--靶向药物分类及机制药学
- 格式:ppt
- 大小:4.45 MB
- 文档页数:1
一、靶向制剂概述1.靶向制剂的分类靶向制剂又称靶向给药系统(TDDS),是指借助载体、配体或抗体将药物通过局部给药、胃肠道给药或全身血液循环而选择性地浓集定位于靶组织、靶器官、靶细胞或细胞内结构的给药系统。
这里注意靶向制剂和经皮给药制剂的英文缩写都是TDDS。
靶向制剂按照靶向原动力可以分为:(1)被动靶向制剂:脂质体、微乳、微囊、微球、纳米乳(2)主动靶向制剂:修饰的药物载体、前体药物(3)物理化学靶向制剂:磁性靶向制剂、热敏靶向制剂、pH敏感靶向制剂、栓塞靶向制剂2.特点(1)提高药物在作用部位的治疗浓度(2)使药物具有专一药理活性,增加药物对靶组织的指向性和滞留性(3)降低药物对正常细胞的毒性(4)提高药物制剂的生物利用度等靶向制剂应具备定位浓集、控制释药、无毒及生物可降解性等特点。
3.一般质量要求(1)药物不突释(2)载体应具有定位蓄积、控制释放和无毒可生物降解三项基本要求(3)粒度:被动靶向制剂经静脉注射后在体内的分布首先取决于粒径大小5~10μm:巨噬细胞(<7μm肝、脾,>7μm肺)200~400nm:集中于肝后迅速被肝清除<10nm:骨髓负电荷:肝正电荷:肺4.靶向性评价药物制剂的靶向性可由相对摄取率re、靶向效率te、峰浓度比Ce等参数来衡量。
这些参数的数值大说明靶向性较好。
二、脂质体1.脂质体的组成、结构与膜材料(1)组成与结构类脂质膜主要成分是磷脂和胆固醇,二者都具有两亲性,具有亲水和疏水两种基团。
(2)膜材料磷脂:包括天然的卵磷脂、脑磷脂、豆磷脂以及合成磷脂胆固醇:流动性缓冲剂2.分类新型脂质体包括:前体、长循环、免疫、热敏、pH敏感性脂质体3.理化性质(1)相变温度:脂质体的物理性质与介质温度有密切关系,当升高温度时脂质体双分子层中疏水链可从有序排列变为无序排列,从而引起一系列变化,如膜的厚度减小,流动性增加等。
转变时的温度称为相变温度,它取决于磷脂的种类。
(2)荷电性:酸性脂质如磷脂酸(PA)和磷脂酰丝氨酸(PS)等的脂质体荷负电;含碱基(氨基)脂质如十八胺等的脂质体荷正电;不含离子的脂质体显电中性。
主动靶向制剂浅谈主动靶向制剂摘要:主动靶向制剂因其靶向性较强、毒副作用小,越来越受到医药界的重视。
本文通过文献检索,对主动靶向给药方式及作用机制、分类等。
进一步探讨当前的主动靶向制剂这项技术。
关键词:主动靶向制剂;作用机制;研究前景靶向制剂也称靶向给药系统(targeting drug delivery system),一般是指运用载体将药物有目的地浓集于某特定的组织或部位的给药系统[1]。
根据作用方式不同,靶向制剂可分为被动靶向制剂、主动靶向制剂和物理化学靶向制剂三大类。
各类靶向制剂的作用特点为:被动靶向制剂指载药微粒被巨噬细胞摄取后转运到肝$脾等器官而发挥疗效;主动靶向制剂是指用修饰的药物载体将药物定向地转运到靶区浓集而发挥药效;物理化学靶向制剂是指用物理化学方法使药物在某个部位发挥疗效。
由各类靶向制剂的特点可看出,主动靶向制剂可主动识别并将药物转运到病理区,从而可发挥高效的治疗作用。
随着现代制药技术的进步及人类对疾病认识的加深,药物的主动靶向性已引起医药界的高度重视,主动靶向制剂也因此而倍受青睐[2]。
1 主动靶向制剂的概念主动靶向制剂(targeting drug delivery system)是用修饰的药物载体作为“导弹”。
将药物定向地运送到靶区浓集发挥药效的药物传递系统主动靶向的机制为:载药微粒经表面修饰后,不被巨噬细胞识别;连接有特定的配体可与靶细胞的受体结合;连接单克隆抗体成为免疫微粒;将药物修饰成前体药物,使其变为能在活性部位被激活的药理惰性物,在特定靶区被激活发挥作用,从而避免巨噬细胞的摄取,防止在肝内浓集,改变微粒在体内的自然分布而到达特定的靶部位发挥作用。
2 主动靶向制剂分类主动靶向制剂主要包括: 表面修饰的载药微粒,如修饰的脂质体、微乳、微球、纳米囊、纳米球等;前体药物制剂。
2.1表面修饰的载药微粒由于巨噬细胞的摄取,载药微粒被迅速消除,药物不能充分发挥疗效经表面修饰后,可使微粒载体不易被巨噬细胞识别和摄取,从而明显地增加所载药物的体内循环时间,并达到主动靶向作用。
靶向药物总结1、Axitinib,中文称号:阿西替尼;商品名:Inlyta;中文明学称号: N-甲基-2-( ( 3-( ( 1E) -2-( 吡啶-2-基) 乙烯) -1H-吲唑-6-基) 硫) 苯甲酰胺。
特点及其作用靶点:阿西替尼是由美国Pfizer 公司研发的一种多靶点酪氨酸激酶抑制剂,是一种口服的第2 代血管内皮生长因子受体抑制剂,选择性作用于VEGFR1,VEGFR2 和VEGFR3,经过抑制VEGF 介导的内皮细胞增殖和存活,起到抑制肿块生长和癌症停顿的作用。
于2021年1月27 日获美国FDA 同意上市。
常用剂量与用法:该药为片剂,引荐的剂量为每天 5 mg ,每天2 次,给药距离约12 h,如患者呕吐或漏失 1 次给药,不应添加服用,应按通常时间服用下一次剂量。
顺应症:适用于既往全身治疗失败后早期肾细胞癌的治疗。
主要反作用:最罕见的不良反响是腹泻、高血压、疲惫、食欲减低、恶心、发音阻碍、手掌-足底( 手-足) 综合征、体重减轻、呕吐、乏力和便秘等。
2、Regorafenib,中文称号:瑞格非尼。
特点及其作用靶点:Regorafenib 是一种触及正常细胞功用和病理进程中多种膜结合和细胞内激酶的小分子抑制剂,例如肿瘤发作,肿瘤血管生成和肿瘤微环境维持。
在体外生化或细胞剖析regorafenib或其主要的活性代谢物M-2和M-5抑制RET,VEGFR1,VEGFR2,VEGFR3,KIT,PDGFR-α,PDGFR- β,FGFR1,FGFR2,TIE2,DDR2,Trk2A,Eph2A,RAF-1,BRAF,BRAFV600E,SAPK2,PTK5,和Abl 的活性。
在体内大鼠肿瘤模型中regorafenib显示抗-血管生成活性,以及在一些小鼠移植瘤模型中对人类大肠癌有抑制肿瘤生长以及抗转移活性作用。
常用剂量与用法:1〕引荐剂量:160 mg口服,每天1次,2〕与食物服用。
顺应症:2021年9月27日,FDA同意了口服药物Regorafenib(瑞格非尼)〔Stivarga,拜耳〕治疗转移性结直肠癌,Regorafenib被同意时同时带有黑框正告,指出能够有严重或致命性的肝毒性。
抗肿瘤分子靶向药物分类与特点近年来,伴随着分子生物学的发展,高效低毒的分子靶向治疗成为肿瘤治疗的研究热点,并在治疗肝癌、非小细胞肺癌以及其他恶性肿瘤方面取得了显著的疗效。
广义的靶向治疗包括药效学靶向药物与药动学靶向药物。
采用靶向性强的药物载体提高抗肿瘤有效利用率的药物为药动学靶向药物,如白蛋白结合型紫杉醇、多柔比星脂质体等。
本文所涉及的药物主要指的是通过干扰或阻断与肿瘤发生、进展有关的特异性分子和相关信号通路,从而阻断肿瘤生长和扩散的药效学靶向药物。
分子靶向药物的分类肿瘤的分子靶向治疗是一个飞速发展的领域,随着人类对肿瘤发生、发展认识的深入,有效的治疗靶点不断被发现,新结构、新机制的抗肿瘤分子靶向药物陆续被研发。
根据作用靶点不同,抗肿瘤分子靶向药物可以分为EGFR、VEGFR、HER-2等药物。
根据药物结构分类,临床最常见的为小分子靶向药物和单克隆抗体类药物。
多数分子靶向药物使用前应进行相应靶点状态的检测,以期获得更好的治疗效果。
分子靶向药物的作用机制目前上市的分子靶向药物作用机制非常复杂,而其药物疗效和不良反应都与药物机制密切相关。
分子靶向药物的作用机制简单概括为:①作用于细胞膜的药物主要是针对跨膜生长因子受体,例如作用于表皮生长因子受体(EGFR)的小分子酪氨酸激酶抑制剂吉非替尼、厄洛替尼和埃克替尼,作用于EGFR的单克隆抗体西妥昔单抗,作用于HER-2受体的单克隆抗体曲妥珠单抗等;②作用于细胞质的药物靶向于细胞内信号转导过程,如mTOR抑制剂依维莫司等;③作用于细胞核的药物靶向于DNA或RNA,例如针对细胞依赖性激酶的AZD5438和针对组蛋白去乙酰化酶抑制剂的西达本胺等;④作用于癌细胞外环境的药物,目前临床使用较为广泛的靶向于肿瘤相关血管的药物就属于此类,如血管内皮生长因子单克隆抗体贝伐珠单抗、重组人血管内皮抑制素等。
分子靶向药物的适应证分子靶向药物的治疗不是以病理类型为导向,而是以靶点为指征。
药学专业知识(一)
《药学专业知识(一)》主要考查药学类执业药师从事药品质量监管和药学服务工作所必备的专业知识,用于评价执业药师对药学各专业学科的基本理论、基本知识和基本技能的识记、理解、分析和应用能力。
这部分的知识内容是药学学科的重要组成部分,也是执业药师
的执业技能的基础,体现了药师知识素养和业务水准。
根据执业药师相关职责,本科目要求在正确认识药物结构与构效关系的基础上,重点掌握药物常用剂
型的特点、质量要求和临床应用,药动学、药效学及药物体内过程;熟悉与药品质量管理直接相关的国家
药品标准和药典的通则等内容;并能够运用药学基本理论、原理和方法来分析和解决实际问题,正确认识
药物与疾病治疗的客观规律。
引言1载体介导的靶向给药2受体介导的靶向给药3抗体介导的靶向给药4制成前体药物5化学传递系统参考文献引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点[1]. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒(0.1~3.0 μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而85.9%以上的DHAQ存在于血液中[2]. 张莉等[3]考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂[4]. 王剑红等[5]采用二步法制备米托蒽醌明胶微球,粒径在5.1~25.0 μm范围的占总数87.36%,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等[6]以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果[7]. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等[8]制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24)nm骨髓内柔红霉素浓度是大粒径组(425±75)nm的1.58倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等[9]以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为4.66,比未修饰纳米粒的靶向效率高3.7倍[10]. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体[11]. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究[12].表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等[13]成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体,将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等[14]利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 67.6与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的[15],当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡[16]. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR 和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗[17]. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率[18]. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘[13lI]美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH 结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等[19]合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物[20]. 糖皮质激素共价连接于多糖[21],环糊精[22]制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们[23,24]合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统[25].5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等[26]设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等[27]将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.参考文献张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究[J]. 药学学报,1997;32(1):72-78.张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究[J]. 药学学报,2004;39(8):650-655.韩勇,易以木. 纳米粒肝靶向作用机制的研究进展[J]. 中国药师,2002;5(12):751-752.王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究[J]. 药学学报,1995;30(7):549-555.彭应旭,庄燕黎,廖工铁. 骨髓靶向柔红霉素毫微粒的研究[J]. 中国医药工业杂志,1999;31(2):57-61.薛克昌,张三奇,顾宜,等. 十六酸拉米夫定酯固体脂质纳米粒的肝靶向研究[J]. 解放军药学学报,2004;20(1):1-4.李剑平,窦科峰,陈勇,等. 半乳糖基化壳聚糖肝靶向性基因转导的体内实验[J]. 世界华人消化杂志,2005;13(7):848-851.方华圣,洪梅,张树政,等. 表皮生长因子受体介导的肿瘤靶向基因治疗的一种新策略[J]. 中国医学科学院学报,2004;26(6):661-665.徐凤华,蒋雪涛,杨全胜,等. 葡聚糖表柔比星偶合物的制备和性质研究[J]. 中国药学杂志,2000;35(7):455-457.张志荣,王建新. 脑靶向3′, 5′二辛酰基5氟尿嘧啶脱氧核苷药质体研究[J]. 药学学报,2001;36(10):771-776.周四元,梅其炳,赵德化. 地塞米松葡聚糖的合成及其肠内容物中的转释特性[J]. 第四军医大学学报,2000;21(4):499-501.奚苗苗,张三奇,顾宜,等.果胶酮洛芬前药的合成及体外评价[J]. 第四军医大学学报,2004,25(14):1284-1286.。