状,再求面积;若图形是非规则图形,则要通过其他规则图形的面积关系转化求解。
精选全文完整版(可编辑修改)专题10图形折叠问题 姓名_________折叠型问题通常是把某个图形(三角形或矩形)绕某一点或沿某一条线折叠,通过折叠后满足的条件图形求某一条线段的大小或最小值,折叠问题的解题突破点:1.折叠前后两图形全等,关于折痕成轴对称(即折痕是对称轴,对画图很重要);2.遇到折叠问题,寻找等量(即相等的线段和相等的角);3.折叠问题中的计算,一般会用到分类讨论、勾股定理和方程思想;4.确定折叠后的对应点可以用画圆(画弧)和对称的方法.1.如图所示,正方形ABCD 的边长为2,点E 为BC 边上一动点,将△ABE 沿直线AE 折叠,点B 的对应点落在点F 处,若△CFD 恰为等腰三角形,则BE 的长为_________. (32-4或332)2.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点E ,F 分别在边AC ,BC 上,连接EF ,将△ABC 沿直线EF 折叠,点C 的对应点D 恰好落在边AB 上,若△BDF 是等腰三角形,则CF 的长为_______.(231048-或 或1312)3.如图,一张长方形纸片的长AD=4,宽AB=1,点E 在边AD 上,点F 在BC 边上,将四边形ABFE 沿直线EF 翻折后,点B 落在边AD 的三等分点G 处,则EG 等于_______.(48732425或) (如果把条件“三等分点”改为“中点”又该怎么做呢?答案:45)4.如图,在矩形纸片ABCD 中,AB=8,AD=12,点E 是AD 的中点,点F 是AB 边上的一个动点,将△AEF 沿EF 所在的直线折叠,得到△A ′EF ,连接A ′B ,若△A ′FB 为直角三角形,则AF 的长为_________(6或3)5.如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB=4,点M ,N 分别是边AB ,BC 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点始终落在边AC 上,若△MNB ′为直角三角形,则BN 的长为_______.(3343或)6.如图,在Rt △ABC 中,∠C=90°,AC=12,BC=10,D 是BC 的中点,E 是AC 上一动点,将△CDE 沿DE 折叠到△C ′DE ,连接AC ′,当△AEC ′时直角三角形时,AE 的长为_________(7326或)7.如图,在矩形ABCD 中,AB=6,AD=4,点F 为BC 边的中点,点E 为AB 边上一动点,将△ADE 沿ED 折叠,点A 的对应点为点A ′,则A ′F 的最小值为__________(4-102)8.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,点D 是线段BC 上一动点,把△ABD 沿直线AD 翻折,点B 的对应点为点B ′,连接B ′C ,当△B ′CD 为直角三角形时,BD 的长为________(251或)9.如图,在△ABC中,∠C=90°,∠A=30°,BC=3,P是AB上的一动点,PE⊥AC于E,沿PE将∠A折叠,点A的对应点为D,若△BPD是直角三角形,则PA=_________(2或4)10.(2013河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,求BE的长。
专题复习(五) 图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题(·宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(32,32),则该一次函数的解析式为________.【思路点拨】 利用翻折变换的性质结合锐角三角函数关系得出CO ,AO 的长,进而得出A 、B 两点的坐标,再利用待定系数法求出直线AB 的解析式.【解答】 连接OC ,过点C 作CD⊥x 轴于点D ,∵将△AOB 沿直线AB 翻折,得△ACB,C(32,32),∴AO =AC ,OD =32,DC =32,BO =BC ,则tan ∠COD =CD OD =33,故∠COD=30°,∠BOC =60°,∴△BOC 是等边三角形,且∠CAD=60°. 则sin60°=CD AC ,则AC =DCsin60°=1,故A(1,0),sin30°=CD CO =32CO =12.则CO =3,故BO =3,B 点坐标为(0,3),设直线AB 的解析式为y =kx +3,把A(1,0)代入解析式可得k =- 3. ∴直线AB 的解析式为y =-3x + 3.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.1.(·绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.34B.45C.56D.672.(·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC =70°,那么∠A′DE 的度数为________.3.(·宜宾)如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.4.(·滨州)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________.类型2 四边形及其他图形中的折叠问题(·南充)如图,在矩形纸片ABCD 中,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.【思路点拨】 (1)由矩形的性质得∠A =∠B =∠C =90°,由折叠的性质和等角的余角相等,可得∠BPQ =∠AMP =∠DQC ,所以△AMP∽△BPQ∽△CQD ;(2)设AP =x ,由折叠关系可得:BP =AP =EP =x ,AB =DC =2x ,AM =1,根据△AMP∽△BPQ 得:AMBP=AP BQ ,即BQ =x 2,根据△AMP∽△CQD 得:AP CD =AM CQ ,即CQ =2,从而得出AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1,根据Rt △FDM 中∠DMF 的正弦值得出x 的值,从而求出AB 的值.【解答】 (1)有三对相似三角形,即△AMP∽△BPQ∽△CQD. 理由如下:∵四边形ABCD 是矩形, ∴∠A =∠B=∠C=90°.根据折叠可知:∠APM=∠EPM,∠EPQ =∠BPQ,∴∠APM +∠BPQ=∠EPM+∠EPQ=90°. ∵∠APM +∠AMP=90°,∴∠BPQ =∠AMP,∴△AMP ∽△BPQ , 同理:△BPQ∽△CQD. ∴△AMP ∽△BPQ ∽△CQD. (2)设AP =x ,∴由折叠关系,BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得,AM BP =AP BQ ,即1x =xBQ ,得BQ =x 2.由△AMP∽△CQD 得,AP CD =AM CQ ,即x 2x =1CQ ,得CQ =2.∴AD =BC =BQ +CQ =x 2+2.∴MD =AD -1=x 2+1.∵在Rt△FDM 中,sin ∠DMF =35,∴2x x 2+1=35.解得x 1=3,x 2=13(不合题意,舍去). 即AB =6.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.1.(·南充)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是( )A .12B .24C .12 3D .16 32.(·泸州)如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为( )A.13 B.152C.272D.123.(·德阳)将抛物线y=-x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()A.6种 B.5种 C.4种 D.3种4.(·成都)如图,在□ABCD中,AB=13,AD=4,将ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.5.(·内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________.6.(·南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是________.7.(·绵阳)如图1,在矩形ABCD中,AB=4,AD=3,将矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,顶点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.参考答案类型1 三角形中的折叠问题1.B 提示:∵△ABC 为等边三角形,∴∠A =∠B=∠C=60°.又∵折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF ,∴∠EDF =∠C=60°,CE =DE ,CF =DF.∴∠ADE+∠FDB=120°.∴∠AED =∠FDB.∴△AED∽△BDF.∴AE BD =AD BF =DEFD .设等边△ABC 边长为6个单位,CE =x ,CF =y ,AE =6-x ,BC =6-y ,∴6-x 4=26-y =x y ,解得x =145,y =72.∴x ∶y =4∶5,故选择B.2.65°3.1.54.(10,3)类型2 四边形及其他图形中的折叠问题1.D 2.A3.B 提示:由题意,易知y =-x 2+2x +3与x 轴的两个交点坐标分别为(3,0)和(-1,0),顶点坐标为(1,4),顶点关于x 轴对称点的坐标为(1,-4).当直线y =x +b 过(-1,0)时,b =1,此时直线与新的函数图象只有一个交点;当b>1时,此时直线与新的函数图象无交点;当直线y =x +b 过(3,0)时,b =-3,此时直线与新的函数图象有三个交点;观察图象,易知:当-3<b<1时,此时直线与新的函数图象有三个交点;当直线y =x +b 过(1,-4)时,b =-5,此时直线与新的函数图象有三个交点;观察图象,易知:当-5≤b<-3时,此时直线与新的函数图象有四个交点;观察图象,易知:当b<-5时,此时直线与新的函数图象有二个交点;综上,直线y =x +b 与此新图象的交点的个数的情况有5种,故选B.4.35. 6 提示:作AH⊥BC 于H.∵分别以AE ,BE 为折痕将两个角(∠D,∠C)向内折叠,点C ,D 恰好落在AB 边的点F 处,∴DE =EF ,CE =EF ,AF =AD =2,BF =CB =3.∴DC=2EF ,AB =5.∵AD∥BC,∠C =90°, ∴四边形ADCH 为矩形,∴AH =DC =2EF ,HB =BC -CH =BC -AD =1.在Rt△ABH 中,AH =AB 2-BH 2=26,∴EF = 6. 6.2≤x≤87.(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD =CE ,DC =EA ,∠ACD =∠CAE. 在△CED 与△ADE 中,⎩⎪⎨⎪⎧CE =AD ,DE =ED ,DC =EA ,∴△DEC ≌△EDA.(2)∵∠ACD=∠CAE,∴AF =CF.设DF =x ,则AF =CF =4-x ,在Rt△ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x)2,解得x =78,即DF =78.(3)由矩形PQMN 的性质得PQ∥CA, ∴PE CE =PQCA. 又∵CE=3,AC =AB 2+BC 2=5.设PE =x(0<x <3),则x 3=PQ 5,即PQ =53x.过E 作EG⊥AC 于G ,则PN∥EG,∴CP CE =PN EG. 又∵在Rt△AEC 中,EG ·AC =AE·CE,解得EG =125.∴3-x 3=PN 125,即PN =45(3-x).设矩形PQMN 的面积为S ,则S =PQ·PN=-43x 2+4x =-43(x -32)2+3(0<x <3).∴当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.。
专题:漫谈折叠问题(二)一、折叠问题小技巧A 要注意折叠前后线段、角的变化,全等图形的构造;B 通常要设求知数;C 利用勾股定理构造方程。
二、折叠问题常见考察点(一)求角的度数1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°【考点】翻折变换(折叠问题),三角形内角和定理。
2. 如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于【】A.70° B.40° C.30° D.20°3. 如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是__________.【考点】翻折变换(折叠问题),等腰三角形的性质,三角形内角和定理,线段垂直平分线的判定和性质。
4. 如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=__________度.5.如图,在△ABC中,D,、E分别是边AB、AC的中点, ∠B=50°º.现将△ADE沿DE折叠,点A 落在三角形所在平面内的点为A1,则∠BDA1的度数为__________°.【考点】翻折变换(折叠问题),折叠对称的性质,三角形中位线定理,平行的性质。
(二)求线段长度1.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A.32 B.52 C.94 D.3【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。
精选全中考数学中的折叠问题文完整版(可编辑修改)近年来,在各地中考数学命题时,十分重视对图形语言、文字语音、符号语言的理解运用及相互之间的关系,相互之间的转化能力以及动手操作能力的考查。
这样,图形的折叠问题就成为一个亮点,有关翻折的考题日趋增加。
翻折问题的解决方法,抓住翻折后与翻折的图形是以折痕为轴的轴对称图形这一关键,并运用代数方程,一般均可求得。
下面我们以中考题为例,谈谈翻折问题的几例类型及解法,供大家参考。
一、以矩形为母体的翻折这种类型最多,以折痕的不同位置又可分下面几种:1、沿对角线翻折例1、(2000年山西省)已知:如图1,将矩形ABCD沿直线BD折叠,使点C 落在C’处,BC’交AD于E,AD=8,AB=4,求△BED的面积。
分析:因为BD是对称轴,∴∠CBD=∠C’BD,又AD∥BC,∴∠CBD=∠ADB,得:∠C’BD=∠ADB,∴ED=EB设ED=x,∴AD=8-x在Rt△ABE中,AB2+AE2=BE2,即42+(8-x)2=x2,∴x=5,∴ED=EB=5又BD=∴S△BED==10方法2:过E作EF⊥BD,垂足F,在得到BE=5,BD=4后,在Rt△BEF中,EF=,得S△BED=BD×EF=×4×=10方法3:∵Rt△BEF∽Rt△BDC’,∴EF:DC’=BF:BC’,得EF==(以下略)2、沿一直线翻折,使一顶点落在对边上例2、(2000年山东省)已知矩形ABCD的两边AB与BC的比为4:5,E是AB 上一点,沿CE将△EBC向上翻折,若B点恰好落在边AD上的F点,如图2,则tg∠DCF=______。
A、B、C、D、分析:因为CF=CB,∴CF:CD=5:4,得CD:DF=4:3,∴tg∠DCF==,应选(A)。
例3、(1998年台州市)如图3,矩形ABCD的长、宽分别为5和3,将顶点C 折过来,使它落在AB上的C’点(DE为折痕),那么阴影部分的面积是______。
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH(如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C'与DN 交于P .(1)连接BB',那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB'=x,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B'面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线"的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的错误!.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a"的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于 错误!;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无").注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°—2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12图(3)C'ABCDE21图(2)GC'A BCDE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。
分析与解答:本题考查了结合坐标系求解矩形折叠问题的能力。
图1D A BCE GF(甲)(乙)例4(浙江省实验区中考题)现有一张长和宽的比为2∶1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕),除图甲外,请再给出一个不同..的操作,分别将折痕画在矩形中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作。
如图乙和图甲是相同的操作)。
例5(南京市中考题)已知矩形纸片,AB=2,AD=1。
将纸片折叠后,使顶点A 与边CD 上的点E 重合。
(1) 如果折痕FG 分别与AD 、AB 交于点F 、G (如图1),AF=23,求DE 的长;(2) 如果折痕FG 分别与CD 、AB 交于点F 、G (如图2),△AED 的外接圆与直线BC 相切,求折痕FG 的长。
分析与解答:(1)在矩形ABCD 中,AB=2,AD=1,AF=23,∠D=90°,根据轴对称的性质,得EF=AF=23。
∴DF=AD-AF=13 ,在Rt △DEF 中,由勾股定理得 22213333DE ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭。
(2)设AE 与FG 的交点为O ,根据轴对称的性质,得AO=EO , 取AD 的中点M ,连接MO ,则MO=12DE ,图2D AGBF E CMN OMO ∥DC 。
设DE x =,则 12MO x =,在矩形ABCD 中, ∠C=∠D=90° ∴AE 为△AED 的外接圆的直径, O 为圆心。
延长MO 交BC 于 点N ,则ON ∥CD ,∴∠CNM=180°-∠C=90°∴ON ⊥BC ,四边形MNCD 是矩形。
∴MN=CD=AB=2,∴ON=MN-MO=122x - ∵ △AED 的外接圆与BC 相切,∴ ON 是△AED 的外接圆的半径。
∴ OE=ON=122x -,AE=2ON=4-x 。
在Rt △AED 中,222AD DE AE += ∴2221(4)x x +=- 解这个方程,得158x =。
∴158DE =,1172216OE x =-=。
根据轴对称的性质,得AE ⊥FG ,∴ ∠FOE=∠D=90°。
又 ∵∠FEO=∠AED ,∴△FEO ∽△AED ,∴FO OE AD DE =, ∴OE FO AD DE =⨯ 可得1730FO =又AB ∥CD , ∴∠EFO=∠AGO ,∠FEO=∠GAO ∴△FEO ≌△GAO ∴FO=GO ∴17215FG FO ==, ∴折痕FG 的长是1715。
中考实战一:一、选择题1.(德州市)如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于( ) A .4 B .3C .4D .82.(江西省)如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,若∠DBC =22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A .6个B .5个C .4个D .3个3.(乐山市)如图,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH =90°,PF =8,PH =6,则矩形ABCD 的边BC 长为( )A.20 B.22 C.24 D.304.(绵阳市)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =()A.60°B.67.5°C.72°D.75°5. (绍兴市)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4) ).从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④6.(贵阳市)如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为()A.34cm2B.36 cm2C.38 cm2D.40 cm2二、填空题7.(成都市)如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD 于点G.已知∠EFG=58°,那么∠BEG°.8. (苏州市)如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于____________度.三、解答题9.(荆门市)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.10. (济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?11.(威海市)如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C 重合,折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7,CD=3,求线段EF的长.12. (烟台市)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.14.(孝感市)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?15.(邵阳市)如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合(图②).(1)在图①中画出折痕所在的直线l.设直线l与AB,AC分别相交于点D,E,连结CD.(画图工具不限,不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(不要求证明)16.(济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1)求证:△PBE∽△QAB;(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如补相似请说明理由;(3)如果直线EB折叠纸片,点A是否能叠在直线EC上?为什么?17.(临安市)如图,△OAB是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;(2)当A′E//x轴,且抛物线经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.18.(南宁市)如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A′落在AH所在的直线上).(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;(2)当x取何值时,y的值最大?最大值是多少?19.(宁夏回族自治区)如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.证明:(1)BF=DF;(2)AE∥BD.中考实战二: 一、选择题1.(山东日照4分)在平面直角坐标系中,已知直线334y x=-+与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是A、(0,34)B、(0,43) C、(0,3)D、(0,4)2.(天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF 的大小为()(A) 15° (B) 30° (C) 45° (D) 60°3.(重庆4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )A、1B、2C、3D、44.(浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是A、3B、4C、22+D、225.(浙江省3分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )A. 2:5B.14:25C.16:25D. 4:216.(吉林省3分)如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是7.(江苏海南3分)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是 ( )A、①②都对B、①②都错C、①对②错D、①错②对8.(山东菏泽3分)如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A、6B、3C、23D、39.(山东济宁3分)如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A. 22cmB.20cmC. 18cmD.15cm10.(山东泰安3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A、23B、332C、3D、611.(广东广州3分)如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线A BCD FECD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A 、B 、C 、D 、12.(河北省3分)如图,在△ABC 中,∠C=90°,BC=6,D ,E 分别在 AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为 ( )A 、B 、2C 、3D 、413.(四川宜宾3分)如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在 点F 处,折痕为AE ,且EF=3,则AB 的长为 ( )A.3B.4C.5D.614.(四川泸州2分)如图,在Rt△ABC 中,∠ABC=90°,∠C=60°,AC=10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C′,折痕为BE ,则EC 的长度是( ) A 、53 B 、535- C 、1053-D 、553+15.(四川内江3分)如图.在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为 ( )A 、412()55-, B 、213()55-, C 、113()25-, D 、312()55-,(第10题)PNFEDCABM16.(甘肃天水4分)如图,有一块矩形纸片ABCD ,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为( )A 、6B 、4C 、2D 、117.(云南昭通3分)如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠EFC′=1250,那么∠ABE 的度数为( ) A .150B .200C .250D .30018.(福建三明4分)如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB 2=3CM 2;④△PMN 是等边三角形.正确的有( )A 、1个B 、2个C 、3个D 、4个19.(福建莆田4分)如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan∠AFE 的值为 ( ) A .43 B .35 C .34 D .4520.(黑龙江省绥化3分)如图,在Rt△ABC 中,AB=CB ,BO⊥AC,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF .下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD=BF;⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是A 、1个B 、2个C 、3个D 、4个21.(湖南岳阳3分)如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③DE EFAB AF=;④AD=BD•cos45°.其中正确的一组是A、①②B、②③C、①④D、③④二、填空题1.(重庆潼南4分)如图,在△ABC中,∠C=90°,点D在AC上,将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,DC=5cm,则点D到斜边AB的距离是cm.2.(浙江绍兴5分)取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为3.(浙江台州5分)点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80º,则∠CGE=.4.(广西贺州3分)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .5.(广西贵港2分)如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于_ cm2.6.(湖北荆州4分)如图,双曲线xy 2(x >0)经过四边形OABC 的顶点A 、C , ∠ABC=90°,OC 平分OA 与x 轴正半轴的夹角,AB∥x 轴,将△ABC 沿AC 翻折 后得△AB′C,B′点落在OA 上,则四边形OABC 的面积是 .7.(湖南衡阳3分)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .8.(湖南怀化3分)如图,∠A=30°,∠C′=60°,△ABC 与△A'B'C'关于直线l 对称,则∠B=9.(江苏南通3分)如图,在矩形纸片ABCD 中,AB =2cm ,点E 在 BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1 重合,则AC = cm .10.(山东滨州4分)将矩形ABCD 沿AE 折叠,得到如图所示图形.若∠CED′=56°,则∠AED 的大小是 .11.(内蒙古包头3分)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),则点D 的横坐标是 .12.(内蒙赤峰3分)如图,AD 是△ABC 的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C′处,连接BC′,那么BC′的长为 . 13.(四川广元5分)如图,M 为矩形纸片ABCD 的边AD 的中点,将 纸片沿BM 、CM 折叠,使点A 落在A 1处,点D 落在D 1处.若∠A 1MD 1 =40º,则∠BMC 的度数为 .14.(四川绵阳4分)如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于 cm.16.(贵州安顺4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.17.(浙江金华、丽水4分)如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为kyx.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O´B´.(1)当点O´与点A重合时,点P的坐标是;(2)设P(t,0),当O´B´与双曲线有交点时,t的取值范围是.18.(重庆江津4分)如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.三、解答题1.(贵州遵义10分)把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F 两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG 的长.2.(黑龙江大庆7分)如图,ABCD是一张边AB长为2、边AD长为1的矩形纸片,沿过点B的折痕将A角翻折,使得点A落在边CD上的点A1处,折痕交边AD于点E.(1)求∠DA1E的大小;(2)求△A1BE的面积.3.(广东省7分)如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.4.(广东深圳8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于M,求EM的长.5. (四川南充8分)如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE,点F 落在AD 上. (1)求证:△ABE∽△DFE(2)若sin∠DFE=13,求tan∠EBC 的值。