第六章 焊接结构设计方法
- 格式:pptx
- 大小:409.13 KB
- 文档页数:8
焊接结构设计
1 焊接结构生产工艺过程概述
2 焊接方法的选择
3 焊接结构工艺设计
6 . 1 焊接结构生产工艺过程概述
焊接结构主要生产工艺过程备料装配焊接焊接变形矫正表面处理(油漆、喷塑、热喷涂)
质量检验
6 . 2 焊接方法的选择
选择焊接方法依据原则
1、焊接接头使用性能及质量要符合结构技术要求;
2、提高生产率,降低成本;
3、焊接现场设备条件及工艺可能性;
1
、尽量减少焊缝的数量和长度
6 . 3 焊接结构工艺设计
一、焊缝布置
不合理
合理
不合理
合理
2、焊缝布置应尽量避免密集或交叉
一、焊缝布置
不合理
合理
不合理合理不合理合理
3、焊缝的位置应尽可能对称布置
一、焊缝布置
不合理
合理不合理
合理
4、焊缝应尽量避开最大应力断面和应力集中位置
一、焊缝布置
不合理
合理
不合理合理不合理合理
5、焊缝应尽量避开机械加工表面
一、焊缝布置
不合理合理不合理合理
6、焊缝位置应便于焊接操作
一、焊缝布置
不合理合理不合理合理
6、焊缝位置应便于焊接操作
一、焊缝布置
不合理
合理
不
合
理合理6、焊缝位置应便于焊接操作
一、焊缝布置
二、焊接接头设计
焊接接头设计:焊接接头形式+坡口形式设计对
接
接
头
角
接
接
头
二、焊接接头设计
搭接接头T 形接头
二、焊接接头设计。
结构设计知识:焊接结构设计的基本原理与方法焊接结构设计的基本原理与方法焊接结构设计是现代工程技术的重要组成部分。
在工程领域中,焊接结构的设计、制作和使用都占据着重要的地位。
这些焊接结构不仅需要满足其在使用过程中的性能要求,还需要考虑其与其他零部件的协调性、较高的安全性以及较低的维护成本等因素。
在这篇文章中,我们将介绍焊接结构设计的基本原理和方法,以帮助读者更好地理解和应用这一领域的知识。
焊接结构的基本原理焊接结构的基本原理是在设计阶段考虑到产生热量的曲线和同时产生的剪切力。
基于这个原理,焊接结构必须考虑以下因素:1.结构的荷载焊接结构的设计必须满足其所在环境的荷载要求,例如建筑物、桥梁、机器设备等。
这些荷载分为静荷载和动荷载两种类型。
静荷载指工作过程中不会发生变化的荷载,如桥梁自重;动荷载指工作过程中会有变化的荷载,如汽车行驶在桥梁上产生的振动荷载。
焊接结构必须考虑并满足所承受的荷载要求。
2.材料的性质焊接结构必须采用与应用相适应的合适材料,其中材料的性质包括机械和物理性质,如韧性、强度、刚度等等。
根据结构设计和制造需要,不同材料的组合可以产生不同的焊接结构。
3.结构的几何形状焊接结构的几何形状对其性能影响很大。
在设计焊接结构时,必须考虑其内部形状、材料的厚度、焊缝和角度等因素。
在选定设计方案时,必须对这些因素进行分析和计算。
4.焊接方法焊接方法也是设计焊接结构时需要考虑的重要因素。
设计人员必须了解不同的焊接方法及其适用范围。
不同的焊接方法将对结构的强度、精度、形状和寿命等方面产生不同的影响。
焊接结构的设计方法针对上述基本原理,下面介绍一些常用的焊接结构设计方法。
1.分析需求在设计焊接结构之前,需要进行一些分析工作。
首先,需要明确焊接结构的设计需求和目标,例如所需要承载的荷载、使用环境等。
设计人员需要充分了解这些相关因素,以便能够根据实际要求进行设计。
2.选择材料正确选材是生产焊接结构的关键,以获得最佳性能和经济性。
2:选题背景换热设备的焊接结构是由:筒体、封头、接管、法兰、管板及换热管等基本构件通过焊接接头(或胀接)连接成的整体。
该整体构成换热设备的重要组成部分。
因此,掌握好这些基本构件和焊接接头的设计,对进行换热设备的整体设计至关重要。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热器的材料具有抗强腐蚀性能。
本次高压溶剂换热器在考虑抗强腐蚀方面,同时还要考虑抗高压问题。
所以,应着重对抗高压性能进行考虑,主要从板材材料选取,板材的厚度,焊接工艺的强度问题方面入手。
本课程设计将着重对封头的焊接工艺进行具体设计。
3.方案论证:3.1.原始数据:循环氢与反应产物换热器:设计压力:17.34/15.94Mpa (壳程/管程), 操作压力:15.92/14.56Mpa (壳程/管程), 设计温度:395/435℃(进口/出口),操作温度:262/332℃(进口/出口), 腐蚀余度3/3(壳程/管程),公称容积:8.8m³, 操作介质:循环氢/反应产物(壳程/管程), 焊缝系数1/1(壳程/管程),水压试验压力23.48/22.32(壳程/管程),容器类别:三类,容器重量:73194Kg, 公差:GB150-1998《钢制压力容器》螺栓孔应跨分布,法兰连接两螺栓,螺纹外表面涂润滑脂3.2.封头的选材循环氢与反应产物换热器经常在高温高压等恶劣条件下工作,工作介质常含H2S,H2等反应产物,有强烈的腐蚀性等,选用2.25Cr-1Mo,内部双层堆焊E309L+E347即可满足工作要求。
2.25Cr-1Mo是合金钢中加入Cr和Mo重要元素,其中Cr主要起抗氧化的作用,在高温下与氧结合强,在金属表面形成Cr2O3稳定化合物包围金属,阻止了金属继续氧化,在温度较高下的金属原子活动能较强,由于金属再结晶的结果,使金属性软化,而Mo可以提高再结晶温度,阻碍高温下原子的活动能力,提高热强性,同时也保证了有足够的强度,塑性和韧性,综合品质比较高,完全满足此次设计要求。
目录一:总体焊接结构分析 (2)1. 外形结构分析 (2)2. 焊缝布置及焊接次序分析 (2)3. 焊接接头形式分析 (2)4. 焊接可靠性分析 (2)5. 焊缝的可焊到性分析 (3)二:母材的选用与母材的焊接性分析 (3)1. 母材的选用 (3)2. 母材的焊接性 (3)三:焊料分析 (9)四:焊接方法选择 (10)1. 埋弧焊的优点: (11)2. 埋弧焊的缺点: (12)3. 埋弧焊的冶金特点 (12)五:接头坡口形式及尺寸与焊接工艺参数 (13)1. 接头坡口形式及尺寸 (13)2. 焊接工艺参数 (14)六:焊接工艺卡片: (15)一:总体焊接结构分析1.外形结构分析该容器为受内压的常温中压压力容器,圆柱段长(L)1600mm,直径(D)900m,壁厚(t)8mm。
由图可知,筒体两端焊有凸型封头,筒体及封头上均焊有连接管道,外接法兰盘连接管道。
主要加工手段为焊接,此外还有冲压、卷弯、机加工等辅助工艺。
2.焊缝布置及焊接次序分析根据焊接的基本原则,尽量减少焊缝数量和长度,尽量对称施焊。
在两块U型钢板上使用线切割切出孔,分别焊接上接头及法兰盘。
再将U型钢板对称焊接合体,得到筒体。
在凸形封头上焊接管道接头及法兰盘,再与筒体焊合,内衬垫板,单面焊,双面成型。
3.焊接接头形式分析综合考虑焊接原则,将该容器的焊缝分为以下几种:U型钢板与视镜孔及手孔接头的焊缝、U型钢板之间的焊缝、凸形封头与管接头的焊缝、凸型接头与筒体之间的焊缝、法兰盘与接头之间的焊缝。
其接头形式分别是:角接接头、对接接头、角接接头、对接接头。
4.焊接可靠性分析该压力容器为中压容器,对焊缝要求较高。
对焊接接头性能要求的总原则是等强度、等塑性、等韧性和等耐腐蚀性。
结合压力容器的性质及要求,四个接头处焊缝质量最难保证,使用过程中最易出现问题。
该接头处焊缝连续较多、应力集中、热输入大、热影响区大、焊后易变形。
焊接时应严格按照焊接参数及技术施焊,最大限度保证焊接质量、减少焊接变形。
焊接件的结构设计焊接件是指由焊接工艺连接的构件或零件。
在整个焊接工艺中,焊接件的结构设计起到了至关重要的作用。
良好的结构设计可以保证焊接件的质量和性能,并确保焊接工艺顺利进行。
下面将从焊接件的结构设计中的要点、步骤、注意事项等方面进行详细介绍。
一、结构设计要点1.材料选择:焊接件的材料选择应根据使用环境和工作条件进行合理选择。
常见的焊接材料有低碳钢、不锈钢、铝合金等。
选择合适的材料可以提高焊接件的强度和耐腐蚀性。
2.结构形式选择:结构形式是指焊接件在装配时的形状和结构布局。
应根据焊接件的功能和使用要求进行选择。
常见的结构形式有角焊缝、对接焊缝、搭接焊缝等。
3.强度设计:焊接件的强度设计应满足预期的载荷和使用要求。
根据焊接件的受力分析,确定焊缝的尺寸和焊接参数,以保证焊接件具有足够的强度。
4.焊接缺陷控制:焊接件的结构设计应注意控制焊接缺陷,常见的焊接缺陷有气孔、夹渣、裂纹等。
通过合理设计焊缝形状、采用适当的焊接工艺参数和设备,可以有效地减少焊接缺陷的产生。
5.板材厚度选择:焊接件的板材厚度选择应根据受力情况和结构要求进行合理选择。
过薄的板材容易导致焊接变形和断裂,而过厚的板材则会增加焊接工艺的难度。
二、结构设计步骤1.确定焊接件的功能和使用要求:根据焊接件的使用要求,确定焊接结构的形式和尺寸。
2.进行焊接件的受力分析:通过力学分析,确定焊接件在使用过程中的受力情况和受力方向。
3.设计焊缝形状和尺寸:根据受力分析结果,确定焊缝的形状和尺寸,以保证焊接件具有足够的强度。
4.选择合适的焊接材料:根据焊接件的使用环境和工作条件,选择合适的焊接材料,以确保焊接件的耐腐蚀性和强度。
5.设计焊接工艺参数:根据焊接材料和焊接件的要求,确定合适的焊接工艺参数,包括焊接电流、焊接时间、预热温度等。
三、结构设计注意事项1.焊接件的结构设计应考虑焊后的应力和变形问题,采取合适的预应力设计和变形控制措施。
2.在进行焊接件的结构设计时,应充分考虑焊接设备和工艺的条件,确保焊接过程的可实施性。
结构设计知识:焊接结构优化设计的原理与方法焊接结构优化设计的原理与方法随着现代化科技的不断发展,焊接成为了机械工业最基本的加工方法之一,而焊接结构的设计优化则是一个非常重要的工作。
焊接结构的设计优化可以进一步提高焊接结构的强度、刚度和耐用性,增强焊接结构的耐久性和服务生命周期。
本文将介绍焊接结构的设计优化的原理和方法。
一、原理焊接结构的设计优化的基本原理是将焊接结构的几何形状、材料和工艺参数等因素进行综合分析,并寻找合适的优化方法,以最大程度地提高焊接结构的性能。
在焊接结构的设计过程中,需要先确定焊接结构的功能和使用条件等,然后再结合实际制造工艺和材料性能以及受力情况等因素来进行焊接结构的优化设计。
其中,焊接工艺参数是决定焊缝质量和焊接接头强度的关键因素,也是焊接结构的优化设计的基础。
二、方法针对以上原理,我们可以采用以下方法来进行焊接结构的优化设计。
1.确定焊接结构的使用条件和受力情况首先要明确焊接结构的使用条件和受力情况,分析其受力特点,包括受力方向、受力大小和受力形式等。
2.分析焊接结构的几何形状和材料对焊接结构的几何形状和材料等因素进行分析,以确定焊接结构的内部应力分布状况和受力情况。
3.确定焊接方式和工艺参数根据特定的焊接结构材料和要求,选择合适的焊接方式和工艺参数,包括焊接材料、预热温度、加热时间、焊接速度和焊接电流等。
4.进行焊接结构的强度计算和试验验证对所设计的焊接结构进行强度计算和试验验证,以验证该结构的强度是否满足使用条件和受力要求。
5.优化焊接结构设计根据计算和试验结果进行优化,包括修改焊接结构的几何形状、改进焊接工艺和调整焊接参数等。
6.重复以上步骤,直至达到最佳设计方案。
需要注意的是,在进行焊接结构优化设计时,要根据实际情况进行综合考虑,避免盲目追求某种方案而忽略其他关键因素,导致焊接结构的强度下降。
结论焊接结构的优化设计是增强焊接结构强度和使用寿命的重要方法。
在进行焊接结构优化设计时,需要进行准确的计算和试验,结合实际工艺和材料性能来进行优化。