集成光电子器件课程
- 格式:ppt
- 大小:3.56 MB
- 文档页数:7
光电子材料与器件课程设计概述光电子材料与器件是新材料领域的热门方向,该领域涉及到了光电传感、光电通信、光电储存等多种应用领域,具有广阔的应用前景。
该课程设计旨在通过对光电子材料及器件的研究,加深学生对光电子材料的认识,提高其对光电子器件设计和制备的能力。
课程设计内容实验1:半导体光电器件的制备半导体光电器件是光电子器件中应用最广泛的一种,如太阳能电池、半导体激光器等。
本实验将以制备太阳能电池为例,介绍半导体光电器件的制备过程。
具体步骤如下:1.制备电极材料2.制备p型半导体材料3.制备n型半导体材料4.制备太阳能电池实验2:光电传感器的设计与制备光电传感器是一类感应式传感器,具有响应快、抗干扰性强、测量范围广等优点。
本实验将介绍光电传感器的设计和制备过程。
具体步骤如下:1.制备传感器的电路板2.选取合适的光电子材料3.制备光电子材料4.组装传感器实验3:光电通信系统的设计与制备光电通信系统是一种高速率、远程传输、大容量的通信方式。
本实验将以制备光纤微波光子学器件为例,介绍光电通信系统的设计与制备。
具体步骤如下:1.制备光纤材料2.制备微波光子学器件3.组装光电通信系统实验要求1.整理、归纳实验资料2.完成实验报告3.讨论实验研究结果4.撰写课程设计总结报告实验成果展示学生将在实验中获得以下收获:1.了解光电子材料与器件的基本概念和原理2.掌握光电子器件的制备技术和优化方法3.对光电子材料的性能和应用有更深入的了解4.培养实验设计和实验操作能力结论光电子材料与器件是当前新材料领域的热门方向。
通过本课程设计,学生可以深入了解光电子材料与器件的基本原理、制备技术和应用,掌握相关实验技能,提高实验操作能力和探究问题的能力。
《光电子技术》教学大纲课程编码:课程英文名称: Optoelectronics Technology学时数:60学时学分:3.5学分适用专业:电子科学技术专业教学大纲说明一、课程的性质、教学目的与任务课程性质:光电子技术是由电子技术和光子技术互相渗透、优势结合而产生的,是一门新兴的综合性交叉学科,已经成为现代信息科学的一个极为重要的组成部分,以光电子学为基础的光电信息技术是当前最为活跃的高新技术之一。
光电子技术课程是电子科学与技术专业学生的必修专业课程,它的开设为培养合格的专业技术人才提供了必备的理论和实践基础,本门课程不仅是本专业学生在校学习的重要环节,而且对学生毕业后的工作和进一步学习新理论、新技术都将发生深远的影响。
教学目的:该课程介绍光电子技术的理论和应用基础,内容可以分为四大主要部分:(1) 激光原理基础及典型激光器;(2) 光的耦合与调制技术;(3) 光电探测器及其应用;(4) 光电子集成器件及光电子器件在光通信中的应用。
主要介绍了光电子系统中关键器件的原理、结构、应用技术和新的发展。
该课程在阐明基本原理的同时,突出应用技术,使学生能够把握光电子技术的总体框架,有兴趣、有信心投入实践和创新活动。
教学任务:通过本课程的学习,使学生熟悉光电子技术的基础知识以及实际应用,为今后从事光电子技术方面的研究和开发工作打下一定的基础。
并通过实验教学环节使学生加深光电子技术课程的理论知识的掌握,通过一定的实验,培养学生应用所学知识解决实际问题的能力,获得相应技术、实验方法和技能锻炼。
二、课程教学的基本要求本课程以课堂讲授为主,课下自学为辅。
对自学的内容布置讨论及思考题,提高学生独立思考及解决问题的能力。
适当增加flash动画、视频材料,同时安排一些课外科技学术报告,使学生了解到本学科的最新前沿进展。
通过本课程的学习,应使学生掌握光电子技术的基本原理、基本概念,了解光电子技术的应用实例,了解光电子领域的新成果和新进展,对光电子技术有比较全面、系统的认识和理解。
电子技术基础教学大纲电子技术基础是入门性质的技术基础课,它既有自身的理论体系,又有很强的实践性。
本课程的任务是使学生获得电子技术方面的基本理论、基本知识和基本技能,培养分析问题和解决问题的能力,为今后进一步学习、研究、应用电子技术打下基础。
本课程是我院工科电类专业的必修课。
模拟部分教学大纲学时:55 学分:4适用专业:电子类、自控类、计算机类专业(高职高专)先修课程:《大学物理》、《电工技术基础》一、课程内容和基本要求第一章半导体器件1、正确理解PN结的形成及其单向导电作用,熟练掌握二极管、稳压管的外特性和主要参数。
2、正确理解半导体三极管的结构及工作原理,熟练掌握外特性和主要参数。
第二章基本放大电路1、正确理解放大的基本概念,放大电路的主要指标,掌握放大电路的组成特点。
2、掌握放大电路定性分析方法及静态工作点的估算方法。
3、熟练掌握放大电路的等效电路法,会计算静态工作点,能用微变等效电路计算放大电路的电压放大倍数、输入和输出电阻。
4、正确理解放大器失真产生的原因及解决的办法,放大电路频率特性的概念及其频率特性。
5、了解级间耦合放大电路的工作原理及指标的估算,选频放大电路。
第三章场效应管放大电路1、正确理解结型场效应管和绝缘栅场效应管的结构、工作原理,掌握特性曲线和主要参数。
2、确理解场效应管放大电路结构,工作原理。
第四章集成运算放大电器1、熟练掌握集成运算放大器的组成、性能特点和基本单元电路。
2、正确理解差动放大器的组成、工作原理及应用,了解通用型集成运算放大器的主要性能指标。
3、了解集成运放的应用及两种基本电路。
第五章负反馈放大电路1、练掌握反馈的基本概念和分类,会判断反馈放大电路的类型和极性。
2、熟练掌握负反馈的四种组态及其对放大电路性能的影响。
第六章集成运算放大器的应用1、练掌握由集成运放组成线性电路和非线性应用电路的方法和应用知识。
2、练掌握由集成运算放大器组成的比例、加减法和积分运算电路、信号处理电路等的结构及分析方法。
【专业介绍】光电子材料与器件专业介绍光电子材料与器件专业介绍一、培养目标光电子材料与器件专业培养具备坚实光电子材料与器件专业基础、工程实践能力,具备扎实的数理基础,熟悉光电子学、半导体理论、光电子材料与器件、电子信息科学、计算机科学的基本理论和应用技术,受到严格的科学实验与科学研究初步训练的应用型理工科高级人才。
本专业毕业生可以在科研、生产单位和高校等部门从事光电子、光电材料与器件方向有关的研究、设计、开发等工作,成为光电领域研究型专门人才。
光电子材料与器件专业介绍二、培养要求光电子材料与器件专业学生主要学习数学、物理等自然科学知识和电路基础、电动力学、数字电路、模拟电路、固体电子学、光电子材料与器件等光电子材料与器件专业基础理论和基本知识,得到相关的电子技术、光电综合实验技术、光电子材料与器件制备技术、工程实践技术等方面的基本训练;掌握光信息科学的基本原理和研究方法,熟悉光电子技术、光电子材料与器件、电子信息技术及相关领域,掌握光电子材料与器件方向有关的研究、设计、制造及新产品、新技术、新工艺的研究与开发等的基本能力。
光电子材料与器件专业介绍三、主要课程大学物理、高等数学、光电子技术、半导体物理与器件、光电子材料与器件、光电检测和测试技术、光谱分析技术、电子技术系列课程、计算机技术系列课程、电磁场理论、理论物理、固体物理、数字信号处理、光电技术专题实验等。
光电子材料与器件专业介绍四、就业方向光电子材料与器件专业毕业生适宜在光电子技术、光电子材料与器件应用技术、电子信息技术、计算机应用技术及相关领域,特别是LED半导体照明企业从事科学研究、产品设计和开发、生产技术管理的面向二十一世纪的高级专门人才。
也可以在科研机构或学校从事相应的科研和教学工作。
光电子材料与器件专业介绍五、就业前景随着光电子材料和器件的快速发展,目前在国际上已形成了一门高新技术骨干产业。
光电子材料与器件的发展和应用是衡量一个国家高科技发展水平的重要标志之一。
《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。
半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。
本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。
并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。
二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。
2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。
3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。
4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。
光电子材料与器件课程教学大纲一、课程基本信息课程编号:201411111课程中文名称:光电子材料与器件课程英文名称:Optoelectronic Materials and Devices课程性质:专业核心课程开课专业:光电信息科学与工程开课学期:5总学时: 32 (其中理论26学时,实验6学时)总学分:2二、课程目标光电子材料与器件是一门实用性强的必修基础课,本课程是为光电科学与工程专业的本科生而开设的。
本课程除了使学生掌握光电器件的基本工作原理之外,还使学生了解各种光电材料及光电器件的应用。
通过学习该课程,使学生在以后的生活和工作中能够学以致用。
培养学生如下的能力和素养:1、具有应用理论知识指导实验环节的能力;能够解决光电材料的制备及性能测试方面的一些基本问题;具备严谨科学素质,能够达到实验目的或完成特定的试验任务。
2、具有良好的逻辑思维能力和较强的开拓创新意识,具有不断学习和适应发展的能力。
三、教学基本要求使学生了解纳米光电材料的种类、基本性质及应用。
让学生重点掌握各种光电器件(激光器、非线性光学器件、光调制器、光探测器等)的基本工作原理、基本组成和应用,掌握染料敏化太阳能电池的基本原理、结构、制备及提高电池性能的方法,了解常用的染料敏化太阳能电池材料。
让学生根据所学知识能够设计出几个简单的光电器件,例如光开关。
通过实验环节让学生掌握一些光电材料的制备及性能测试。
四、教学内容与学时分配1微纳米光电材料与器件(4学时)1.1纳米光电材料1.2纳米光电器件2半导体发光材料及器件(4学时)2.1半导体发光材料2.2半导体发光器件3固体激光材料及典型固体激光器(4学时)3.1固体激光材料3.2固体激光器4非线性光学材料与器件(4学时)4.1非线性光学效应4.2非线性光学材料4.3光参量振荡器及其应用5光调制器(4学时)5.1光调制的基本原理5.2光调制器6光探测材料及器件(2学时)6.1光探测器件的基本特性6.2光敏电阻6.3光电二极管7染料敏化太阳能电池(4学时)7.1染料敏化太阳能电池的基本原理和结构及常用材料7.2染料敏化太阳能电池的制备方法及电池性能的提高方法五、教学方法及手段(含现代化教学手段及研究性教学方法)传统的教学与多媒体教学相结合,并充分利用演示实验和网络的现代技术。