第3章 放大电路的频率特性
- 格式:ppt
- 大小:2.62 MB
- 文档页数:111
第三章 放大电路的频率特性通常,放大电路的输入信号不是单一频率的正弦信号,而是各种不同频率分量组成的复合信号。
由于三极管本身具有电容效应,以及放大电路中存在电抗元件(如耦合电容和旁路电容),因此,对于不同频率分量,电抗元件的电抗和相位移均不同,所以,放大电路的电压放大倍数A u 和相角φ成为频率的函数。
我们把这种函数关系称为放大电路的频率特性。
§1频率特性的一般概念一、频率特性的概念以共e 极基本放大电路为例,定性地分析一下当输入信号频率发生变化时,放大倍数将怎样变化。
在中频段,由于电容可以不考虑,中频A um 电压放大倍数基本上不随频率而变化。
180=ϕ,即无附加相移。
对共发射极放大电路来说,输出电压和输入电压反相。
在低频段,由耦合电容的容抗变大,电压放大倍数A u 变小,同时也将在输出电压和输入电压间产生相移。
我们定义:当放大倍数下降到中频率放大倍数的0.707倍时,即2umul A A =时的频率称为下限频率f l对于高频段。
由于三极管极间电容或分布电容的容抗在低频时较大,当频率上升时,容抗减小,使加至放大电路的输入信号减小,输入电压减小,从而使放大倍数下降。
同时也会在输出电压与输入电压间产生附加相移。
同样我们定义:当电压放大倍数下降到中频区放大倍数的0.707倍时,即2umuh A A =时的频率为上限频率f h 。
共e 极的电压放大倍数是一个复数,ϕ<=∙u u A A其中,幅值A u 和相角ϕ都是频率的函数,分别称为放大电路的幅频特性和相频特性。
我们称上限频率与下限频率之差为通频带。
l h bw f f f -=表征放大电路对不同频率的输入信号的响应能力,它是放大电路的重要技术指标之一。
二、线性失真由于通频带不会无穷大,因此对于不同频率的信号,放大倍数的幅值不同,相位也不同。
当输入信号包含有若干多次谐波成分时,经过放大电路后,其输出波形将产生频率失真。
由于它是电抗元件产生的,而电抗元件又是线性元件,故这种失真称为线性失真。
第三章放大电路的频率特性本章研究输入信号的频率不同时,对放大电路电压放大倍数的不同影响及线性失真问题。
着重分析电路参数对放大电路通频带的影响。
本章内容:3.1 频率特性的一般概念3.2 三极管的频率特性3.3 共发射极放大电路的频率特性3.4 多级放大电路的频率特性本章要点:1. 放大电路频率特性的概念2. 三极管的频率参数3. 电路参数对放大电路通频带的影响4. 多级放大电路的通频带与级数的关系电子课件三:放大电路的频率特性课时授课教案一授课计划批准人:批准日期:课序:7 授课日期:授课班次:课题:第三章第3.1节频率特性的一般概念目的要求:1. 了解信号频率对电压放大倍数的影响。
2. 了解放大电路产生线性失真的原因。
3. 掌握影响放大电路通频带的因素。
重点:影响放大电路通频带的因素难点:线性失真教学方法手段:结合电子课件讲解教具:电子课件、计算机、投影屏幕复习提问: 1. 电容和电感元件的阻抗与频率的关系?2. 何谓三极管的PN结结电容?课堂讨论:RC滤波电路的特性?布置作业:课时分配:二 授课内容3.1 频率特性的一般概念3.1.1 频率特性的概念下面以共发射极放大电路为例进行分析。
当输入信号的频率不同时,不仅放大电路电压放大倍数的模不一样,而且输入电压与输出电压的相位关系(简称相移)也不一样。
一、 中频段在中频段,即通带内,因为耦合电容和旁路电容的容量较大,其容抗可忽略不计,把他们视为短路;又因为极间分布电容(含PN结结电容)很小,其容抗很大,可把他们视为开路;感抗视为短路。
可认为电压放大倍数基本与频率无关而保持定值,输入电压与输出电压反相位。
二、低频段当输入信号的频率逐渐降低时,耦合电容和旁路电容的容抗逐渐增大,不能把它们视为短路,如图3-1(a)所示。
电压放大倍数的模随频率的降低而减小,输出电压与输入电压之间的相移也发生变化,不再保持o180的关系。
当放大倍数降到中频段电压放大倍数的21时所对应的频率l f 为通频带的下限频率,如图3-2(a)所示,相移ϕ如图3-2(b)所示。
放大电路的频率特性为了便于讨论,都假定了输入信号vi是单一频率的正弦波,而实际工作中所要放大的信号并不是单一频率的正弦波。
如电视信号中的图像信号,其频率包括了6~6MHz范围内各种频率重量。
由于放大电路中电抗元件的存在,放大电路对不同频率重量的信号放大力量是不相同的,而且不同频率重量的信号通过放大电路后还会产生不同的相移。
因此,衡量放大电路放大力量的放大倍数也就成为频率的函数。
放大电路的电压放大倍数与频率的关系称为幅频特性,输出信号与输入信号的相位差与频率之间的关系称为相频特性。
两者统称频率特性。
由于电抗元件的电抗是频率的函数,随着频率的变化而变化。
如电路中的耦合电容和射极旁路电容,在频率较低时,其容抗较大,它们对沟通信号不能视为短路,这就必需考虑其容抗对电路的影响。
在分析放大电路的频率特性时,通常采纳频率分段法进行分析,即将放大电路的工作频率范围划分为低频、中频和高频三个频段,分别求出各频段中的频率特性,然后综合求得完整的频率特性。
放大电路的频率特性中有三项性能指标,它们是:图 1 放大电路的频率特性(a)幅频特性(b)相频特性1.下限频率在低频段,放大电路的电压放大倍数降到中频段电压放大倍数Avo的0.707Avo时的频率值叫做下限频率fL,如图1(a)所示。
引起低频段电压放大倍数下降的缘由主要是输入耦合电容、输出耦合电容和射极旁路电容,对低频信号形成较大的衰减,从而使电压放大倍数下降。
2.上限频率在高频段,放大电路的电压放大倍数降到中频段电压放大倍数Avo的0.707Avo时的频率值叫做上限频率fH,如图1(a)所示。
引起高频段电压放大倍数下降的缘由主要是三极管的极间电容和放大电路的输入电路和输出电路的分布电容,将高频信号旁路,从而使电压放大倍数下降。
3.通频带在频率特性的中频段,放大电路的各种电容对沟通信号的影响均可以忽视,因此电压放大倍数Avo基本不变。
这个频率带宽B =fH -fL,称B为通频带。
为了分析问题的方便,常把放大器的工作频率范围分为三段,分别称作低频段、中频段和高频段。
图示电路中的C 2、R L 视为下一级的输入耦合电容和输入电阻,故画本级的混合π型等效时,它们不包含在内。
4.3 共发射极放大电路的频率特性绘制频率特性曲线时,采用对数频率特性,即波特图。
R L S TS R bE BR Lu S+U CCR CR bR S C 1C 2b / ec/b br /b er /C ππ/m b eg U /b eU 1K C Kμ+R S C 1 R C o U + - R biU sU在中频段耦合电容和旁路电容视为短路,极间分布电容视为开路,中频段等效电路如图示4.3.1 中频放大倍数A usmb /ec/b br /b er /m b eg U R S R C o U +- R bsU /b eU iU /o m c b e U g U R =-////b e i ib ebb b er U U pU r r ==+ii ss ir U U R r =+////()i b bb b e r R r r =+///i b e o m c s s s i bb b e r r U g R U R r r r =-⋅++im c ss ir pg R U R r =-⋅+o i usmm c s s iU r A pg R U R r ==-⋅+///b e bb b er p r r =+其中在低频段,极间分布电容的容抗比中频段更高,故仍可视为开路,而耦合和旁路电容容抗增大,其分压作用不可忽略,此时等效电路如图示4.3.2 低频放大倍数A usl 及波特图/o m c b e U g U R =-////b ei ib e bb b er U U pU r r ==+11ii ss i r U U R r j C ω=++////()i b bb b e r R r r =+o 11im c ss i r U pg R U R r j C ω=-⋅++b /e c/b br /b er /m b eg U R SR C oU +-R bsU /b eU iU C 11.等效电路2.电压放大倍数A usl3.下限截止频率o 1111()im css is i r U pg R U R r j R r C ω=-⋅+++令 1()s i lR r C τ+=usm 1111usl A A j ωτ=⋅+o 1111()i usl m cs s is i U r A pg R U R r j R r C ω==-⋅+++11122()L l s i f R r C πτπ==+usm 11L A f j f =⋅-当f =f L 时, 12usl usm A A =f L 时为下限截止频率。