数值传热学讲义
- 格式:pdf
- 大小:666.83 KB
- 文档页数:17
概念一、传热的三种基本方式1.传导又称为热传导,简称导热。
2. 对流 对流又称热对流。
对流分为自然对流和强制对流两种。
3. 辐射 辐射又称为热辐射。
二、工业换热方式1.间壁式换热 2.混合式换热3.蓄热式换热器三、导热系数:是衡量物质导热能力的一个物理量。
用λ表示,单位是W/m.℃。
四、对流传热系数:是度量对流传热过程强烈程度的数值。
用α表示,单位为W/m 2.℃。
五、影响对流传热系数的因素:1.流体流动产生的原因: 是自然对流还是强制对流2.流体的流动状况: 是层流还是湍流。
湍流时的α值比层流时大好几倍甚至更多。
3.流体有无相变化: 有相变化时的对流传热系数较大。
4.流体的物理性质: 流体的比热、导热系数、密度、粘度对α值都有影响。
5.传热表面的形状、位置和大小。
六、管壳式换热器流体走管程或壳程的选择原则1.由于管子容易清扫,强度较高,就抗腐蚀性来说,管子比壳体相对地要价廉些。
宜走管程的流体有冷却水;易结垢或夹带有固体颗粒的不清洁流体;压力和温度较高以及腐蚀性较强的流体;流量较小的流体;粘度较小的流体;热流体或冷冻介质;含有未冷凝气体的蒸汽。
2.由于壳程流过的面积较大,因此适宜走壳程的流体有:要求经换热器后压力损失小的流体;有泄露危险的流体;与适宜于走管程的流体情况相反的流体。
七、强化传热的途径1.增大传热平均温度差Δt m ;采用逆流操作2.增大单位体积的传热面积A ;在列管式换热器中采用翅片管排列的方法;有翅片管代替普通管;采用螺旋板式换热器及板式换热器等等。
3.增大传热系数K(1)增大流体的流速; (2)增大湍流程度;(3)增大流体的导热系数; (4)减小污垢热阻。
对流传热一、传热的基本概念: 对流传热又称给热,是流体与固体壁面之间的传热过程,即由流体将热传给壁面,或由壁面将热传给流体的过程。
这一过程主要依靠流体质点的移动和混合来完成。
二、对流传热方程式(牛顿冷却定律 ):三、对流传热膜系数的影响因素tA T T A Q ∆=-=αα)'(间壁两侧流体间的传热一、传热基本方程Q=KA Δt mQ —单位时间内通过换热器传递的热量,即传热速率,W ;A -换热器的传热面积,m 2;Δt m -冷、热流体间传热温度差的平均值,℃;K -传热系数,W/m 2.℃。
热流问题的数值计算Numerical Simulations of Thermal & Fluid Problems第一章 绪论主讲 陶文铨西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2007年10月16日, 西安1/88物理问题数值解的基本思想 把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程 (称为离散方程,discretizationequation);求解所建立起来的代数方程以获得所求解变量的近似解.2/88大规模科学计算的重要性 传热与流动问题数值计算是应用计算机求解热量传 递过程中的速度场,温度场等的分支学科,是大规模 科学计算的重要组成部分,其重要性不言而喻. 2005年美国总统顾问委员会向美国总统提出要大 力发展计算科学以确保美国在世界上的竞争能力. 波音公司实现了对航空发动机的网格数达10亿量 级的直接数值模拟,以研究所设计发动机的性能.3/88现代科学研究的三大基本方法及其关系理论分析Analytical实验研究Experimental数值模拟Numerical4/88课程简介1. 学时- 30学时理论教学;6学时计算机作业 2. 考核- 平时作业/计算机大作业/考试: 20/30/50 3. 方法- 理解,参与,应用 努力将与数学处理相对应的物理背景联系起来理解. 4. 助手- 于乐 5. 参考教材-《计算流体力学与传热学》,中国建筑 工业出版社,19915/88学习方法建议1. 善于从物理过程基本特性来掌握理解数值方法; 2. 对数值方法-明其全而析其微:明其全-了解基本原理;析其微-掌握实施细节;3. 努力上机实践; 4. 学会分析计算结果: 合理性,规律性; 5. 应用商业软件与自编程序相结合.6/88《热流问题的数值计算》 主要教学内容第一章 绪论(物理与数学基础) 第二章 一维导热问题的数值解 第三章 多维导热问题的数值解 第四章 势流及管道内充分发展流动与换热的数值解 第五章 有回流的动与换热问题的数值解 第六章 二维涡量-流函数法通用程序介绍 第七章 原始变量法与湍流数值模拟简介7/88绪论1.1 流动与传热问题控制方程的基本类型 1.2 流动与传热问题数值计算的基本步骤 1.3 建立离散方程的方法 1.4 离散方程数学与物理特性分析简介8/881.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1.1.2 控制方程 1. 质量守恒方程 3. 能量守恒方程 1.1.3 单值性条件 1.1.4 建立数学描写举例 1.1.5 控制方程式的分类9/882. 动量守恒方程1.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1. 有关的守恒定律的偏微分方程(控制方程)一切宏观的流动与传热问题都由三个守恒定律所 支配:质量,动量与能量守恒(conservation law).2. 与表述守恒定律的偏微分方程相关的单值性条件.不同问题的区别主要在于单值性条件 (conditions for unique solution) 的不同:初始条件以,边界条件 以及物性数据.10/881.1.2 控制方程(Governing equations) Mass conservation1. 质量守恒方程r ( r u ) ( r v) ( r w) + + + =0 t x y z单位时间 内质量的 增加 单位时间内流 进微元体的净 质量物理意义:单位时间内空 间某一微元容积质量的增 加等于流入该微元容积的 净质量.11/88对不可压缩流体: r = const 对二维不可压缩流体:u v + =0 x yu v w + + =0 x y z对二维问题,速度矢量:ur u v 数学上称: + = div(U ) x yur r ur U =ui+v j为速度矢量的散度,因此对二维不可压流体有:ur div(U ) = 0下面只讨论不可压缩流体(incompressible flow).12/882. 动量守恒方程(Momentum conservation)对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] 可得出三个坐标方向的动量方程:u uu uv uw 1 p 2u 2u 2u + + + =+ n ( 2 + 2 + 2 ) + Fx t x y z r x x y z 1 p v vu vv vw 2v 2v 2v + + + =+ n ( 2 + 2 + 2 ) + Fy t x y z r y x y z 1 p w wu wv ww 2 w 2 w 2 w + + + =+ n ( 2 + 2 + 2 ) + Fz t x y z r z x y z微元体内动 量的增加率压力粘性力体积力13/883. 能量守恒方程(Energy conservation)[微元体内热力学能的增加率]=[通过流动与导热进入 微元体内的净热流量]+[体积力与表面力对微元体所做 的功率] 引入导热Fourier定律,假定热物性为常数,可得T (uT ) (vT ) ( wT ) 2T 2T 2T rcp[ + + + ] = l( 2 + 2 + 2 ) + S t x y z x y z微元体 内能增 加率 由于流动被带出 微元体的净功率 由于导热而进入 源项 微元体的净功率 生成 热14/88l =a rcp流体的热扩散率(thermal diffusivity)4. 对于二维稳态对流换热问题控制方程汇总u v + =0 x yuu uv 2u 2u 1 p + =+ n ( 2 + 2 ) + Fx y z r x x yvu vv 2v 2v 1 p + =+ n ( 2 + 2 ) + Fy y z r y x y(uT ) (vT ) 2T 2T + = a( 2 + 2 ) + ST x y x y对流项扩散项源项数值计算中常用的术语.15/88不同的二维,稳态求解问题之间的区别在于: (1)边界条件不同; (2)源项与扩散系数不同.5. 二点说明1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的. 2. 辐射换热需要用积分方程来描述,课程中将不涉及 这类问题.16/881.1.3 单值性条件 1. 初始条件 2. 边界条件 (1) 第一类 (Dirichlet):t = 0, T = f ( x, y, z )TB = Tgiven(2) 第二类 (Neumann): qB = -l (T ) B = qgiven n(3) 第三类 (Rubin):规定了边界上被求函数的一阶导数与函数之间的关系: -l ( T ) B = h(TB - T f )n数值计算中计算区域的出口边界条件常常最难 确定,要做近似处理.17/881.1.4 建立数学描写举例 1. 问题与假设条件突扩区域中的对流传热:二维,稳态,不可压缩, 常物性,不计重力与黏性耗散.18/882. 控制方程u v + =0 x y1 p u u u u u +v =+n ( 2 + 2 ) r x x y x y 2 2 v v 1 p v v u +v =+n ( 2 + 2 ) x y r y x y2 2T T T T u +v = a( 2 + 2 ) x y x y2 219/883. 边界条件 (1)进口边界条件:给定u,v,T随y 的分布; (3)中心线: u = T = 0; v = 0 y y(4)出口边y x界:数学上要 求给定u,v,T 或其导数随y 的分布;实际 上做不到;数 值上近似处理20/88(2)固体边界条件:速度无滑移,温度无跳跃1.1.5 传热与流动问题的数学描写的分类 1. 从数学角度分类-椭圆型与抛物型椭圆型 (Elliptic)椭圆型方程数学上的特点是:所求解的因变量对每个 空间自变量均存在二阶导数项: 导热方程-所求解的因变量为温度T ,空间自变量x,y; 动量方程-所求解的因变量为速度u ,空间自变量x,y.21/88抛物型(Parabolic)抛物型方程数学上的特点是:所求解的因变量对某个 个自变量只存在一阶导数项: 非稳态导热方程-因变量T 对时间t仅有一阶导数; 边界层动量方程-u对空间自变量x仅有一阶导数. 仅存在一阶导数的自变量在物理过程上的重要特 点:过程只能沿该坐标的单个方向进行而不能逆向进 行.22/88抛物型与椭圆型流动的例子椭圆型方程的求解必须全场联立进行,而抛物性 方程的求解可以沿坐标正向逐步推进, 大大节省时间.23/88(1)椭圆型问题: 流动有回流,必须 全场同时求解; (2)抛物型问题:流动无回流,可以沿主流方向步 步逼进,不必全场同时求解,大大节省时间.Marching method24/882. 从物理角度分类-守恒型与非守恒型守恒型( Conservative)-对任意大小容积守恒特性 都能得到满足的方程; 凡对流项表示成散度形式的方程具有守恒性 . 非守恒型方程+u v v u u v u ++ u = 0= 0 u ( + ) = 0 x x y y x y (uu ) (uv) 1 p 2u 2 v =+n ( 2 + 2 ) + r x x x y x守恒型方程凡是从守恒型控制方程推导得到的用于数值求解 的代数方程也具有守恒特性.25/881.2 流动与传热问题数值求解的基本步骤1.2.1 流动与传热问题数值求解步骤 1. 建立数理模型 3. 方程的离散化 5.代数方程求解 1.2.2 区域离散化方法 2.区域的离散化 4. 边界条件离散 6. 求解结果分析1.区域离散化的任务 2. 区域离散方法1.2.3 网格系统标记方法26/881) 外节点法2. 内节点法1.2.1 流动与传热问题数值求解步骤把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限个 离散点(称为节点,node)上的值的集合来代替;通过 一定的原则建立起这些离散点上变量值之间关系的代 数方程(称为离散方程,discretization equation);求 解所建立起来的代数方程以获得所求解变量的近似解.27/88(1) 区域离散 (2) (3) (4) (5) 代数求解 (6)28/88方程离散结果分析1.2.2 区域离散化1.区域离散化的任务将所计算的区域分割成许多不重叠的子区域,确 定每个子区域中节点的位置以及所代表的控制容积. 离散结果得出四种几何要素: (1) 节点(node):所求解未知量的位置; (2) 控制容积(control volume):实施守恒定律的最 小几何单位; (3) 界面(interface):控制容积的分界位置; (4) 网格线(grid lines):沿坐标方向相邻节点连接 成的曲线簇.29/882. 区域离散方法 (a) 外节点法:节点位于子区域的角顶;控制容积界 面位于两节点之间;生成过程:先节点后界面;又 称 Practice A.子区域控制容积30/88YPractice A-外节点法 x31/88(b) 内节点法:节点位于子区域的中心;子区域即为 控制容积;生成过程:先界面,后节点,又称 Practice B.子区域即为控制容积32/88YPractice B-内节点法 x33/88 1.2.3 内接点与外节点法的比较 (a)边界节点所代表的控制容积不同 方法A 边界节点代表半个CV方法B 边界节点代表零个CV(b)网格非均分时,节点作为控制容积的代表方法B 更合理 方法A 方法B34/881.2.3 网格系统表示方法 网格线-节点间连线,用实线表示;界面为虚线; 节点间距离-dx;界面间距离-Dx .35/881.2.4 网格独立解 当网格足够细密以至于再进一步加密网格已对 数值计算结果基本上没有影响时所得到的数值解称 为网格独立解(grid-independent solution).Int. Journal Numerical Methods in Fluids, 1998, 28: 1371-1387.36/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 1.3.2 由Taylor 展开法导出导数的差分表示式 1.3.3 控制容积积分法导出导数的差分表示式 1.3.4 讨论37/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 一维模型方程是一维非稳态有源项的对流-扩 散方程,具有四个特征项,便于离散方法的研讨. 非守恒型 守恒型 ( rf ) f f + ru = (G ) + Sf t t x xFDM采用 ( rf ) ( r uf ) f + = (G ) + Sf FVM采用 t t x x 瞬态 对流 扩散 源项38/88"麻雀虽小,五脏俱全!"1.3.2 由Taylor 展开法导出导数的差分表示式 1. 一阶导数的差分表达式的导出 将函数f ( x, t ) 在(i+1,n)的值对(i,n)点做Taylor展开:f 2f Dx 2 2 f (i + 1, n) = f (i, n) + )i ,n Dx + 2 )i ,n Dx + ..... x x 2!f f (i + 1, n) - f (i, n) Dx 2f ) i ,n = - ( 2 )i ,n + ... x Dx 2 x39/88O ( Dx ) 称为截断误差, truncation error,表示:随 Dx 的趋于零,用 f (i + 1, n) - f (i, n) 代替 f )i ,n 的误差 x Dxf f (i + 1, n) - f (i, n) )i ,n = + O(Dx) x Dx KD x, K 与 Dx 无关.D x 的方次称为截差的阶数(order of TE).用数值计算的近似解 fin 代替精确解 f (i, n)fin 1 - fin f )i ,n @ + , O(Dx) 得向前差分: x Dx40/88f -f f )i ,n @ 向后差分: x Dxn in i -1, O (Dx )fin 1 - fin 1 f )i , n @ + , O(Dx 2 ) 中心差分: x 2Dx2. 一,二阶导数的各种差分表达式. 表达差分结构的格式图案o构筑差分表达式的位置; 构筑差分表达式所用到的节点.41/88一阶导数的 常用差分表达式42/88二阶导数的常用差分表达式定性判别导数的差分表达式正确与否的方法: (1)量纲是否正确-与导数本身一致; (2)均匀场的各阶导数应为零.43/883. 一维模型方程的有限差分显式离散表示式 微分方程形式: 假设 ( rf ) f f + ru = (G ) t t x xr , u, G均为常数,显式差分表达式:fin +1 - fin fin 1 - fin 1 r + ru + = Dt 2Dx fin 1 - 2fin + fin 1 G + , O (Dt , Dx 2 ) Dx 2差分方程 截断误差44/88显式(Explicit)-空间导数均以初 始时刻之值计算.1.3.3 控制容积积分法导出导数的差分表示式 1. 控制容积积分法实施步骤 1. 将守恒型的方程对控制容积做积分; 2. 选定被求函数及其一阶导数对时间,空间的变化 曲线-型线; 3. 完成积分,整理成相邻节点间未知量的代数方程. 2. 两种常用型线 型线-被求函数随自变量的局部变化方式,本是 所求内容,近似求解需先假定.45/88随空间自变量的变化型线 型线 型线分段线性阶梯逼近46/88piece-wise linear step-wise approximation随时间自变量的变化型线分段线性 piece-wise linear阶梯逼近 step-wise approximation47/883. 一维模型方程的控制容积积分法离散 将守恒型控制方程对控制容积P 在[t, t+ Dt ]内 做积分, ( rf ) ( r uf ) ft立即可得e+xt +Dt t=xe(Gx)r ò (ft +Dt -ft )dx +rwò [(uf)òt- (uf)w ]dt =t +Dt=Gf f [( )e - ( ) w ]dt x xf 以及 x48/88继续积分,需要知道:f对空间与时间的变化型线.1. 非稳态项假设 f 对空间呈阶梯型变化:t t r ò (f t +Dt - f t )dx = r (f P+Dt - f P )Dx w e2. 对流项假设 f 对时间呈显示阶梯型变化:rt +Dtòt[(uf )e - (uf ) w ]dt = r[(uf )te - (uf )tw ]Dt49/88假设 f 对空间呈分段线性变化:fE + fP fP + fW fE - fW r[(uf ) - (uf ) ]Dt = r uDt ( ) = r uDt 2 2 2t e t w均分网格3. 扩散项f 假设 对时间呈显式阶梯型变化: xt +DtGòtf f f t f t [( )e - ( ) w ]dt = G[( )e - ( ) w ]Dt x x x x50/88假设 f 对空间呈分段线性变化:。
第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律及导热问题的基本分析方法。
物质内部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。
物质内部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。
导热理论从宏观研究问题,采用连续介质模型。
第一节 基本概念及傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体内各点温度分布的总称,称为即为温度场(标量场)。
它是空间坐标和时间坐标的函数。
在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:① 稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。
(如设备正常运行工况) 稳态导热:发生于稳态温度场中的导热。
② 非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。
(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。
2.从空间坐标分: ① 三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ② 二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τ∆tt-∆tgrad t③ 一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体内温度相同的点连成的面即为等温面。
2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。
为了直观地表示出物体内部的温度分布,可采用图示法,标绘出物体中的等温面(线)。
数值传热学数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。
数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。
求解所建立起来的代数方程已获得求解变量的近似值。
数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。
数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。
求解所建立起来的代数方程已获得求解变量的近似值。
数值传热学常用的数值方法1.有限差分法历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。
其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。
2.有限容积法将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。
通过将守恒型的控制方程对控制容积坐积分导出离散方程。
在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。
3.有限元法把计算区域划分为一系列原题(在二维情况下,元体多为三角形或四边形),由每个元体上去数个点作为节点,然后通过对控制方程做积分来获得离散方程。
主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2010年9月27日, 西安数值传热学第四章扩散方程的数值解及其应用(1)4.1 一维导热问题4.1.1一维稳态导热的通用控制方程4.1.3界面导热系数的确定方法4.1.4 一维非稳态导热控制方程的离散化4.1.2通用控制方程控制容积积分法的离散4.1.5 数学上的稳定未必导致物理上有意义的解一维稳态导热问题不同坐标系通用控制方程0 P P()0P x x Δ=i调和平均已经广泛为国内外学术界所接受。
≤1数学上的稳定未必导致物理上有意义的解无内热源一维非稳态导热,初场均匀,两表面0]T +代入下式:P(全隐格式)才能满足。
结论:数学上的稳定未必导致物理上有意义的解;推=xΔa TP P极坐标均可以表示成为:2.解决通用化的一种方案为写出适合于三种坐标系中系数的通用表达式,特引进两个辅助变量:(1)x –方向标尺因子,scaling factor ,x-方向的距离表示成为sx x δi 。
对直角、圆柱坐标规定1;sx ≡(2)y-方向引入一个名义半径,R 。
对直角坐标R =1,据此,东西导热距离为:sx xδi 东西导热面积为:R /y sxΔ对极坐标取;sx r =对圆柱与极坐标R =r三种二维正交坐标系中离散方程的统一表达式按这种方式编制程序时,只要设置一个变量MODE,4.3 源项与边界条件的处理4.3.1非常数源项的线性化处理1. 线性化方法4.3.2第二、三类边界条件使方程组封闭的处理2. 线性化方法讨论3. 线性化方法应用实例1. 补充以边界节点代数方程的方法2. 附加源项法S= P2. 线性化方法讨论(1)对与被求解变量有关的非常数源项,线性化比假定为常数更合理:用*()PS f T =来表示P 的源项比落后一个迭代步;P C P T S S S =+(2)任何复杂的函数总可以用线性函数来近似逼近;线性又是建立线性代数方程所必须的;(3)是为保证代数方程迭代求解收敛所必须;0P S ≤P P nb nb a a b φφ=+∑P nb a a ≥∑P nb P a a S V =−Δ∑代数方程迭代求解收敛的充分条件是,因为可以确保代数方程迭代求解收敛。
主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER2010年10月18日, 西安数值传热学第五章对流扩散方程的离散格式(2)对流项离散格式的重要性及两种离散方式5.5.1假扩散的含义与成因5.5.2一阶截差格式引起严重假扩散举例1.本来的含义2.扩充的含义3.Taylor 展开法的分析5.5关于假扩散的讨论5.5.3网格倾斜交叉引起的计算误差5.5.4 非常数源项引起的假扩散5.5.5 两个名例以一维非稳态纯对流过程为例俩分析,其中有两n nφφ2(,O x φΔΔ其中关于时间的二阶导数项可做如下变化:时才没有这部分的计算误差。
2. 扩充的含义现有文献中常常将较大的计算误差都称为假扩散,大致有以下几项原因:(1) 一阶导数的一阶截差格式;(2) 流动方向与网格线呈倾斜交叉;(3) 离散格式未计及非常数源项的影响。
5.5.2一阶截差格式引起严重假扩散举例1.一维稳态对流扩散问题对流项用FUD,扩散项用CD,当Pe较大时,数值计算结果严重偏离精确解。
Physically plausible solution纯对流传递纯对流传递由离散方程:1n−1此时只有对流,没有扩散!时则有严重假扩散!0.8C =0.8C =当时,产生了严重的扩散作此种误差称为流向假扩散Γ≠Γ气流01. 设UE对P 控制容积,有2. 设控制容积,此时:计算误差纯对流传递三个对流问题的归纳这就是假扩散纯对流传递3)网格倾斜交叉引起的计算误差E冷热流体之间产生了温度均匀化的过程,即交叉5.5.5 已知流场计算温度场232(1),2(1)u y x v x y =−=−−参考解xT严重假扩散2) Leonard细高方腔中的自然对流换热5.6.1采用高阶格式克服流向假扩散5.6可以克服或减轻假扩散的格式与方法5.2.2 克服、减轻交叉假扩散的方法1. 采用二阶迎风2.采用三阶迎风3. 采用QUICK 格式1. 采用有效扩散系数2.采用自适应网格4. 采用SGSD 格式可以克服或减轻假扩散的格式与方法相当于界面上的中心差分)W WWxφ+Δ如型线上凹,则(2) FVM向上游取两点定义界面插值2.采用三阶迎风展开定义-一阶导数的三阶偏差分格式3. 采用定义-界面的插值在中心差分基础上考虑曲中心差分插值率修正?需要满足两个条件:插值的正确修正:相邻(2)0W PE φφφ−+<型线下凹8Cur −对e-界面u e 小于零时,取,,W P φφφu e 大于零时,取怎样相邻的三点?QUICK(2)e φφ=1/2w i φφ−=有:4. 采用CD条件稳定,但没有二阶假扩散;二阶迎风绝对稳定,组合起来,但是:如何确定值,特别是如何由计算结果来5. 高阶格式实施中的问题f u f计算边界:固o2) 代数方程的求解:等时,5.6.2用减小扩散系采用自适应网格(以减轻流5.7 对流-扩散方程离散形式稳定性分析5.7.1 数值计算中常见的三种不稳定性5.7.2 分析对流项格式不稳定性的“符号不变原则”5.7.3 稳定性分析结果讨论5.7.4 对流项格式问题讨论小结2.“符号不变”原则的基本思想3. “符号不变”原则的实施步骤4. “符号不变”原则的实施例子1. 研究背景扩散方程离散形式稳定性分析也会产生振荡的解,称为对流项离散格式的不稳态定性,研究目的是,找出产生振荡的临界Peclet 数。
2.3建立离散方程的控制容积积分法及平衡法控制容积法(control volune integration)是有限容积法中建立的离散方程的主要方法,也是本章的主要内容。
直接对控制容积应用守恒定律建立离散方程的方法(平衡法balance method)可以看成是控制容积法的一种变形与补充,本节中也做简要介绍。
2.3.1 控制容积积分法的实施步骤及常用型线应用控制容积积分法导出离散方程的主要步骤如下:1.将守恒型的控制方程在任一控制容积及时间间隔内空间与时间作积分。
2.选定未知函数及其导数对时间及空间的局部分布曲线,即型线(profile),也就是如何从相邻节点的函数值来确定控制容积界面上被要求函数值的插值方式。
3.对各个项按选定的型线做出积分,并整理成关于节点上未知值的代数方程。
在实施控制容积积分法时常用的型线有两种,即分段线性(piecewise-linear)分布及阶梯式(stepwise)分布。
在图2-8a中画出了函数ϕ随空间坐标而变化的这两种型线,而图2-8b中则是ϕ随时间而变化的几种情形。
2.3.2 用控制容积积分法离散以为模型方程将一维模型方程的守恒式(2-1b )对图2-2所示的控制容积P 在Δt 时间间隔内作积分,把可积的部分积出来以后得:ρ ϕt +Δt −ϕt dx +ew ρu ϕ e − u ϕ w t +Δt t dt =Г ðϕðx e − ðϕðx w dt + sdxdt e wt +Δt t (a) 为了最终完成各项积分以获得节点上未知值间的代数方程,需要对各项中变量ϕ的型线做出抉择。
正式这一步中,引入了对被求量的近似处理方法。
1.非稳态项需要选定ϕ随x 而变化的型线,这里取为阶梯式,即同一控制容积中各处的ϕ值相同,等于节点上之值ϕp ,于是有:ρ ϕt+Δt −ϕt dx = ϕp t+Δt −ϕp t ew Δx (b) 2.对流项这里要对ϕ随t 而变化的规律做出抉择,我们采用阶梯显式,即在整个Δt 间隔内取t 时刻之值,仅当(t+Δt )时刻才跃升成为ϕt+Δt (见图2-8(b ))。