4 第三章-1 杀虫剂作用机理
- 格式:ppt
- 大小:529.50 KB
- 文档页数:4
第三章 杀虫剂及杀虫剂毒理本章内容主要讲解杀虫剂毒杀机理及各种常用杀虫剂的性质特点,作用方式,在生物体内(昆虫、植物)代谢,防治对象及使用方法。
杀虫剂毒理(Insect Toxicology ),主要研究各种杀虫剂对昆虫的毒杀机制和昆虫对杀虫剂反应的学科。
它包括药剂对昆虫的穿透与分布,生物转化与排除,对靶标部位的作用,以及选择毒性与抗药性的关系等内容。
第一节 杀虫剂的穿透与在昆虫体内的分布一.杀虫剂进入昆虫体内的途径:杀虫剂进入昆虫体内的途径,也就是杀虫剂的作用方式(Mode of action of insecticide):指杀虫剂侵入昆虫体内的方式及达到作用部位的途径和方法。
杀虫剂的杀虫作用,除本身毒剂外,首先必须以一定的方式侵入虫体,进入虫体内到达作用部位,然后才能在靶标部位(Target )起作用。
因此了解杀虫剂的作用方式对科学使用农药,提高防治效果与经济效益,减少农药对环境的污染都有重要的理论意义和实用价值。
杀虫剂作用方式就是指杀虫剂进入虫体内途径,主要有:1.通过昆虫体壁进入:药剂与昆虫表皮或跗节接触后,能够穿透体壁进入体内而达到作用部位,使昆虫中毒死亡。
这种作用方式,称为触杀作用(Action of contact poisoning )。
具有触杀作用的药剂,称为触杀剂。
如常用的辛硫磷、对硫磷、溴氰菊酯、甲氰菊酯(灭扫利)。
影响触杀作用的因素主要是昆虫表皮的构造与触杀剂的理化性质:(1)昆虫的体壁构造:我们学习过普通昆虫学,可知,昆虫体壁由表皮层、真表皮和底膜。
表皮层来源于皮细胞分泌的非细胞质物质,硬化以后成为昆虫的外骨骼,这是节肢动物的重要特征,因而表皮层又可分为三层:(由外向内)(昆虫体壁构造图示)由此可见,昆虫上表皮中所含蜡质、类脂及鞣化蛋白质都是非极性化合物(疏水性物质)与水,没有亲和性。
脂溶性强,水溶性弱,不易被水所湿润。
外表皮内表皮 护蜡层:主要成分类脂和鞣化蛋白 蜡层:含C 25—C 34个碳原子的碳氢化合物(蜡质) 角质精层:类脂、鞣化蛋白几丁质和蛋白质 几丁质和蛋白质任何一种杀虫剂在穿透昆虫体壁时,首先必须在昆虫体壁上湿润展布。
类型代表种类特点作用机制备注有机氯类DDT以苯为合成原料(六六六也是)在环境中的高残留性及在生物体内具有富集性作用于神经系统轴突部位的钠离子通道,使钠离子通道关闭延迟,引起动作电位的重复后放,导致神经过度兴奋,信号传递中断,最终死亡。
1874年合成,1939年发现其杀虫活性,1948诺贝尔奖,1973年禁止使用。
六六六、环戊二烯类(毒杀芬、狄氏剂、艾氏剂、七氯、灭蚁灵、硫丹)不以苯为原料。
化学性质稳定,水中溶解度低,脂溶性强,易被动植物吸附,可在生物体内富集,在环境中残留时间长,不易分解(硫丹除外)。
作用于GABA受体上的苦毒宁位点,促使GABA门控的Cl-通道开放,使大量Cl-涌入膜内,造成神经膜电位超极化,形成抑制性突触后电位,致使虫体对兴奋性的信号传递反应不敏感,影响其正常的神经活动,最终死亡。
有机磷类(OPs)磷酸酯(速灭磷)、硫逐磷酸酯(对硫磷、辛硫磷、内吸磷、毒死蜱)、二硫代磷酸酯(乐果、灭蚜松、甲拌磷、特丁硫磷)、硫赶磷酸酯(氧乐果、丙溴磷)、磷酰胺酸衍生物(乙酰甲胺磷)、磷酸酯(敌百虫)磷酸氟衍生物、焦磷酸衍生物、次膦酸酯类高效、广谱具有触杀、胃毒、熏蒸等多种作用方式在植物体内可代谢降解,有些残效期短、低毒,如马拉硫磷;有些残效期较长,如甲拌磷有些品种具有内吸作用;有的具有很强的渗透作用,施于叶面对叶背害虫也有效抑制神经突触传递中的递质水解酶—乙酰胆碱酯酶,使释放到突触间隙的乙酰胆碱大量积累,从而阻断神经系统的信号传递,导致昆虫死亡。
有机磷酸酯与AChE酯动部位丝氨酸的羟基共价结合后,由于磷酰化酶的解离速度非常缓慢,使AChE无法恢复而抑制其活性。
多为油状液体,少数为固体,颜色深,有大蒜臭味沸点一般很高,在常温下蒸气压很低。
但敌敌畏蒸气压高。
大多数不溶于水或微溶于水,而溶于一般有机溶剂,但有的在水中有较大的溶解度,如敌百虫、乐果、甲胺磷、磷胺等。
碱性条件易分解失效对土壤害虫有效的品种:甲拌磷、二嗪磷、毒死蜱、特丁硫磷、辛硫磷(施用时浸种/拌种、配成毒土)内吸性有机磷杀虫剂:乐果,氧乐果,甲拌磷,乙拌磷,异丙磷,灭蚜松2007年1月1日起我国全面禁用列入“PIC”名单的5种高毒农药:甲胺磷、甲基对硫磷、对硫磷、久效磷、磷胺氨基甲酸酯类(CAs)N,N-二甲基氨基甲酸酯类(抗蚜威、抗蝇威、敌蝇威、异索威、吡唑威、嘧啶威、地麦威)、N-甲基氨基甲酸芳香酯(甲萘威、仲丁威、灭害威、残杀威、除害威、速灭威、害扑威、叶蝉散、克百威)、N-甲基氨基甲酸肟酯(涕灭威、灭多威、棉果威、杀线威、抗虫威)、N-酰基(或羟硫基)N-甲基氨基甲酸酯(棉铃威)大部分氨基甲酸酯类比有机磷杀虫剂毒性低,对鱼类比较安全,但对蜜蜂具有较高毒性;对人畜的毒性都比较小。
杀虫剂原理
杀虫剂的原理可以归结为以下几个方面:
1. 神经毒性作用:许多杀虫剂通过干扰昆虫的神经系统来达到杀虫的效果。
它们可以影响昆虫神经细胞的正常功能,如阻断神经传递物质、干扰神经信号传递等,导致昆虫瘫痪、麻痹或死亡。
2. 窒息作用:某些杀虫剂能够阻碍昆虫呼吸系统的正常功能。
它们通过干扰昆虫的气孔或呼吸器官,阻止氧气的供应或二氧化碳的排出,使昆虫无法正常呼吸而死亡。
3. 胃毒作用:某些杀虫剂具有胃毒性,即昆虫摄入杀虫剂后会导致中毒而死亡。
这些杀虫剂可以通过昆虫的食物或触碰叶面而被摄入体内,然后对昆虫的内部组织或器官产生毒性作用,最终导致昆虫死亡。
4. 生长调节作用:有些杀虫剂是模拟昆虫内部激素的结构或功能,干扰昆虫的生长和发育过程。
它们可以阻止昆虫完成正常的蜕皮、成虫化、繁殖等关键阶段,从而抑制昆虫的繁殖能力,减少种群数量。
需要注意的是,不同的杀虫剂可能采用不同的作用机制或组合多种机制,以增加杀虫效果并降低抗性的产生。
此外,杀虫剂的选择和使用
应遵循相关法规和安全准则,以确保对非目标生物和环境的影响最小化。
常见杀虫剂作用机理常见的杀虫剂作用机理分为以下几种:1.神经毒剂作用机理:神经毒剂作用于昆虫的神经系统,干扰其神经递质的传递,导致神经元受损或死亡。
常见的神经毒剂有有机磷类杀虫剂和氨基甲酸酯类杀虫剂。
有机磷类杀虫剂通过抑制乙酰胆碱酯酶的活性,导致乙酰胆碱在神经突触中积累,干扰神经传递。
氨基甲酸酯类杀虫剂通过抑制神经突触前膜上的胆碱酯酶的活性,使神经递质乙酰胆碱在突触中积累,从而破坏神经传递。
2.窒息剂作用机理:窒息剂通常是通过阻碍昆虫的气呼吸系统,造成虫体缺氧而达到杀灭昆虫的目的。
窒息剂有机磷类杀虫剂和氨基甲酸酯类杀虫剂。
这些化合物能够阻止昆虫对氧气的吸收和利用,导致虫体中氧气水平降低并且二氧化碳水平升高,最终导致昆虫窒息而死亡。
3.生长调节剂作用机理:生长调节剂通过与昆虫的内分泌系统相互作用,干扰昆虫的生长和发育过程。
生长调节剂可以分为昆虫激素模拟剂和昆虫激素拮抗剂两类。
昆虫激素模拟剂作用于昆虫的生长和发育激素受体,模拟自然的激素信号,引起生长和发育的异常而导致昆虫死亡。
昆虫激素拮抗剂则是干扰昆虫内源性激素的合成和释放,抑制昆虫的生长和发育。
4.刺激剂作用机理:刺激剂能够直接刺激昆虫的神经系统,导致神经元活跃性增加,引起神经失调或神经毒性反应。
常见的刺激剂有咪饮胺类杀虫剂和拟除虫菊酯类杀虫剂。
这些化合物通过刺激昆虫神经细胞的放电,干扰神经传递,最终导致昆虫神经系统受损。
5.疟疾杀虫剂作用机理:疟疾杀虫剂通过对疟原虫或蚊子的特殊靶点进行作用,杀死疟原虫或蚊子。
中常用的疟疾杀虫剂有灭蚊胺和氰菊酯等。
灭蚊胺作用于疟原虫的线粒体呼吸链酶,阻断其能量代谢。
而氰菊酯则作用于蚊子神经系统的特定靶点,干扰神经传递,导致蚊子死亡。
总的来说,不同的杀虫剂通过不同的作用机理,干扰昆虫的生理功能,从而达到杀虫的效果。
这些杀虫剂通过农业和卫生领域的应用,可以有效地控制各种昆虫害虫的数量和传播,保护农作物的生长和人类的健康。
杀虫剂杀虫原理
杀虫剂的作用机理是通过化学药剂对害虫进行毒杀。
其主要成分能够干扰害虫的生理活动和代谢过程,从而导致害虫死亡。
杀虫剂通常分为接触性和内服性两类。
接触性杀虫剂涂覆在害虫体表,通过直接接触而使害虫中毒和死亡。
内服性杀虫剂则通过害虫摄食含药物的饵料或植物组织,进入害虫体内,从而达到毒杀效果。
杀虫剂的主要成分包括有机磷化合物、氨基甲酸酯、咪唑类、大环内酯等。
这些化学物质在进入害虫体内后,通过与害虫的神经系统、酶系统或其他生理过程发生作用,影响害虫的正常生理活动。
例如,有机磷杀虫剂能够抑制酯酶的活性,从而使神经递质乙酰胆碱在神经突触中积累,导致神经冲动传递异常,最终引发麻痹和死亡。
氨基甲酸酯杀虫剂则能够抑制神经递质乙酰胆碱酯酶的活性,使乙酰胆碱在突触间隙停留时间增加,产生神经传递紊乱和抑制作用。
除了直接对害虫产生毒杀效果外,杀虫剂的选择和使用也要考虑对非目标生物的影响,以及环境的安全性。
合理使用和控制剂量,遵循使用说明,能够最大程度减少对环境和生态系统的负面影响。
杀虫剂是一种用于杀死、控制或预防各种昆虫的药剂。
它们是由化学合成或从天然物质中提取的化合物组成的,其作用机理大致分为六类:神经酶抑制剂、神经递质模拟剂、神经递质释放促进剂、呼吸抑制剂、顺式调节剂和生长调节剂。
一、神经酶抑制剂神经酶抑制剂是一种通过抑制昆虫或其他无脊椎动物体内神经酶的有效作用成分。
神经酶是传递神经脉冲的化合物,它们能够从一个神经元中传递到另一个神经元中,并且通过神经酶将神经信息作为化学信号传递。
有些昆虫,如蚂蚁、蜜蜂和蜘蛛,同时具有乙酰胆碱酶和胆碱酰转移酶,这些昆虫可以通过阻止神经递质的正常破坏而被杀死。
杀虫剂中的神经酶抑制剂会阻止神经酶的生物催化作用,从而导致神经递质聚积,昆虫的正常神经传递将被干扰,最终导致中毒死亡。
二、神经递质模拟剂神经递质模拟剂是化合物的一类,它们模拟或激活某种神经递质的作用。
神经递质是一种关键的化学物质,它可以调节神经冲动和昆虫行为,例如飞行、搜索和交配。
许多杀虫剂中的化合物可以模拟或增加昆虫体内的特定神经递质,例如多巴胺、谷氨酸、五羟色胺和胆碱等,从而破坏昆虫正常的神经递质信号传递,导致昆虫死亡。
三、神经递质释放促进剂神经递质释放促进剂是一类通过促进神经递质的释放来杀死昆虫或控制昆虫数量的化合物。
这些化合物可以模拟昆虫体内的一些近似神经递质,并激活神经元,导致神经递质大量释放。
大量释放的神经递质可能会打断神经元传输和接受信息,干扰内脏、肌肉或神经系统的正常功能,导致死亡。
四、呼吸抑制剂昆虫的呼吸依赖于扩张和收缩的气管,将氧气吸入体内。
杀虫剂中的呼吸抑制剂可以通过干扰气管的扩张和收缩来抑制昆虫的呼吸。
呼吸抑制剂可分为两类:儿茶酚类和有机磷酸酯类(OP)。
OP是目前最常用的呼吸抑制剂。
它们可以直接抑制气管收缩,导致氧气无法进入昆虫体内,因此昆虫就会死亡。
五、顺式调节剂顺式调节剂包括在昆虫体内调节顺式脱水素的物质,本质上是一种激素。
它们能够影响昆虫的生长和发育,因此可以被用作杀虫剂来防止虫害。