2011年全国各省市高考试题汇编-牛顿运动定律讲评
- 格式:ppt
- 大小:789.00 KB
- 文档页数:6
力学综合计算21.[2011·全国Ⅰ卷] 如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是解:选A 。
相对静止时,为静摩擦力,加速度相同,a 1=a 2=kt m 1+m 2;相对运动时,a 1=μm 2g m 1恒定不变,a 2=kt m 2-μg ,a 2随时间的变化率为图像中斜率,相对静止时的斜率为k m 1+m 2,相对运动时的斜率为k m 2,斜率变大。
考点:[滑块+木板模型]。
14.[2012·全国Ⅰ卷] 伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是A .物体抵抗运动状态变化的性质是惯性B .没有力的作用,物体只能处于静止状态C .行星在圆周轨道上保持匀速率运动的性质是惯性D .运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动解:选AD 。
物体惯性大,运动状态难改变,惯性是物体抵抗运动状态变化的性质;没有力的作用,物体将处于静止状态或匀速直线运动状态;行星在圆周轨道上做匀速圆周运动,是因为受到向心力作用的结果,合外力方向始终与速度方向垂直。
考点:[惯性、力与运动的关系]。
07. [2014·江苏] 如图所示,A 、B 两物体的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg 解:选BCD 。
2011普通高校招生考试试题汇编-选修3-41(广东第18题).光电效应实验中,下列表述正确的是A.光照时间越长光电流越大B.入射光足够强就可以有光电流C.遏止电压与入射光的频率有关D.入射光频率大于极限频率才能产生光电子2(2011安徽第15题).实验表明,可见光通过三棱镜时各色光的折射率n 随着波长λ的变化符合科西经验公式:24BC n A λλ=++,其中A 、B 、C 是正的常量。
太阳光进入三棱镜后发生色散的情形如下图所示。
则 A .屏上c 处是紫光B .屏上d 处是红光C .屏上b 处是紫光D .屏上a 处是红光答案:D解析:白色光经过三棱镜后产生色散现象,在光屏由上至下(a 、b 、c 、d )依次为红、橙、黄、绿、蓝、靛、紫。
屏上a 处为红光,屏上d 处是紫光,D 正确。
3(2011全国卷1第16题)雨后太阳光入射到水滴中发生色散而形成彩虹。
设水滴是球形的,图中的圆代表水滴过球心的截面,入射光线在过此截面的平面内,a 、b 、c 、d 代表四条不同颜色的出射光线,则它们可能依次是A.紫光、黄光、蓝光和红光B.紫光、蓝光、黄光和红光C.红光、蓝光、黄光和紫光D.红光、黄光、蓝光和紫光解析:按照偏折程度从小到大的排序为d 、c 、b 、a 、故:折射率为:d c b a n n n n <<<频率为:d c b a f f f f <<<选B4(2011全国卷1第21题)一列简谐横波沿x 轴传播,波长为1.2m ,振幅为A 。
当坐标为x=0处质元的位移为2A -且向y 轴负方向运动时.坐标为x=0.4m处质元的位移为A 。
当坐标为x=0.2m 处的质元位于平衡位置且向y 轴正方向运动时,x=0.4m 处质元的位移和运动方向分别为ab cA .12A -、延y 轴正方向B . 12A -,延y 轴负方向C .A 、延y 轴正方向D .A 、延y 轴负方向 解析:选C5(2011海南18模块3-4试题).(12分)(1)(4分)一列简谐横波在t=0时的波形图如图所示。
高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ;(2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t .【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-= 0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ=解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L = 解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:023sin L t g θ=2.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。
高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度.(2)小物块离开传送带时的速度大小.【答案】(1)1.25m;6m (2)55/5m s 【解析】【分析】【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o ,在传送带方向,对小物块根据牛顿第二定律有: cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a= 解得:1 1.25x m =,12L x <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m = 小物块向下滑动的时间为11=v t a传送带运动的距离101s v t =联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ;(2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭ 解得:255/v m s = 20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1)24/a g m s μ==(2)1t s =【解析】【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间.【详解】(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ=代入数据得:24/a g m s μ==(2)设物体加速到与传送带共速时运动的位移为0s根据运动学公式可得:202as v =运动的位移: 20842v s m a==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有212l at =解得 1t s =【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求:(1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移.【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P =联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v '由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '=解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o ,求:()1物资P 从B 端开始运动时的加速度.()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J .【解析】【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能.【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-= 后段运动有:222212L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+= 动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.5.如图所示,一段平直的马路上,一辆校车从一个红绿灯口由静止开始做匀加速直线运动,经36 m 速度达到43.2 km/h ;随后保持这一速度做匀速直线运动,经过20 s ,行驶到下一个路口时,司机发现前方信号灯为红灯便立即刹车,校车匀减速直线行驶36 m 后恰好停止.(1)求校车匀加速运动的加速度大小a 1;(2)若校车总质量为4 500 kg ,求校车刹车时所受的阻力大小;(3)若校车内坐有一质量为30 kg 的学生,求该学生在校车加速过程中座椅对学生的作用力F 的大小.(取g =10 m/s 2,结果可用根式表示)【答案】(1)22/m s (2)9000N (3)6026N【解析】【分析】(1)根据匀加速运动的速度位移关系可求加速度;(2)根据匀减速运动的速度位移关系可求加速度;根据牛顿第二定律可求阻力;(3)座椅对学生的作用力的水平分力等于mg ,F 的竖直分力的竖直分力等于重力,水平分力提供加速度.根据力的合成可求.【详解】(1)由匀加速直线运动公式可知v 2=2a 1x 1,得加速度a 1=2 m/s 2(2)由匀减速直线运动公式得:0-v 2=-2a 2x 3解得a 2=2 m/s 2F 阻=Ma 2=9000 N.(3)匀加速运动过程中,座椅对学生的作用力为F ,F 的竖直分力等于mg ,F 的水平分力由牛顿第二定律可得F 水平=ma 1F =()()221mg ma +得F =6026 N.6.如图所示,一个质量为3kg 的物体静止在光滑水平面上.现沿水平方向对物体施加30N 的拉力,(g 取10m/s 2).求:(1)物体运动时加速度的大小;(2)物体运动3s 时速度的大小;(3)物体从开始运动到位移为20m 时经历的时间.【答案】(1)10m/s 2(2)30m/s (3)2s【解析】【详解】(1)根据牛顿第二定律得:2230m/s 10m/s 3F a m ===; (2)物体运动3s 时速度的大小为 :103m/s 30m/s v at ==⨯=;(3)由位移与时间关系:212x at =则: 2120m 102t =⨯⨯, 则:2s t =.【点睛】本题是属性动力学中第一类问题,知道受力情况来确定运动情况,关键求解加速度,它是联系力与运动的纽带.7.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力.【答案】(1)2.5m ;(2)20.8N【解析】【详解】(1)无人机匀速上升的高度:h 2=vt 2无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma联立解得:F =20.8 N8.如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B 端的切线沿水平方向.质量m=1.0kg 的滑块(可视为质点)在水平恒力F=10.0N 的作用下,从A 点由静止开始运动,当滑块运动的位移x=0.50m 时撤去力F .已知A 、B 之间的距离x 0=1.0m ,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s 2.求:(1)在撤去力F 时,滑块的速度大小;(2)滑块通过B 点时的动能;(3)滑块通过B 点后,能沿圆弧轨道上升的最大高度h=0.35m ,求滑块沿圆弧轨道上升过程中克服摩擦力做的功.【答案】(1)3.0m/s ;(2)4.0J ;(3)0.50J .【解析】试题分析:(1)滑动摩擦力f mg μ=(1分)设滑块的加速度为a 1,根据牛顿第二定律1F mg ma μ-=(1分)解得219.0/a m s =(1分)设滑块运动位移为 0.50m 时的速度大小为v ,根据运动学公式212v a x =(2分)解得 3.0/v m s =(1分)(2)设滑块通过B 点时的动能为kB E从A 到B 运动过程中,依据动能定理有 k WE =∆合 0 kBF x fx E -=, (4分)解得 4.0kB E J =(2分)(3)设滑块沿圆弧轨道上升过程中克服摩擦力做功为f W ,根据动能定理0f kB mgh W E --=-(3分)解得0.50f W J =(1分)考点:牛顿运动定律 功能关系9.上海中心总高为632米,是中国最高楼,也是世界第二高楼。
高考物理牛顿运动定律的应用各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x=L−x相对滑动产生的热量为:Q=μmg△x代值解得:Q=0.5J【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F1=(M+m)a1代入数值得a1=4.8m/s2 ,F1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块分析,在水平方向有N′sinθ﹣μN′cosθ=ma2竖直方向有N′cosθ﹣μN′sinθ﹣mg=0对整体有F2=(M+m)a2代入数值得a2=11.2m/s2,F2=67.2N综上所述可以知道推力F的取值范围为:28.8N≤F≤67.2N.【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.3.如图所示,质量为M=10kg的小车停放在光滑水平面上.在小车右端施加一个F=10N的水平恒力.当小车向右运动的速度达到2.8m/s时,在其右端轻轻放上一质量m=2.0kg的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止(2)求3s内煤块前进的位移(3)煤块最终在小车上留下的痕迹长度【答案】(1) 2s (2) 8.4m (3) 2.8m【解析】【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移.【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.4.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。
高考物理牛顿运动定律的应用各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J 系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .2..某校物理课外小组为了研究不同物体水下运动特征, 使用质量m =0.05kg 的流线型人形模型进行模拟实验.实验时让模型从h =0.8m 高处自由下落进入水中.假设模型入水后受到大小恒为F f =0.3N 的阻力和F =1.0N 的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型(1)落到水面时速度v 的大小; (2)在水中能到达的最大深度H ; (3)从开始下落到返回水面所需时间t . 【答案】(1)4m/s (2)0.5m (3)1.15s 【解析】 【分析】 【详解】(1)模型人入水时的速度记为v ,自由下落的阶段加速度记为a 1,则a 1=g ;v 2=2a 1h 解得v=4m/s ;(2)模型人入水后向下运动时,设向下为正,其加速度记为a 2,则:mg-F f -F=ma 2 解得a 2=-16m/s 2所以最大深度:2200.52v H m a -== (3)自由落体阶段:1t 0.4vs g== 在水中下降2200.25vt s a -== 在水中上升:F-mg-F f =ma 3 解得a 3=4.0m/s 2所以:3320.5Ht s a == 总时间:t=t 1+t 2+t 3=1.15s3.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。
高考物理牛顿运动定律真题汇编(含答案)一、高中物理精讲专题测试牛顿运动定律1. 如图,有一水平传送带以8m/s的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m , g 取10m/s2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1) a g 4m/s2(2) t 1s【解析】【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动•根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间.【详解】(1 )物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:mg ma代入数据得:a g 4m/s2(2 )设物体加速到与传送带共速时运动的位移为S o根据运动学公式可得:2as0 v22运动的位移:§ —8 4m2at,则有则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为2解得t 1s【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.2. 四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用. 一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36N,运动过程中所受空气阻力大小恒为f=4 N. (g取10 m/s2)(1) 无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5s时离地面的高度h;(2) 当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而坠落•求无人机坠落到地面时的速度V;(3) 接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力•为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t i.5亦【答案】(1) 75m (2) 40m/s (3) 口s3【解析】【分析】【详解】(1 )由牛顿第二定律F- mg - f=ma代入数据解得a=6m/s2代入数据解得h=75m.(2)下落过程中mg- f=ma i 代入数据解得「:t「一落地时速度v2=2a i H,代入数据解得v=40m/s(3 )恢复升力后向下减速运动过程F-mg+f=ma2代入数据解得-「「亠2 2设恢复升力时的速度为V m,则有「丄''由V m=a i t l代入数据解得3. 如图所示,在光滑水平面上有一段质量不计,长为6m的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A、B,现同时对A、B两滑块施加方向相反,大小均为F=12N的水平拉力,并开始计时.已知A滑块的质量mA=2kg, B滑块的质量mB=4kg, A、B滑块与绸带之间的动摩擦因素均为卩=0.5 A、B两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A、B两滑块加速度的大小;(2)0到3s时间内,滑块与绸带摩擦产生的热量.【答案】⑴印1%2& 0・5%2 ;(2)30J【解析】【详解】(1)A滑块在绸带上水平向右滑动,受到的滑动摩擦力为f A ,水平运动,则竖直方向平衡:N A mg , f A N A ;解得:f A mg ①A滑块在绸带上水平向右滑动,0时刻的加速度为a!,由牛顿第二定律得: F f A m A a,――②B滑块和绸带一起向左滑动,0时刻的加速度为a2由牛顿第二定律得: F f B m B a2――③;2 2联立①②③解得:a 1m /s , a20.5m /s ;(2)A滑块经t滑离绸带,此时A、B滑块发生的位移分别为X i和X2Lx, x221 .2x, a,t22X2 a2t2代入数据解得:x, 2m , x2 1m, t 2s2秒时A滑块离开绸带,离开绸带后A在光滑水平面上运动,B和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:Q f A x1x2代入数据解得:Q 30J .4•滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气•当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的气垫”从而大大减小雪地对滑雪板的摩擦•然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大•假设滑雪者的速度超过 4 m/s 时,滑雪板与雪地间的动摩擦因数就会由0.25变为烬=0.125 .一滑雪者从倾角为0= 37°勺坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示•不计空气阻力,坡长为 1 = 26 m, g取10 m/s2, sin37 = 0.6, cos 37 = 0.8.求:(1) 滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2) 滑雪者到达B处的速度;(3) 滑雪者在水平雪地上运动的最大距离.【答案】1s 卜护詞99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度位移和时间.【详解】m^s[n ff-/Zjm^cos 0(1)由牛顿第二定律得滑雪者在斜坡的加速度:a仁甜=4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1sII⑵由静止到动摩擦因素发生变化的位移:x i=,a i t2=2mt? - 0动摩擦因数变化后,由牛顿第二定律得加速度:a2= =5m/s2m由V B2-v2=2a2(L-x i)解得滑雪者到达B处时的速度:V B=16m/s⑶设滑雪者速度由V B=16m/s减速到v i=4m/s期间运动的位移为X3,则由动能定理有:—1 1-- j - ;解得X3=96m速度由V i=4m/s减速到零期间运动的位移为X4,则由动能定理有:1 ?-^m^x A= d-^nvl;解得x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为X=X3+X4=96+ 3.2=99.2m5. 如图,竖直墙面粗糙,其上有质量分别为m A =1 kg、m B =0.5 kg的两个小滑块A和B, A在B的正上方,A、B相距h=2. 25 m, A始终受一大小F1=|0 N、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F2作用.同时由静止释放A和B,经时间t=0.5 s,A、B恰相遇•已知A、B与墙面间的动摩擦因数均为口=0.2,重力加速度大小g=10m/s2.求:(1) 滑块A的加速度大小a A;(2) 相遇前瞬间,恒力F2的功率P.2【答案】(1)a A 8m/s ;(2)P 【解析】【详解】(1)A、B受力如图所示:A、B分别向下、向上做匀加速直线运动, 水平方向:F N F l竖直方向:m A g f m A a A且:f F N 对A :联立以上各式并代入数据解得:a A1 (2 )对A由位移公式得:X A c21 2对B由位移公式得:x B a B t22由位移关系得:x B h x A由速度公式得B的速度:V B a B t 对B由牛顿第二定律得:F? m B g 恒力F2的功率:P F2V B联立解得:P= 50W 8m/s2 2mBaB 50W6. 如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB相切于A点,B为圆弧轨道的最高点,圆弧轨道半径R=1m,细杆与水平面之间的夹角0=37°. 一个m=2kg的小球穿在细杆上,小球与细杆间动摩擦因数尸0.3 •小球从静止开始沿杆向上运动,2s后小球刚好到达A点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N.已知g=10m/s2, sin37 =0.6, cos37°=0.8.求:(1) 小球在A点时的速度大小;(2) 小球运动到B点时对轨道作用力的大小及方向.【答案】(1)8m/s (2)12N【解析】【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:Fcos mgsin (Fsin mgcos ) ma代入数据得:a 4m/s2小球在A点时的速度v A at 8m/s⑵小球沿竖直圆轨道从A到B的过程,应用动能定理得:1 2 1 2FRsin37 mgR(1 cos37 ) mv B mv A2 2解得:V B 2m/s小球在B点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2V Bmg F N mR解得:F N=12N,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B对轨道的作用力大小为12N,方向竖直向下.7. 如图所示,传送带水平部分x ab=0.2m,斜面部分x b(=5.5m, bc 与水平方向夹角«=37 °,一个小物体A与传送带间的动摩擦因数尸0.25,传送带沿图示方向以速率v=3m/s运动,若把物体A轻放到a处,它将被传送带送到c点,且物体A不脱离传送带,经b点时速率不变.(取g=10m/s2, sin37 =0.6)求:(1) 物块从a 运动到 (2) 物块从b 运动到 【答案】(1) 0.4s ; 【解析】 【分析】根据牛顿第二定律求出在 ab 段做匀加速直线运动的加速度,结合运动学公式求出 运动时间•到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等 后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:mg ma 1解得:A 与皮带共速需要发生位移:xab代入数据解得:(2)到达b 点的速度:由牛顿第二定律得:b 的时间;c 的时间. (2) 1.25s .a i2.5m/s 2故根据运动学公式,物体 2v x 共2a9m 1.8m 0.2mA 从a 运动到b : t i0.4sV b ait i1m/s 3m/s代入数据解得:a 2 8m/s 2物块在斜面上与传送带共速的位移是:N 2mg sin 37 2ma 2mg cos37 且 f 2N 22设从共速到下滑至 c 的时间为t 3,由x bcs 共1 2vt 3 a 3t 3,得2t3is综上,物块从b 运动到c 的时间为:t2t3i.25s解得 v ' =0.6m/s即物块和木板最终以 0.6m/s 的速度匀速运动. (3)物块先相对木板向右运动,此过程中物块的加速度为 时间物块和木板具有相同的速度 v','对物块受力分析:va 1t 1解得:t ,2m/s 3解得 s=0.5m ;t i 后物块相对木板向左运动,这再经 仍为a i ,对木板:F- mg Ma 32 2v V b代入数据解得: 时间为: t2因为 g sin37 6m/s > g cos37 由牛顿第二定律得: mg sin37 f 2 ma 3N 2 mg cos37,且 f 2 N 2代入数据解得:a 3 4m/s 2 2a 20.5m 5.5ma 2Vb 381s 0.25s2m/s 2,物块继续加速下滑此过程中物块相对木板前进的距离:Wi2 2& 5s 后系统动量守恒,最终达到相同速度 v ;则 mv i MV 2 m M va i ,木板的加速度为 ,经t i对木板:F mg Ma 2由运动公式: v 0 a 2t 1 t 2时间滑落,此过程中板的加速度 a 3,物块的加速度9.水平面上固定着倾角 0 =37的斜面,将质量 m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
第三章牛顿运动定律1.一天,下着倾盆大雨.某人乘坐列车时发现,车厢的双层玻璃窗内积水了.列车进站过程中,他发现水面的形状是下图中的(C)解析列车进站时刹车,速度减小,而水由于惯性仍要保持原来较大的速度,所以水向前涌,液面形状和选项C一致.2.关于力和运动的关系,下列选项中正确的是(AC)A.物体的速度不断增大,表示物体必受力的作用B.物体的位移不断增大,表示物体必受力的作用C.若物体的位移与时间t2成正比,表示物体必受力的作用D.物体的速率不变,则其所受合力必为零解析力是改变物体运动状态的原因,物体速度不断增大,表示运动状态有所改变,故必受力的作用,A选项正确.物体位移增大,但物体的运动状态不一定改变(如匀速直线运动),因此不一定受力的作用,B选项错.物体位移与时间t2成正比,说明物体不是做匀速直线运动,运动状态有变化,必受力的作用,C选项正确.物体速率不变但速度方向可能发生变化,即运动状态可能发生变化,就会受到力的作用,D选项错.3.(2009·山东临沂期中)下列关于惯性的各种说法中,你认为正确的是(D) A.材料不同的两个物体放在地面上,用一个相同的水平力分别推它们,则难以推动的物体惯性大B.在完全失重的情况下,物体的惯性将消失C.把手中的球由静止释放后,球能竖直加速下落,说明力是改变物体惯性的原因D.抛出去的标枪、手榴弹等是因为惯性向远处运动的解析由于两物体材料不同,摩擦力可能不同,因此不能判断其质量关系,A选项错;惯性由质量决定,跟物体的运动状态无关,力也不能改变物体的惯性,B、C错;选D.考查惯性的概念.4.如图6所示,将两弹簧测力计a、b连结在一起,当用力缓慢拉a弹簧测力时,发现不管拉力F多大,a、b两弹簧测力计的示数总是相等,这个实验说明(C)图6A.这是两只完全相同的弹簧测力计B.弹力的大小与弹簧的形变量成正比C.作用力与反作用力大小相等、方向相反D.力是改变物体运动状态的原因解析实验中两弹簧测力计的拉力互为作用力与反作用力,它们一定大小相等、方向相反,选项C正确.5.(2009·内江市三模)沼泽地的下面蕴藏着丰富的泥炭,泥炭是沼泽地积累的植物残体,它的纤维状和海绵状的物理结构导致人在其上面行走时容易下陷(设在下陷过程中,泥炭对人的阻力不计).如果整个下陷的过程是先加速再减速最后匀速运动,那么,下列说法中正确的是(D) A.当在加速向下运动时,人对沼泽地的压力大于沼泽地对人的支持力B.当在减速向下运动时,人对沼泽地的压力小于沼泽地对人的支持力C.在整个运动过程中,人对沼泽地的压力是先大于后等于沼泽地对他的支持力D.在整个运动过程中,人对沼泽地的压力大小总是等于沼泽地对他的支持力6.用计算机辅助实验系统做验证牛顿第三定律的实验,点击实验菜单中“力的相互作用”.如图7(a)所示,把两个力探头的挂钩钩在一起,向相反方向拉动,观察显示器屏幕上出现的结果如图(b)所示.观察分析两个力传感器的相互作用力随时间变化的曲线,可以得到以下实验结论(ACD)图7A.作用力与反作用力同时存在B.作用力与反作用力作用在同一物体上C.作用力与反作用力大小相等D.作用力与反作用力方向相反7.请根据图8中的情景,说明车子所处的状态,并对这种情景作出解释.图8答案从图(1)可以看出,乘客向前倾,说明乘客相对车厢有向前运动的速度,所以汽车在减速.从图(2)可看出,乘客向后倾,说明乘客有相对车厢向右运动的速度,说明列车在加速.【反思总结】第2课时 牛顿第二定律 两类动力学问题1.(2010·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据.刹车线是汽车刹车后,停止转动的轮胎在地面上滑动时留下的痕迹.在某次交通故事中,汽车的刹车线的长度是14 m ,假设汽车轮胎与地面的动摩擦因数为0.7,g =10 m/s2.则汽车开始刹 车时的速度为 ( C )A .7 m/sB .10 m/sC .14 m/sD .20 m/s解析 由牛顿第二定律得汽车刹车时的加速度a =μmg m=μg =7 m/s 2,则v 20=2ax ,v 0=2ax =14 m/s ,C 正确.考查牛顿第二定律及匀变速直线运动规律.2.如图6所示,三个完全相同的物块1、2、3放在水平桌面上,它们与桌面间的动摩擦因数都相同.现用大小相同的外力F 沿图示方向分别作用在1和2上,用12F 的外力沿水平方向作用在3上,使三者都做加速运动.令a 1、a 2、a 3分别表示物块1、2、3的加速度,则( C )图6A .a 1=a 2=a 3B .a 1=a 2,a 2>a 3C .a 1>a 2,a 2<a 3D .a 1>a 2,a 2>a 3 解析 对物块进行受力分析,根据牛顿第二定律可得:a 1=F cos 60°-μ(mg -F sin 60°)m=(1+3μ)F 2m-μg a 2=F cos 60°-μ(mg +F sin 60°)m =(1-3μ)F 2m-μg a 3=12F -μmg m =F 2m-μg ,比较大小可得C 选项正确. 3.如图7甲所示,在粗糙水平面上,物块A 在水平向右的外力F 的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是( BC )图7A .在0~1 s 内,外力F 不断增大B .在1 s ~3 s 内,外力F 的大小恒定C .在3 s ~4 s 内,外力F 不断减小D .在3 s ~4 s 内,外力F 的大小恒定解析 在0~1 s 内,物块做匀加速直线运动,外力F 恒定,故A 错.在1 s ~3 s 内,物块做匀速运动,外力F 也恒定,B 正确.在3 s ~4 s 内,物块做加速度增大的减速运动,所以外力F 不断减小,C 对,D 错.4.如图8所示,物体P 以一定的初速度v 沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压 图8 缩过程中始终遵守胡克定律,那么在P 与弹簧发生相互作用的整个过程中( C )A .P 的加速度大小不断变化,方向也不断变化B .P 的加速度大小不断变化,但方向只改变一次C .P 的加速度大小不断改变,当加速度数值最大时,速度最小D .有一段过程,P 的加速度逐渐增大,速度也逐渐增大解析 P 的加速度由弹簧弹力产生,当P 压缩弹簧时弹力增大,然后弹簧将P 向左弹开,弹力减小,因此加速度先增大后减小,方向始终向左,A 、B 两项错;加速度最大时弹簧的压缩量最大,P 的速度为零,C 对;向右运动时,加速度增大,但加速度与速度方向相反,速度减小,向左运动时加速度减小但与速度同向,速度增大,D 项错.5.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m =80 kg ,他从静止开始匀加速下滑,在时间t =5 s 内沿斜面滑下的位移x =50 m .(不计空气阻力,取g =10 m/s 2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f 为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m 后进入水平草坪,试求游客在水平面上滑动的最大距离.答案 (1)80 N (2)315 (3)100 3 m 解析 (1)由x =12at 2得a =4 m/s 2 由mg sin θ-F f =ma ,得F f =mg sin θ-ma =80 N(2)由F f =μmg cos θ可求得μ=315(3)在水平面上:μmg =ma ′得a ′=μg =233m/s 由v =at ,v 2=2a ′x ′,可得x ′=100 3 m6.质量为10 kg 的物体在F =200 N 的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图9所示.力F 作用2秒钟后撤去,物体在斜面上继续上滑了1.25秒钟后,速度减为零.求:物体与斜面间的动摩擦因数μ和 图9 物体的总位移x .(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)答案 0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度为a 1,撤去力F 后其加速度变为a 2,则:a 1t 1=a 2t 2 ①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1在沿斜面方向上,由牛顿第二定律可得F cos θ-mg sin θ-F f1=ma 1 ②F f1=μF N1=μ(mg cos θ+F sin θ)③ 撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得mg sin θ+F f2=ma 2 ④F f2=μF N2=μmg cos θ⑤ 联立①②③④⑤式,代入数据得a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25 物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m7.(2009·杭州市模拟5)如图10所示,一足够长的光滑斜面倾角为θ=30°,斜面AB 与水平面BC 连接,质量m =2 kg 的物体置于水平面上的D 点,D 点距B 点d =7 m .物体与水平面间的动摩擦因数μ=0.2,当物体受到一水平向左的恒力F =8 N 作用t =2 s 后撤去该力, 图10 不考虑物体经过B 点时的碰撞损失,重力加速度g 取10 m/s 2.求撤去拉力F 后,经过多长时间物体经过B 点?答案 1 s 1.8 s解析 在F 的作用下物体运动的加速度a 1,由牛顿运动定律得F -μmg =ma 1解得a 1=2 m/s 2F 作用2 s 后的速度v 1和位移x 1分别为v 1=a 1t =4 m/sx 1=a 1t 2/2=4 m撤去F 后,物体运动的加速度为a 2μmg =ma 2解得a 2=2 m/s 2第一次到达B 点所用时间t 1,则d -x 1=v 1t 1-a 2t 21/2解得t 1=1 s此时物体的速度v 2=v 1-a 2t 1=2 m/s当物体由斜面重回B 点时,经过时间t 2,物体在斜面上运动的加速度为a 3,则mg sin 30°=ma 3t 2=2v 2a 3=0.8 s 第二次经过B 点时间为t =t 1+t 2=1.8 s所以撤去F 后,分别经过1 s 和1.8 s 物体经过B 点.【反思总结】 牛顿第二定律―→⎪⎪⎪⎪⎪⎪⎪⎪⎪ —理解―→⎪⎪⎪⎪⎪ —同时关系—瞬时关系—独立关系—因果关系—同体关系—应用―→⎪⎪⎪⎪—由运动求力—由力求运动 一、选择题(本题共10小题,每小题5分,共50分) 1.(2009·宁夏、辽宁·14)在力学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是( )A .伽利略发现了行星运动的规律B .卡文迪许通过实验测出了引力常量C .牛顿最早指出力不是维持物体运动的原因D .笛卡尔对牛顿第一定律的建立做出了贡献解析 卡文迪许通过扭秤实验测出了万有引力常量,B 正确;笛卡儿《哲学原理》中以第一和第二自然定律的形式比较完整地第一次表述了惯性定律:只要物体开始运动,就将继续以同一速度并沿着同一直线方向运动,直到遇到某种外来原因造成的阻碍或偏离为止,为牛顿第一定律的建立做出了贡献,D 正确;行星运动的规律是开普勒发现的,A 错误;伽利略最早指出力不是维持物体运动的原因,C 错误.答案 BD2.(2008·广东·1)伽利略在著名的斜面实验中,让小球分别沿倾角不同、阻力很小的斜面从静止开始滚下,他通过实验观察和逻辑推理,得到的正确结论有( )A .倾角一定时,小球在斜面上的位移与时间成正比B .倾角一定时,小球在斜面上的速度与时间成正比C .斜面长度一定时,小球从顶端滚到底端时的速度与倾角无关D .斜面长度一定时,小球从顶端滚到底端时所需的时间与倾角无关解析 设斜面的长度为L ,倾角为θ.倾角一定时,小球在斜面上的位移x =12g sin θ·t 2,故选项A 错误;小球在斜面上的速度v =g sin θ·t ,故选项B 正确;斜面长度一定时,小球到达底端时的速度v =2gL sin θ,小球到达底端时所需的时间t = 2L g sin θ,即小球到达底端时的速度及所需时间与倾角θ有关,故选项C 、D 错误.答案 B3.(2009·许昌二调)16世纪末,伽利略用实验和推理,推翻了已在欧洲流行了近两千年的亚里士多德关于力和运动的理论,开启了物理学发展的新纪元.在以下说法中,与亚里士多德观点相反的是 ( )A .四匹马拉的车比两匹马拉的车跑得快,这说明物体受的力越大,速度就越大B .一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明静止状态才是物体长时间不受力时的“自然状态”C .两物体从同一高度自由下落,较重的物体下落较快D .一个物体维持匀速直线运动,不需要受力解析 亚里士多德的观点是力是使物体运动的原因,有力物体就运动,没有力物体就停止运动,与此观点相反的选项是D.答案 D4.(2010·江苏南通期末)关于运动和力的关系,下列说法中正确的是( ) A .物体在恒力作用下可能做匀速圆周运动B .如果物体不受外力作用,则一定处于静止状态C .物体的速度大小发生变化时,一定受到力的作用D .物体的速度方向发生变化时,可能不受力的作用解析 匀速圆周运动所需的向心力大小不变但方向时刻改变,故A 错;不受外力作用的物体可做匀速直线运动,故B 错;只要速度发生变化,必有加速度,必受外力,故D 错,C 对.答案 C5.(2010·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是() A.始终变大B.始终变小C.先变大后变小D.先变小后变大解析子弹上升速度减小,阻力变小,加速度变小;下降时向上的阻力变大,向下的合力变小,加速度仍变小.答案 B6.(2009·上海杨浦期末)如图1所示,给出了汽车轮胎与地面间的动摩擦因数分别为μ1和μ2时,紧急刹车时的刹车痕(即刹车距离x)与刹车前车速v的关系曲线,则μ1和μ2的大小关系为()A.μ1<μ2B.μ1=μ2C.μ1>μ2D.条件不足,不能比较图1解析由题意知,v2=2ax=2μgx,速度相同的情况下,μ1所在曲线的刹车痕小,所以μ1大,C正确.答案 C7.(2009·广东江门模拟)如图2所示,两个质量分别为m1=2 kg、m2=3 kg的物体置于光滑的水平面上,中间用轻质弹簧秤连接.两个大小分别为F1=30 N、F2=20 N的水平拉力分别作用在m1、m2上,则()图2A.弹簧秤的示数是10 NB.弹簧秤的示数是50 NC.在突然撤去F2的瞬间,弹簧秤的示数不变D.在突然撤去F1的瞬间,m1的加速度不变解析以m1、m2为整体受力分析得,F1-F2=(m1+m2)a,求得a=2 m/s2;再以m1为研究对象,受力分析得,F1-F=m1a,则F=26 N(弹簧秤示数),故A、B错;突然撤去F2的瞬间,弹簧不会发生突变,仍保持原有的形变量,弹簧秤的示数不变,故C正确;突然撤去F1的瞬间,F1消失,m1只受弹簧的弹力F=m1a1,得a1=13 m/s2,故D错.答案 C8.(2010·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图3所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.图3箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sin θC.mg cos θD.0解析以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma,则a=g sin θ,方向沿斜面向下;再以苹果为研究对象,受力分析得,合外力F=ma=mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力应与重力垂直于斜面的分力相等,即mg cos θ,故C正确.答案 C9.(2010·鹤岗市模拟)如图4所示,用绳1和绳2拴住一个小球,绳1与水平面有一夹角θ,绳2是水平的,整个装置处于静止状态.当小车从静止开始向右做加速运动时,小球相对于小车仍保持静止,则绳1的拉力F1、绳2的拉力F2与小车静止时相比() 图4 A.F1变大,F2不变B.F1不变,F2变小C.F1变大,F2变小D.F1变大,F2变大解析小球受力分析如图所示小车静止时,F1sinθ=mgF1cosθ=F2向右加速时,F1sinθ=mg,F1cosθ-F2′=ma所以B正确.答案 B10.(2009·江苏盐城大丰、建湖联考)如图5所示,粗糙的斜面体M放在粗糙的水平面上,物块m恰好能在斜面体上沿斜面匀速下滑,斜面体静止不动,斜面体受地面的摩擦力为F f1;若用平行于斜面向下的力F推动物块,使物块加速下滑,斜面体仍静止不动,斜面体受地面的摩擦力为F f2;若用平行于斜面向上的力F推动物块,使物块减速下滑,斜面体仍静止不动,斜面体受地面的摩擦力为F f3.则()图5A.F f2>F f3>F f1B.F f3>F f2>F f1C.F f2>F f1>F f3D.F f1=F f2=F f3解析三种情况下斜面所受物体的压力均为mg cos θ,所受的都是方向沿斜面向下的滑动摩擦力,大小均等于μmg cos θ,所以三种情况斜面受力情况相同,故地面所给的摩擦力均相等,选项D正确.答案 D二、计算题(本题共3小题,第11、12题各16分,第13题18分,共50分)11.(2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力F f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.解析 (1)第一次飞行中,设加速度为a 1匀加速运动H =21a 1t 2 由牛顿第二定律F -mg -F f =ma 1解得F f =4 N(2)第二次飞行中,设失去升力时的速度为v 1,上升的高度为s 1,匀加速运动s 1=21a 1t 2 设失去升力后加速度为a 2,上升的高度为s 2由牛顿第二定律mg +F f =ma 2v 1=a 1t 2s 2=2221a v 解得h =s 1+s 2=42 m(3)设失去升力下降阶段加速度为a 3;恢复升力后加速度为a 4,恢复升力时速度为v 3 由牛顿第二定律mg -F f =ma 3F +F f -mg =ma 4 且42233223a v a v =h v 3=a 3t 3解得t 3=223s(或2.1 s) 答案 (1)4 N (2)42 m (3)223s 12.(2009·盘绵调研)一架军用直升机悬停在距离地面64 m 的高处,将一箱军用物资由静止开始投下,如果不打开物资上的自动减速伞,物资经4 s 落地.为了防止物资与地面的剧烈撞击,需在物资距离地面一定高度时将物资上携带的自动减速伞打开.已知物资接触地面的安全限速为2 m/s ,减速伞打开后物资所受空气阻力恒为打开前的18倍.减速伞打开前空气阻力大小恒定,忽略减速伞打开的时间,取g =10 m/s 2.求:(1)减速伞打开时物资离地面的高度至少为多少?(2)物资运动的时间至少为多少?解析 (1)设物资质量为m ,减速伞打开前物资所受空气阻力为F f ,物资的加速度大小为a ,减速伞打开后物资的加速度大小为a 2,不打开伞的情况下,物资经t =4 s 落地.由牛顿第二定律和运动学公式得mg -F f =ma 1H =12a 1t 2 解得a 1=8 m/s 2,F f =0.2mg物资落地速度恰为v =2 m/s 时,减速伞打开时物资的高度最小设为h ,开伞时物资的速度设为v 0,由牛顿第二定律和运动学公式得18F f -mg =ma 2H -h =v 202a 1,h =v 20-v 22a 2解得a 2=26 m/s 2,h =15 m(2)由上面的求解过程,可得开伞时的速度v 0=28 m/s开伞前的运动时间t 1=v 0a 1=3.5 s开伞后的运动时间t 2=v 0-va 2=1 s故物资运动的时间至少为t 1+t 2=4.5 s 答案 (1)15 m (2)4.5 s13.(2008·上海·21)总质量为80 kg 的跳伞运动员从离地500 m 的直升机上跳下,经过2 s 拉开绳索开启降落伞,如图6所示是跳伞过程中的v —t 图象,试根据图象求:(g 取10 m/s 2)图6(1)t =1 s 时运动员的加速度和所受阻力的大小. (2)估算14 s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间. 解析 (1)由v —t 图线的斜率可知加速度: a =Δv Δt =16-02 m/s 2=8 m/s 2根据牛顿第二定律:mg -F f =ma 阻力为:F f =mg -ma =160 N(2)v -t 图线与横轴所包围的面积表示位移,该位移的大小为所求的下落高度,格子数为39.5h =39.5×4 m =158 m根据动能定理:mgh -W f =m2v 2克服阻力做的功为:W f =mgh -m2v 2=80×⎝⎛⎭⎫10×158-362 J =1.25×105 J (3)14 s 末开始做匀速直线运动H=h+v t2,t=t1+t2总时间为t=14 s+57 s=71 s答案(1)8 m/s2160 N(2)158 m 1.25×105 J(3)71 s第3课时超重与失重瞬时问题1.(2009·佛山市质检二)图6是我国“美男子”长征火箭把载人神舟飞船送上太空的情景.宇航员在火箭发射与飞船回收的过程中均要经受超重与失重的考验,下列说法正确的是(BC)A.火箭加速上升时,宇航员处于失重状态B.飞船加速下落时,宇航员处于失重状态C.飞船落地前减速,宇航员对座椅的压力大于其重力D.火箭上升的加速度逐渐减小时,宇航员对座椅的压力小于其重力图6解析加速上升或减速下降,加速度均是向上,处于超重状态;加速下降或减速上升,加速度均是向下,处于失重状态,由此知选项B、C正确.2.一个研究性学习小组设计了一个竖直加速度器,如图7所示.把轻弹簧上端用胶带固定在一块纸板上,让其自然下垂,在弹簧末端处的纸板上刻上水平线A.现把垫圈用胶带固定在弹簧的下端,在垫圈自由垂下处刻上水平线B,在B的下方刻一水平线C,使AB间距等于BC间距.假定当地重力加速度g=10 m/s2,当加速度器在竖直方向运动时,若弹簧末端的垫圈(BC)A.在A处,则表示此时的加速度为零图7B.在A处,则表示此时的加速度大小为g,且方向向下C.在C处,则质量为50 g的垫圈对弹簧的拉力为1 ND.在BC之间某处,则此时加速度器一定是在加速上升解析设AB=BC=x,由题意知,mg=kx,在A处mg=ma A,a A=g,方向竖直向下,B正确;在C处,2kx-mg=ma C,a C=g,方向竖直向上,此时弹力F=2kx=2mg=1 N,C 正确;在B、C之间弹力F大于mg,加速度方向竖直向上,但加速度器不一定在加速上升,也可能减速下降,故D错误.3.如图8所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为(B)图8A .0 B.233g C .g D.33g解析 撤离木板时,小球所受重力和弹簧弹力没变,二者合力大小等于撤离木板前木板对小球的支持力F N ,由于F N =mg cos 30°=233mg ,所以撤离木板后,小球加速度大小为:a =F N m =233g . 4.(2010·福建厦门六中期中)如图9所示,A 、B 两小球分别连 在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( D ) 图9A .都等于g 2 B.g2和0C.M A +M B M B ·g 2和0 D .0和M A +M B M B ·g 25.(2010·福建厦门六中期中)2008年奥运会在北京举行,由此推动了全民健身运动的蓬勃发展.体重为m =50 kg 的小芳在校运会上,以背越式成功地跳过了1.80 m 的高度,成为高三组跳高冠军.若忽略空气阻力,g 取10 m/s 2.则下列说法正确的是( C )A .小芳下降过程处于超重状态B .小芳起跳以后在上升过程中处于超重状态C .小芳起跳时地面对她的支持力大于她的重力D .起跳过程地面对小芳至少做了900 J 的功6.由静止开始竖直向上运动的电梯里,某同学把测量加速度的传感器固定在手提包上,.在计算机上画出手提包在此过程中速度v 、加速度a 、手对手提包的拉力F 、位移x 随时间的变化关系图象,请根据上表数据和所学知识,判断下列选项中正确的是(g 取10 m/s 2)( C )解析 从表中数据可知,匀加速运动的加速度大小为0.4 m/s 2,匀减速运动的加速度大小也为0.4 m/s2,匀加速运动时手提包受到的拉力为F1=m(g+a)=10.4 N,匀减速运动时手提包受到的拉力为F2=m(g-a)=9.6 N.由图象可以得出,A图中加速运动和减速运动的加速度大小均为0.5 m/s2,B图象中,0~2 s内,加速度越来越小,10 s~12 s,加速度越来越大;D图象中,物体分段做匀速直线运动.综合分析得出,C正确.7.消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60 kg、训练有素的消防队员从七楼(即离地面18 m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200 kg,消防队员着地的速度不能大于6 m/s,手和腿对杆的最大压力为1 800 N,手和腿与杆之间的动摩擦因数为0.5,设当地重力加速度g=10 m/s2.假设杆是搁在地面上的,杆在水平方向不移动.试求:(1)消防队员下滑过程中的最大速度.(2)消防队员下滑过程中杆对地面的最大压力.(3)消防队员下滑的最短时间.答案(1)12 m/s(2)2 900 N(3)2.4 s解析(1)消防队员开始阶段自由下落的末速度即为下滑过程的最大速度v m,有2gh1=v2m消防队员受到的滑动摩擦力F f=μF N=0.5×1 800 N=900 N.减速阶段的加速度大小:a2=F f-mgm=5 m/s2减速过程的位移为h2,由v2m-v2=2a2h2又h=h1+h2以上各式联立可得:v m=12 m/s(2)以杆为研究对象得:F N=Mg+F f=2 900 N(3)最短时间为t min=v mg+v m-va2=2.4 s.8.(2010·福州综合练习)如图10所示,游乐场有一斜面长为x1的滑梯,与水平面夹角为θ,在滑梯下端的水平地面上铺设有塑胶垫.小孩从滑梯顶端由静止开始下滑,不计在衔接处速率的变化,他还可以在塑胶垫上再滑行x2的距离停止.已知小孩与滑梯表面的动摩擦因数μ1,试求:(已知重力加速度为g) 图10(1)小孩在斜面上滑行的时间.(2)小孩与塑胶垫之间的动摩擦因数μ2的值.答案(1)2x1g(sin θ-μ1cos θ)(2)x1x2(sin θ-μ1cos θ)解析 (1)设小孩的质量为m ,在滑梯上他受到三个力的作用,根据牛顿第二定律有 mg sin θ-F f1=ma 1 F f1=μ1F N1=μ1mg cos θ 所以mg sin θ-μ1mg cos θ=ma 1 得a 1=g (sin θ-μ1cos θ)由运动学公式x 1=12a 1t 21得t 1= 2x 1a 1= 2x 1g (sin θ-μ1cos θ)(2)由v 2=2a 1x 1得滑到斜面末端速度 v =2a 1x 1=2gx 1(sin θ-μ1cos θ)在塑胶垫上滑行时,有F f2=μ2F N2=μ2mg =ma 2得a 2=μ2g由运动学公式0=v 2-2a 2x 2得μ2=v 22gx 2=x 1x 2(sin θ-μ1cos θ)【反思总结】超重与失重―→⎪⎪⎪⎪⎪—超重―→⎪⎪⎪⎪ —a 向上—视重大于重力—失重―→⎪⎪⎪⎪—a 向下—视重小于重力瞬时问题―→⎪⎪⎪⎪⎪—分析条件变化前受力↓—分析变化的条件↓—分析条件变化后受力第4课时 二力合成法与正交分解法 连接体问题1.(2010·芜湖市模拟)如图7所示,放在粗糙水平面上的物块 A 、B 用轻质弹簧秤相连,两物块与水平面间的动摩擦因数均为μ.今对物块A 施加一水平向左的恒力F ,使A 、B 一起向左匀加速 图7。
高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o ,求:()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J .【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+= 动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
2011-2018年高考物理试卷分类汇编专题第8节 牛顿运动定律及其应用1. 2014年物理上海卷21.牛顿第一定律表明,力是物体 发生变化的原因;该定律引出的一个重要概念是 。
【答案】运动状态;惯性【解析】力的作用效果是改变物体的运动状态或使物体产生形变;牛顿第一定律通过实验总结出了力是改变物体运动状态的原因;从而引出一切物体都有保持原来运动状态的属性,即惯性。
2. 2012年物理江苏卷4. 将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比. 下列描绘皮球在上升过程中加速度大小a 与时间t 关系的图象,可能正确的是【答案】C【解析】加速度mkvg a +=,随着v 的减小,a 减小,但最后不等于0。
选项B 、D 错;加速度越小,速度减小得越慢,所以选C. 3. 2012年理综安徽卷17.如图所示,放在固定斜面上的物块以加速度a 沿斜面匀加速下滑,若在物块上再施加一竖直向下的恒力F ,则 A. 物块可能匀速下滑 B. 物块仍以加速度a 匀速下滑 C. 物块将以大于a 的加速度匀加速下滑 D. 物块将以小于a 的加速度匀加速下滑 答: C解析:起初sin cos mg mg ma θμθ-=,加上一个力以后,()sin ()cos 'mg F mg F ma θμθ+-+=, 所以a' 增大。
am4. 2013年新课标II卷14.一物块静止在粗糙的水平桌面上。
从某时刻开始,物块受到一方向不变的水平拉力作用。
假设物块与桌面间的最大静摩擦力等于滑动摩擦力。
以a表示物块的加速度大小,F表示水平拉力的大小。
能正确描述F与a之间的关系的图像是答:C解析:由于物块与水平桌面间有摩擦,由牛顿第二定律得Fa gmμ=-,当拉力F从0开始增加,F mgμ≤时物块静止不动,加速度为0;在F mgμ>之后,加速度与F成线性关系,C项正确。
5. 2013年新课标II卷15.如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面上。
C 单元 牛顿运动定律C1 牛顿第一定律、牛顿第三定律C2 牛顿第二定律 单位制22.(2)C2[2011·重庆卷] 某同学设计了如图1-10所示的装置,利用米尺、秒表、轻绳、轻滑轮、轨道、滑块、托盘和砝码等器材来测定滑块和轨道间的动摩擦因数μ.滑块和托盘上分别放有若干砝码,滑块质量为M ,滑块上砝码总质量为m ′,托盘和盘中砝码的总质量为m .实验中,滑块在水平轨道上从A 到B 做初速为零的匀加速直线运动,重力加速度g 取10 m/s 2.图1-10①为测量滑块的加速度a ,须测出它在A 、B 间运动的________与________,计算a 的运动学公式是________;②根据牛顿运动定律得到a 与m 的关系为:a =()1+μg M +()m ′+m m -μg 他想通过多次改变m ,测出相应的a 值,并利用上式来计算μ.若要求a 是m 的一次函数,必须使上式中的________________保持不变,实验中应将从托盘中取出的砝码置于________________;③实验得到a 与m 的关系如图1-11所示,由此可知μ=____________(取两位有效数字).图1-1122.(2)C2[2011·重庆卷] 【答案】 ①位移s 时间t a =2st2 ②m ′+m 滑块上 ③0.23(0.21~0.25)【解析】 ①由s =12at 2知,要测量滑块的加速度a 只需测量滑块的位移s 和滑行时间t ,此时a =2st2.②若要求a 是m 的一次函数,只需()1+μg M +()m ′+m 保持不变,即(m ′+m )不变,故实验时应将从托盘中取出的砝码置于滑块上.③由图象可知,图象过(69.0×10-3,0.43)和(64.0×10-3,0.23)两点,将之代入a =()1+μg M +()m ′+m m -μg ,解得:μ=0.23.21.C2[2011·浙江卷] 在“探究加速度与力、质量的关系”实验时,已提供了小车、一端附有定滑轮的长木板、纸带、带小盘的细线、刻度尺、天平、导线.为了完成实验,还需从下图中选取实验器材,其名称是________,并分别写出所选器材的作用________.【答案】 学生电源、电磁打点计时器(或电火花计时器)、钩码、砝码 学生电源为打点计时器提供交流电源;电磁打点计时器(电火花计时器)记录小车运动的位置和时间;钩码用以改变小车的质量;砝码用以改变小车受到拉力的大小,还可用于测量小车质量【解析】 根据“探究加速度与力、质量关系”实验,结合所提供与供选择的实验器材,可以确定相应的实验方案,进一步可以确定需要选择的实验器材.2.C2[2011·天津卷] 如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( )图1A .方向向左,大小不变B .`方向向左,逐渐减小 C. 方向向右,大小不变 D. 方向向右,逐渐减小2.[2011·天津卷] A 【解析】 A 、B 一起往右做匀减速直线运动,说明两个问题:①加速度a 大小不变;②加速度a 方向向左.对B 物体受力分析,由牛顿第二定律F =ma 可知:B 受到的摩擦力方向向左,大小不变,A 正确.18.C2[2011·北京卷] “蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节处,从几十米高处跳下的一种极限运动.某人做蹦极运动,所受绳子拉力F 的大小随时间t 变化的情况如图所示.将蹦极过程近似为在竖直方向的运动,重力加速度为g .据图可知,此人在蹦极过程中最大加速度约为( )A .gB .2gC .3gD .4g 18.C2[2011·北京卷] B 【解析】 从图中可以看出,当人静止时,所受到的拉力为0.6F 0,即0.6F 0=mg .当合力最大时,加速度最大.最大的拉力从图中可知为1.8F 0=3mg ,由牛顿第二定律可得F -mg =ma ,代入数据可知,a =2g ,B 项正确.20.C2[2011·北京卷] 物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系.如关系式U =IR 既反映了电压、电流和电阻之间的关系,也确定了V(伏)与A(安)和Ω(欧)的乘积等效.现有物理量单位:m(米)、s(秒)、N(牛)、J(焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和T(特),由它们组合成的单位都与电压单位V(伏)等效的是( )A .J/C 和N/CB .C/F 和T·m 2/sC .W/A 和C·T·m/sD .W 12·Ω12和T·A·m20.C2[2011·北京卷] B 【解析】 由公式W =UIt =UQ 可得,J/C 与电压单位V 等效,由F =Eq 可得,N/C 为电场强度的单位,与电压单位V 不等效,A 项错误.由公式Q =CU 、E =BL v =BL 2t 可知,C/F 、T·m 2/s 与电压单位V 等效,B 项正确.由P =UI 可知,W/A 与电压单位V 等效,C·T·m/s =A·s·N A ·m ·ms=N ,所以C·T·m/s 与力的单位N 等效,C 项错误.由P =U 2R 可知,W 12·Ω12与电压单位V 等效,T·A·m =N m ·A·A ·m =N ,所以T·A·m 与力的单位N 等效,D 项错误.22.C2 E3[2011·北京卷] 如图所示,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小可以忽略).(1)在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力图,并求力F 的大小;(2)由图示位置无初速释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力.不计空气阻力.22.C2 E3[2011·北京卷] 【答案】 (1)受力图如图所示根据平衡条件,应满足T cos α=mg ,T sin α=F 拉力大小F =mg tan α(2)运动中只有重力做功,系统机械能守恒 mgl (1-cos α)=12m v 2则通过最低点时,小球的速度大小 v =2gl (1-cos α)根据牛顿第二定律T ′-mg =m v 2l解得轻绳对小球的拉力T ′=mg +m v 2l =mg (3-2cos α),方向竖直向上.C3超重和失重9.C3[2011·天津卷] (1)某同学利用测力计研究在竖直方向运行的电梯运动状态.他在地面上用测力计测量砝码的重力,示数为G.他在电梯中用测力计仍测量同一砝码的重力,发现测力计的示数小于G,由此判断此时电梯的运动状态可能是__________________.9.(1)[2011·天津卷] 【答案】减速上升或加速下降【解析】测力计在电梯中的示数即为视重,静止在地面时的示数表示物体的实重,依题意,视重小于实重,物体处于失重状态,物体要么往上减速,要么往下加速.C 4 实验:验证牛顿定律C 5 牛顿运动定律综合21.C5[2011·课标全国卷] 如图1-6所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( )图1-6【解析】 A 当拉力F 很小时,木块和木板一起加速运动,由牛顿第二定律,对木块和木板:F =(m 1+m 2)a ,故a 1=a 2=a =F m 1+m 2=km 1+m 2t ;当拉力很大时,木块和木板将发生相对运动,对木板:μm 2g =m 1a 1,得a 1=μm 2g m 1,对木块:F -μm 2g =m 1a 2,得a 2=F -μm 2gm 2=km 2t -μg ,A 正确.23.C5[2011·四川卷] 随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍惜生命.一货车严重超载后的总质量为49 t ,以54 km/h 的速率匀速行驶.发现红灯时司机刹车,货车即做匀减速直线运动,加速度的大小为 2.5 m/s 2(不超载时则为5 m/s 2).(1)若前方无阻挡,问从刹车到停下来此货车在超载及不超载时分别前进多远?(2)若超载货车刹车时正前方25 m 处停着总质量为1 t 的轿车,两车将发生碰撞,设相互作用0.1 s 后获得相同速度,问货车对轿车的平均冲力多大?【解析】 (1)设货车刹车时速度大小为v 0,加速度大小为a ,末速度大小为v t ,刹车距离为ss =v 20-v 2t 2a①代入数据,得 超载时s 1=45 m ② 若不超载s 2=22.5 m ③(2)设货车刹车后经s ′=25 m 与轿车碰撞时的初速度大小为v 1v 1=v 20-2as ′④设碰撞后两车共同速度为v 2,货车质量为M ,轿车质量为m ,由动量守恒定律 M v 1=(M +m )v 2⑤设货车对轿车的作用时间为Δt 、平均冲力大小为F ,由动量定理 F Δt =m v 2⑥联立④⑤⑥式,代入数据得 F =9.8×104 N ⑦24.C5图1-10[2011·山东卷] 如图1-10所示,在高出水平地面h =1.8 m 的光滑平台上放置一质量M =2 kg 、由两种不同材料连接成一体的薄板A ,其右段长度l 1=0.2 m 且表面光滑,左段表面粗糙.在A 最右端放有可视为质点的物块B ,其质量m =1 kg.B 与A 左段间动摩擦因数μ=0.4.开始时二者均静止,现对A 施加F =20 N 水平向右的恒力,待B 脱离A (A 尚未露出平台)后,将A 取走.B 离开平台后的落地点与平台右边缘的水平距离x =1.2 m.(取g =10 m/s 2)求:(1)B 离开平台时的速度v B .(2)B 从开始运动到刚脱离A 时,B 运动的时间t B 和位移x B . (3)A 左端的长度l 2.【解析】 (1)设物块平抛运动的时间为t ,由运动学可得h =12gt 2① x =v B t ②联立①②式,代入数据得 v B =2 m/s ③(2)设B 的加速度为a B ,由牛顿第二定律和运动学的知识得 μmg =ma B ④ v B =a B t B ⑤ x B =12a B t 2B ⑥联立③④⑤⑥式,代入数据得 t B =0.5 s ⑦ x B =0.5 m ⑧(3)设B 刚开始运动时A 的速度为v 1,由动能定理得 Fl 1=12M v 21⑨设B 运动后A 的加速度为a A ,由牛顿第二定律和运动学的知识得 F -μmg =Ma A ⑩ l 2+x B =v 1t B +12a A t 2B⑪联立⑦⑧⑨⑩⑪式,代入数据得 l 2=1.5 m ⑫14.C5[2011·浙江卷] 如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )A .甲对绳的拉力与绳对甲的拉力是一对平衡力B .甲对绳的拉力与乙对绳的拉力是作用力与反作用力C .若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D .若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利【解析】 C 甲、乙两人在冰面上拔河,甲对绳的拉力与绳对甲的拉力是作用力与反作用力,A 选项错误;甲对绳的拉力与乙对绳的拉力都作用在绳上,故不是作用力与反作用力,B 选项错误;由于绳子质量不计,且冰面可看成光滑,绳对甲、乙的作用力大小相等,若甲的质量大,则甲的加速度小,相等时间通过的位移小,后过分界线,故甲能赢得比赛的胜利,C 选项正确;是否赢得比赛主要看两人加速度的大小,跟收绳的速度大小无关,故D 选项错误.14.C5、D2[2011·江苏物理卷] 如图所示,长为L 、内壁光滑的直管与水平地面成30°角固定位置.将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M =km 的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g )图13(1)求小物块下落过程中的加速度大小; (2)求小球从管口抛出时的速度大小; (3)试证明小球平抛运动的水平位移总小于22L . 14.C5、D2[2011·江苏物理卷]【解析】 (1)设细线中的张力为T ,根据牛顿第二定律 Mg -T =MaT -mg sin30°=ma 且M =km解得a =2k -12(k +1)g(2)设M 落地时的速度大小为v ,m 射出管口时速度大小为v 0,M 落地后m 的加速度为a 0.根据牛顿第二定律-mg sin30°=ma 0 又由匀变速直线运动, v 2=2aL sin30°,v 20-v 2=2a 0L (1-sin30°)解得v 0=k -22(k +1)gL (k >2)(3)平抛运动 x =v 0tL sin30°=12gt 2解得x =L k -22(k +1)则x <22L ,得证.16.C5[2011·福建卷] 如图1-3甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图1-3乙所示.已知v 2>v 1,则( )图1-3A. t 2时刻,小物块离A 处的距离达到最大B. t 2时刻,小物块相对传送带滑动的距离达到最大C. 0~t 2时间内,小物块受到的摩擦力方向先向右后向左D. 0~t 3时间内,小物块始终受到大小不变的摩擦力作用 16.C5[2011·福建卷] B 【解析】 结合图乙,在0~t 1时间内,物体往左做匀减速直线运动,t 1时刻运动到最左边,A 错;在t 1~t 2时间内,物体往右做匀加速直线运动,但由于速度小于传送带的速度,物体与传送带的相对位移仍在增大,t 2时刻相对位移最大,B 对;0~t 2时间内,物体相对传送带向左运动,一直受到向右的滑动摩擦力,f =μmg 不变,但t 2时刻以后物体相对传送带静止,摩擦力为0,CD 错.。
2011年全国统一高考物理试卷(新课标)一、选择题:本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,能正确表示安培假设中环形电流方向的是( )A.B.C.D.2.(6分)质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能可能( )A.一直增大B.先逐渐减小至零,再逐渐增大C.先逐渐增大至某一最大值,再逐渐减小D.先逐渐减小至某一非零的最小值,再逐渐增大3.(6分)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变与重力势能零点的选取有关4.(6分)如图,一理想变压器原副线圈的匝数比为1:2;副线圈电路中接有灯泡,灯泡的额定电压为220V,额定功率为22W;原线圈电路中接有电压表和电流表.现闭合开关,灯泡正常发光.若用U和I分别表示此时电压表和电流表的读数,则( )A.U=110V,I=0.2A B.U=110V,I=0.05AC.U=110V,I=0.2A D.U=110V,I=0.2A5.(6分)电磁轨道炮工作原理如图所示。
待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触。
电流I从一条轨道流入,通过导电弹体后从另一条轨道流回。
轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比。
通电的弹体在轨道上受到安培力的作用而高速射出。
现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是( )A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其它量不变6.(6分)卫星电话信号需要通过地球卫星传送.如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需要最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径为3.8×105km,运动周期约为27天,地球半径约为6400km,无线电信号的传播速度为3×108m/s)( )A.0.1s B.0.25s C.0.5s D.1s7.(6分)一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,已知质点的速率是递减的。
2011年普通高等学校招生全国统一考试理综试题解析版(全国卷新课标版)14.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。
在下列四个图中,正确表示安培假设中环形电流方向的是A .B .C .D .15.一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。
此后,该质点的动能可能A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大16.一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。
假定空气阻力可忽略,运动员可视为质点,下列说法正确的是 A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关17.如图,一理想变压器原副线圈的匝数比为1∶2;副线圈电路中接有灯泡,灯泡的额定电压为220V ,额定功率为22W ;原线圈电路中接有电压表和电流表。
现闭合开关,灯泡正常发光。
若用U 和I 分别表示此时电压表和电流表的读数,则A .U =110V ,I =0.2AB .U =110V ,I =0.05AC .U =1102V ,I =0.2AD .U =1102V ,I =0.22A18.电磁轨道炮工作原理如图所示。
待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触。
电流I 从一条轨道流入,通过导电弹体后从另一条轨道流回。
轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I 成正比。
通电的弹体西东 I西东 I西东 I西东IAV在轨道上受到安培力的作用而高速射出。
现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是A .只将轨道长度L 变为原来的2倍B .只将电流I 增加至原来的2倍C .只将弹体质量减至原来的一半D .将弹体质量减至原来的一半,轨道长度L 变为原来的2倍,其它量不变19.卫星电话信号需要通地球同步卫星传送。
2011年普通高等学校招生全国统一考试(江苏卷)2011届高考必备物理学史总结(按物理学分类)一.力学中的物理学史1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。
2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。
3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。
另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。
其最有影响的著作是《自然哲学的数学原理》。
4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67³11-11N²m2/kg2(微小形变放大思想)。
5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。
即“宏观”、“低速”是牛顿运动定律的适用范围。
二.电、磁学中的物理学史1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。
3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
2011高考物理试题及解析——全国卷214.一质量为m 的物块恰好静止在倾角为θ的斜面上。
现对物块施加一个竖直向下的恒力F ,如图所示。
则物块A .仍处于静止状态B .沿斜面加速下滑C .受到的摩擦力不便D .受到的合外力增大答案:A解析:由于质量为m 的物块恰好静止在倾角为θ的斜面上,说明斜面对物块的作用力与物块的重力平衡,斜面与物块的动摩擦因数μ=tan θ。
对物块施加一个竖直向下的恒力F ,使得合力仍然为零,故物块仍处于静止状态,A 正确,B 、D 错误。
摩擦力由mgsin θ增大到(F+mg)sin θ,C 错误。
15.实验表明,可见光通过三棱镜时各色光的折射率n 随着波长λ的变化符合科西经验公式:24BCn A λλ=++,其中A 、B 、C 是正的常量。
太阳光进入三棱镜后发生色散的情形如下图所示。
则A .屏上c 处是紫光B .屏上d 处是红光C .屏上b 处是紫光D .屏上a 处是红光答案:D解析:白色光经过三棱镜后产生色散现象,在光屏由上至下(a 、b 、c 、d )依次为红、橙、黄、绿、蓝、靛、紫。
屏上a 处为红光,屏上d 处是紫光,D 正确。
16.一物体作匀加速直线运动,通过一段位移x ∆所用的时间为1t ,紧接着通过下一段位移x ∆所用时间为2t 。
则物体运动的加速度为 A .1212122()()x t t t t t t ∆-+ B .121212()()x t t t t t t ∆-+ C .1212122()()x t t t t t t ∆+- D .121212()()x t t t t t t ∆+-答案:A解析:物体作匀加速直线运动在前一段x ∆所用的时间为1t ,平均速度为11xv t ∆=,即为12t 时刻的瞬时速度;物体在后一段x ∆所用的时间为2t ,平均速度为22xv t ∆=,即为22t 时刻的瞬时速度。
速度由1v 变化到2v 的时间为122t t t +∆=,所以加速度211212122()()v v x t t a t t t t t -∆-==∆+,A 正确。