_辽宁省葫芦岛市老官卜中学2019年九年级综合测试数学试题(含答案解析)
- 格式:doc
- 大小:160.21 KB
- 文档页数:9
辽宁省葫芦岛市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-2.下列计算正确的是( ) A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 43.在平面直角坐标系中,点A 的坐标是(﹣1,0),点B 的坐标是(3,0),在y 轴的正半轴上取一点C ,使A 、B 、C 三点确定一个圆,且使AB 为圆的直径,则点C 的坐标是( ) A .(0,3)B .(3,0)C .(0,2)D .(2,0)4.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .5.计算--|-3|的结果是( )A .-1B .-5C .1D .56.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32π B .83π C .6π D .以上答案都不对7.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D8.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( ) A .1.21×103 B .12.1×103 C .1.21×104 D .0.121×1059.规定:如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x 2+2x ﹣8=0是倍根方程; ②若关于x 的方程x 2+ax+2=0是倍根方程,则a=±3; ③若关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax 2﹣6ax+c 与x 轴的公共点的坐标是(2,0)和(4,0); ④若点(m ,n )在反比例函数y=4x的图象上,则关于x 的方程mx 2+5x+n=0是倍根方程. 上述结论中正确的有( ) A .①②B .③④C .②③D .②④10. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°11.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= )①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯② 2525=③④若12390∠∠∠++=o ,则它们互余 A .4B .14C .3-D .1312.已知m =12n =12223m n mn +-的值为 ( ) A .±3B .3C .5D .9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:3a r ﹣(a r ﹣2b r)=____.14.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).15.化简:4= .16.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).17.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.18.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (53,0),B (0,4),则点B 4的坐标为_____,点B 2017的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A 的仰角为45°,求山高AD 的长度.(测角仪高度忽略不计)20.(6分)阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b=﹣x 4﹣ax 2+x 2+a+b=﹣x 4﹣(a ﹣1)x 2+(a+b ) ∵对应任意x ,上述等式均成立,∴113a ab -=⎧⎨+=⎩,∴a=2,b=1∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.21.(6分)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .22.(8分)数学兴趣小组为了研究中小学男生身高y (cm )和年龄x (岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB 上,后7个点大致位于直线CD 上.年龄组x7 8 9 10 11 12 13 14 15 1617男生平均身高y115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?23.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C和2位女同学(,)D E,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.24.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.25.(10分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作∠ABD=∠ADE ,交AC 于点E .(1)求证:DE 为⊙O 的切线. (2)若⊙O 的半径为256,AD=203,求CE 的长.26.(12分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹) (2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.27.(12分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x >0)元,让利后的购物金额为y 元. (1)分别就甲、乙两家商场写出y 关于x 的函数解析式; (2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.2.B 【解析】 【分析】 【详解】解:A .a 2+a 2=2a 2,故A 错误; C 、a 2a 3=a 5,故C 错误; D 、a 8÷a 2=a 6,故D 错误; 本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方 3.A 【解析】 【分析】直接根据△AOC ∽△COB 得出OC 2=OA•OB ,即可求出OC 的长,即可得出C 点坐标. 【详解】如图,连结AC ,CB.依△AOC ∽△COB 的结论可得:OC 2=OA ⋅OB , 即OC 2=1×3=3, 解得:3或3(负数舍去), 故C 点的坐标为(0, 3).故答案选:A. 【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质. 4.B 【解析】 【分析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 5.B 【解析】 【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值. 【详解】 原式故选:B . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 6.D 【解析】 【分析】从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积. 【详解】 阴影面积=()603616103603π⨯-=π. 故选D . 【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形. 7.C 【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C . 8.C【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 详解:1.21万=1.21×104, 故选:C .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 9.C 【解析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设2x =21x ,得到1x •2x =221x =2,得到当1x =1时,2x =2,当1x =-1时,2x =-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y=4x的图象上,得到mn=4,然后解方程m 2x +5x+n=0即可得到正确的结论;详解:①由2x -2x-8=0,得:(x-4)(x+2)=0, 解得1x =4,2x =-2, ∵1x ≠22x ,或2x ≠21x , ∴方程2x -2x-8=0不是倍根方程;故①错误;②关于x 的方程2x +ax+2=0是倍根方程, ∴设2x =21x , ∴1x •2x =221x =2, ∴1x =±1, 当1x =1时,2x =2, 当1x =-1时,2x =-2, ∴1x +2x =-a=±3, ∴a=±3,故②正确; ③关于x 的方程a 2x -6ax+c=0(a≠0)是倍根方程, ∴2x =21x ,∵抛物线y=a 2x -6ax+c 的对称轴是直线x=3, ∴抛物线y=a 2x -6ax+c 与x 轴的交点的坐标是(2,0)和(4,0), 故③正确; ④∵点(m ,n )在反比例函数y=4x的图象上, ∴mn=4, 解m 2x +5x+n=0得 1x =2m -,2x =8m-, ∴2x =41x , ∴关于x 的方程m 2x +5x+n=0不是倍根方程; 故选C .点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键. 10.C 【解析】 【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数. 【详解】∵∠1=50°, ∴∠3=∠1=50°, ∴∠2=90°−50°=40°. 故选C. 【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键. 11.D 【解析】 【分析】首先判断出四个结论的错误个数和正确个数,进而可得m 、n 的值,再计算出m n -即可. 【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确;2525=③④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=,m 1n 3-=,故选D . 【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m 、n 的值. 12.B【解析】【分析】由已知可得:2,(11m n mn +==+-=-【详解】由已知可得:2,(11m n mn +==+-=-,原式3=== 故选:B【点睛】考核知识点:二次根式运算.配方是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2a r +2b r【解析】【分析】根据平面向量的加法法则计算即可.【详解】3a v ﹣(a v ﹣2b v )=3a v ﹣a v +2b v=2a v +2b v ,故答案为:2a v +2b v,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.14.4n+1【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【详解】解:第一个图案正三角形个数为6=1+4;第二个图案正三角形个数为1+4+4=1+1×4; 第三个图案正三角形个数为1+1×4+4=1+3×4; …;第n 个图案正三角形个数为1+(n ﹣1)×4+4=1+4n=4n+1.故答案为4n+1.考点:规律型:图形的变化类.15.2【解析】【分析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4=2.【点睛】本题考查求算术平方根,熟记定义是关键.16.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.17.540°【解析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和18.(20,4)(10086,0)【解析】【分析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【详解】解:由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB 1+B 1C 2=53+133+4=6+4=10,∴B 2的横坐标为:10,B 4的横坐标为:2×10=20,B 2016的横坐标为:20162×10=1. ∵B 2C 2=B 4C 4=OB=4,∴点B 4的坐标为(20,4),∴B 2017的横坐标为1+53+133=10086,纵坐标为0,∴点B 2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得出B 点横坐标变化规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.301)米【解析】【分析】设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.【详解】由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD, ∴CD =AD =x ,∴BD =BC+CD =x+60,在Rt △ABD 中,∵tan ∠ABD =AD BD,∴60)x x =+,∴1)x =米,答:山高AD 为301)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20. (1) =x 2+7+211x -+ (2) 见解析 【解析】【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可; (2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b ,可得168a a b -=-⎧⎨+=⎩, 解得:a=7,b=1, 则原式=x 2+7+211x -+;(2)由(1)可知,422681x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;当x=0时,取得最小值0,∴当x=0时,x 2+7+211x -+最小值为1,即原式的最小值为1.21.(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=o 可得四边形CEGF 是矩形,再由ECG 45∠=o 即可得证;②由正方形性质知CEG B 90∠∠==o 、ECG 45∠=o ,据此可得CG CE =、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG V ∽△BCE 即可得;(3)证AHG V ∽CHA V 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH =,由AG AH AC CH =可得a 的值.【详解】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°,∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°, ∴2CG CE =,GE ∥AB , ∴2AG CG BE CE ==, 故答案为2; (2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG 2、CB CA 2, ∴CG CE =2CA CB= ∴△ACG ∽△BCE , ∴2AG CA BE CB == ∴线段AG 与BE 之间的数量关系为2BE ;(3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==, 设BC=CD=AD=a ,则a , 则由AG GH AC AH =AH=, ∴AH=23a , 则DH=AD ﹣AH=13a ,=3a , ∴由AG AH AC CH =2a =, 解得:故答案为【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.22.(1)11;(2)y =3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm 左右.【解析】【分析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把x 18=带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB 所对应的函数表达式y kx b =,+ ∵图象经过点7115.211129.6(,)、(,),则115.27129.611k b k b =+⎧⎨=+⎩,解得k 3.6b 90=⎧⎨=⎩. 即直线AB 所对应的函数表达式:y 3.6x 90+=;(3)设直线CD 所对应的函数表达式为:y mx n +=,135.612154.815m+n m n =+⎧⎨=⎩,得 6.458.8m n =⎧⎨=⎩, 即直线CD 所对应的函数表达式为:y 6.4x 58.8=,+ 把x 18=代入y 6.4x 58.8+=得y 174=, 即该市18岁男生年龄组的平均身高大约是174cm 左右.【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键. 23.50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名) 故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.24.(1)14;(2)112.【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为1 12.25.(1)证明见解析;(2)CE=1.【解析】【分析】(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.【详解】(1)连接OD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD为半径,∴DE为⊙O的切线;(2)∵⊙O的半径为,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定. 26.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.27.(1)y 1=0.85x ,y 2=0.75x+50 (x >200),y 2=x (0≤x≤200);(2)x >500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x <500时,到甲商场购物会更省钱.【解析】【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),即y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,解得x>500,即当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,解得x<500,即当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点睛】本题考查了一次函数的应用,分类讨论是解题关键.。
第 1 页 共 20 页2019-2020学年辽宁省葫芦岛市九年级上学期期末考试数学试卷一、选择题(本大题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求,请将符合要求的答案的序号填入下面表格内)1.(2分)下列各图形中,不是中心对称图的是( )A .平行四边形B .线段C .等边三角形D .圆2.(2分)若关于x 一元二次方程mx 2﹣x +1=0有实数根,则m 的取值范围是( )A .m <14B .m ≤14且m ≠0C .m <14且m ≠0D .m ≥14且m ≠0 3.(2分)二次函数y =x 2+2x ﹣2图象的顶点坐标是( )A .(﹣1,﹣3)B .(1,﹣3)C .(1,3)D .(﹣1,3)4.(2分)在平面直角坐标系中,点A (﹣4,1)关于原点的对称点的坐标为( )A .(4,1)B .(4,﹣1)C .(﹣4,﹣1)D .(﹣1,4)5.(2分)已知:如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3√2D .4√26.(2分)下列事件中,必然事件是( )A .2月有28天B .抛物线y =ax 2+3x 的开口向上C .|a ﹣b |=a ﹣bD .正八边形的中心角等于45°7.(2分)口袋里有1个红球,1个白球,2个黑球,它们除了颜色外都相同,任意摸出一个球是黑色的概率是( )A .13B .12C .34D .14 8.(2分)下列结论正确的是( )A .圆的切线垂直于半径B .圆心角等于圆周角的2倍。
辽宁省葫芦岛市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是()A.0 B.C.2+D.2﹣2.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球3.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.84.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.125.计算tan30°的值等于()A.B.C.D.6.下列四个不等式组中,解集在数轴上表示如图所示的是()A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩ 7.如图,AB 是O e 的直径,弦CD AB ⊥,CDB 30∠=o ,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3 D .2π38.下列计算中,错误的是( )A .020181=;B .224-=;C .1242=; D .1133-=. 9.如果向北走6km 记作+6km ,那么向南走8km 记作( )A .+8kmB .﹣8kmC .+14kmD .﹣2km10.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3 B .43 C .5D .13 11.如图,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠512.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若式子x 1x+有意义,则x 的取值范围是 . 14.若式子21x +在实数范围内有意义,则x 的取值范围是_______. 15.如图,AD=DF=FB,DE ∥FG ∥BC,则S Ⅰ:S Ⅱ:S Ⅲ=________.16.(﹣)﹣2﹣(3.14﹣π)0=_____.17.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF18.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.20.(6分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M 在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.21.(6分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形;②当BE =______时,四边形BECD 是菱形.22.(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.23.(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 3≈1.7)24.(10分)如图,一次函数y=﹣x+的图象与反比例函数y=(k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA+PB 的值最小,并求出其最小值和P 点坐标.25.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.26.(12分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.27.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣时,(7+4)x2+(2+)x+=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7-4)+1+=49-48+1+=2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.2.A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.3.B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.4.B【解析】【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 5.C【解析】tan30°= .故选C .6.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23x x ≤⎧⎨-⎩f , 故选D .【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.7.D【解析】分析:连接OD ,则根据垂径定理可得出CE=DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD ⊥AB , ∴13,2CE DE CD === (垂径定理), 故OCE ODE S S V V ,= 即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠=o (圆周角定理),∴OC=2,故S 扇形OBD=260π22π3603⨯=, 即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.8.B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.9.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km 记作+6km ,那么向南走8km 记作﹣8km .故选:B .【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.10.A【解析】根据锐角三角函数的性质,可知cosA=AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边斜边,然后带入数值即可求解.11.B【解析】由内错角定义选B.12.D【解析】【分析】根据真假命题的定义及有关性质逐项判断即可.【详解】A 、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B 、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C 、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D 、∵a 2+b 2+c 2=ac +bc +ab ,∴2a 2+2b 2+2c 2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c ,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x 1≥-且x 0≠【解析】【详解】∵式子x在实数范围内有意义, ∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.14.x≠﹣1【解析】【分析】分式有意义的条件是分母不等于零.【详解】 ∵式子21x 在实数范围内有意义, ∴x+1≠0,解得:x≠-1.故答案是:x≠-1.【点睛】考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.15.1:3:5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD=DF=FB ,∴AD:AF:AB=1:2:3,∴::ADE AFG ABC S S S V V V =1:4:9, ∴S Ⅰ:S Ⅱ:S Ⅲ=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方. 16.3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. 原式=4-1=3.考点:负整数指数幂;零指数幂.17.①②④【解析】试题解析:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=1∠BCD ,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.【解析】【分析】设空闲时段民用电的单价为x 元/千瓦时,高峰时段民用电的单价为y 元/千瓦时,该用户5月份空闲时段用电量为a 千瓦时,则5月份高峰时段用电量为2a 千瓦时,6月份空闲时段用电量为2a 千瓦时,6月份高峰时段用电量为a 千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x ,y 的二元一次方程,解之即可得出x ,y 之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x 元/千瓦时,高峰时段民用电的单价为y 元/千瓦时,该用户5月份空闲时段用电量为a 千瓦时,则5月份高峰时段用电量为2a 千瓦时,6月份空闲时段用电量为2a 千瓦时,6月份高峰时段用电量为a 千瓦时,依题意,得:(1﹣25%)(ax+2ay )=2ax+ay ,解得:x =0.4y , ∴该地区空闲时段民用电的单价比高峰时段的用电单价低y x y-×100%=60%. 故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元.【解析】【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩, 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1.设实际付款总额是y 元,则y =0.9[2x +80(2-x )].即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元).答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元.20.(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得 366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0). 由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (3,0)在线段OB 上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC , ∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.21. (1)、证明过程见解析;(2)、①、2;②、1.【解析】【分析】(1)、首先证明△BEF 和△DCF 全等,从而得出DC=BE ,结合DC 和AB 平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE 是等边三角形,从而得出答案.【详解】(1)、证明:∵AB ∥CD ,∴∠CDF=∠FEB ,∠DCF=∠EBF ,∵点F 是BC 的中点,∴BF=CF ,在△DCF 和△EBF 中,∠CDF=∠FEB ,∠DCF=∠EBF ,FC=BF ,∴△EBF ≌△DCF (AAS ), ∴DC=BE , ∴四边形BECD 是平行四边形;(2)、①BE=2;∵当四边形BECD 是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=12BC=2, ②BE=1,∵四边形BECD 是菱形时,BE=EC ,∵∠ABC=120°,∴∠CBE=60°,∴△CBE 是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.22.(1)y =-12(x -3)2+5(2)5 【解析】【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.23.潜艇C 离开海平面的下潜深度约为308米【解析】试题分析:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,用锐系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x= 3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频24.(1)(2)(0,)【解析】【分析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.【详解】(1)∵反比例函数y= =(k>0)的图象过点A,过 A 点作x 轴的垂线,垂足为M,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=;(2)作点A 关于y 轴的对称点A′,连接A′B,交y 轴于点P,则PA+PB 最小.由,解得,或,∴A(1,2),B(4,),∴A′(﹣1,2),最小值A′B==,设直线A′B 的解析式为y=mx+n,则,解得,∴直线A′B 的解析式为y=,∴x=0 时,y=,∴P 点坐标为(0,).【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.25.(1)证明见解析;(2)CE=1.【解析】(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴22OB OH,【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.26.(1)13;(2)23.【解析】【分析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=1 3 ,(2)列表得:由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=62=93.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.27.(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).【解析】【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【详解】(1)如图1所示,△A1B1C1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.。
第1页,共22页2019年辽宁省葫芦岛市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. 6B. −6C. 16D. −162.下列运算正确的是()A. x 2⋅x 2=x 6B. x 4+x 4=2x 8C. −2(x 3)2=4x 6D. xy 4÷(−xy)=−y 33.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则这5次测试成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁4.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A. 13,14B. 14,15C. 15,15D. 15,146.不等式组{3x <2x +2x+13−x ≤1的解集在数轴上表示正确的是()A.B.C. D.7.某工厂计划生产300个零件,个零件,由于采用新技术,由于采用新技术,由于采用新技术,实际每天生产零件的数量是原计划实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x 个,根据题意,所列方程正确的是()A. 300x−300x+2=5B. 3002x−300x=5C. 300x−3002x=5D. 300x+2−300x=58. 二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+ 8.b的图象大致是( )A.B.C.D.9. 如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO9.)的度数为( A. 70°B. 55°C. 45°D.35°10. 如图,正方形ABCD的对角线AC,BD相交于点O,点10.E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之)间的函数关系的是( A.B.C.D.二、填空题(本大题共8小题,共24.0分)11. 太阳的半径大约为696000000,将数据696000000用科学记数法表示为______.11.12. 分解因式:x3y−xy3=______.12.13. 若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是13.______.14. 在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如14.果从袋子中随机摸出一个球,摸到红球的概率是13,那么n的值为______.15. 如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上15.的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为____米.(√3≈1.73,结果精确到0.1米)16.16. 如图,BD 是▱ABCD 的对角线,按以下步骤作图:①分别以点B 和点D 为圆心,为圆心,大于12BD 的长为半径作弧,两弧相交于E ,F 两点;②作直线EF ,分别交AD ,BC 于点M ,N ,连接BM ,DN.若BD =8,MN =6,则▱ABCD 的边BC 上的高为______.17.17. 如图,在Rt △ABC 的纸片中,∠C =90°,AC =5,AB =13.点D 在边BC 上,以AD 为折痕将△ADB 折叠得到△ADB′,AB′与边BC 交于点E.若△DEB′为直角三角形,则BD 的长是______.18.18. 如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:,则下列结论中:①PA =PE ;②CE =√2PD ;③BF −PD =12BD ;④S △PEF =S △ADP正确的是______(填写所有正确结论的序号)三、计算题(本大题共1小题,共10.0分) 19.19. 先化简,再求值:a 2+aa 2−2a +1÷(2a−1−1a ),其中a =(13)−1−(−2)0.四、解答题(本大题共7小题,共86.0分)20.20. 某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,两幅不完整的统计图. 查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:根据图中提供的信息,解答下列问题:(1)本次调查的学生共有______人;在扇形统计图中,B所对应的扇形的圆心角的度数是______;(2)将条形统计图补充完整;将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.女的概率.21. 在平面直角坐标系中,△ABC的三个顶点坐标分别是21.A(−1,1),B(−4,1),C(−3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.长.22. 如图,一次函数y=k1x+b的图象与x轴、y轴分别交于22.A,B两点,与反比例函数y=k2x的图象分别交于C,D的中点.两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=k2x的解析式;的解析式;(2)求△COD的面积;的面积;(3)直接写出当x取什么值时,k1x+b<k2x.23. 某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不23.低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时符合一次函数关系,如图所示: 间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元元的销售利润,销售单价应定为多少元 (3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?销售单价为多少元时,每天获得的利润最大,最大利润是多少元?24. 如图,点M是矩形ABCD的边AD延长线上一点,以AM24.交矩形对角为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.的长.25. 如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点25.B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;的位置关系; (2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CE AB的值.的值.26. 如图,直线y=−x+4与x轴交于点B,与y轴交于点C,抛物线y=−x2+bx+c 26.经过B,C两点,与x轴另一交点为A.点P以每秒√2个单位长度的速度在线段BC 上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x 轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当MQ NQ=12时,的值;求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.答案解析1.【答案】A【解析】解:|−6|=6, 故选:A .根据负数的绝对值是它的相反数,可得负数的绝对值.根据负数的绝对值是它的相反数,可得负数的绝对值. 本题考查了绝对值,负数的绝对值是它的相反数.本题考查了绝对值,负数的绝对值是它的相反数. 2.【答案】D【解析】解:∵x 2⋅x 2=x 4, ∴选项A 不符合题意;不符合题意; ∵x 4+x 4=2x 4, ∴选项B 不符合题意;不符合题意;∵−2(x 3)2=−2x 6, ∴选项C 不符合题意;不符合题意;∵xy 4÷(−xy)=−y 3, ∴选项D 符合题意.符合题意.故选D .根据同底数幂的乘除法的运算方法,根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项以及合并同类项的方法,逐项判断即可.的方法,逐项判断即可.此题主要考查了同底数幂的乘除法的运算方法,此题主要考查了同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,以及以及合并同类项的方法,要熟练掌握.合并同类项的方法,要熟练掌握.3.【答案】D【解析】解:∵S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45, ∴S 丁2<S 丙2<S 乙2<S 甲2,∴成绩最稳定的是丁.成绩最稳定的是丁. 故选:D .直接利用方差是反映一组数据的波动大小的一个量,直接利用方差是反映一组数据的波动大小的一个量,方差越大,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.可.此题主要考查了方差,正确理解方差的意义是解题关键.此题主要考查了方差,正确理解方差的意义是解题关键.4.【答案】B【解析】解:从上面看是四个小正方形,如图所示:【解析】解:从上面看是四个小正方形,如图所示:故选:B .根据从上面看得到的图形是俯视图,可得答案.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.5.【答案】C【解析】【分析】【解析】【分析】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.根据众数和中位数的定义求解可得.根据众数和中位数的定义求解可得. 【解答】【解答】解:∵这组数据中15出现5次,次数最多,次,次数最多, ∴众数为15岁,岁,中位数是第6、7个数据的平均数,个数据的平均数,∴中位数为15+152=15岁,岁, 故选:C .6.【答案】A【解析】【分析】【解析】【分析】本题考查的是解一元一次不等式组及在数轴上表示解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.大小小无解了确定不等式组的解集. 【解答】【解答】解:解不等式3x <2x +2,得:x <2, 解不等式x +13−x ≤1,得:x ≥−1,则不等式组的解集为−1≤x <2, 故选A .7.【答案】C【解析】【分析】【解析】【分析】本题考查由实际问题抽象出分式方程,本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,解答本题的关键是明确题意,解答本题的关键是明确题意,列出相应的分式方列出相应的分式方程.根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.应的分式方程,本题得以解决. 【解答】【解答】解:由题意可得,解:由题意可得,300x−3002x=5,故选C .8.【答案】D【解析】解:由二次函数图象,得出a <0,−b2a <0,b <0,A 、一次函数图象,得a >0,b >0,故A 错误;错误;B 、一次函数图象,得a <0,b >0,故B 错误;错误;C 、一次函数图象,得a >0,b <0,故C 错误;错误;D 、一次函数图象,得a <0,b <0,故D 正确;正确;故选:D .可先根据二次函数的图象判断a 、b 的符号,再判断一次函数图象与实际是否相符,判断正误.断正误.本题考查了二次函数图象,应该熟记一次函数y =kx +b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.【答案】B9.【解析】解:连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=12(180°−∠AOB)=55°.故选:B.根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数的度数同弧或等弧所对的圆周角等于这条本题考查了圆周角定理,注意掌握在同圆或等圆中,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.弧所对的圆心角的一半.10.【答案】A【解析】【分析】【解析】【分析】本题主要考查了动点问题的函数图象、全等三角形的判定和性质、中位线的性质定理,解题的关键是通过辅助线构造全等三角形而后转化线段连接FD,证明△BAE≌△DAF,得到∠ADF=∠ABE=45°,FD=BE,再说明GO为△BDF的中位线OG=12FD,则y= 12x,且x>0,是在第一象限的一次函数图象.,是在第一象限的一次函数图象.【解答】【解答】解:连接FD,∵∠BAE+∠EAD=90°,∠FAD+∠EAD=90°,∴∠BAE=∠FAD.又BA=DA,EA=FA,∴△BAE≌△DAF(SAS).∴∠ADF=∠ABE=45°,FD=BE.∴∠FDO=45°+45°=90°.∵GO⊥BD,FD⊥BD,∴GO//FD.∵O为BD中点,中点,∴GO为△BDF的中位线.的中位线.∴OG=12FD.∴y=12x,且x>0,是在第一象限的一次函数图象.,是在第一象限的一次函数图象.故选A.11.【答案】6.96×108【解析】解:将数据【解析】解:将数据696000000用科学记数法表示为6.96×108. 故答案为:6.96×108.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.是负数. 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值. 12.【答案】xy(x +y)(x −y)【解析】解:x 3y −xy 3,=xy(x 2−y 2),=xy(x +y)(x −y).首先提取公因式xy ,再对余下的多项式运用平方差公式继续分解.,再对余下的多项式运用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 13.【答案】−2【解析】解:∵关于x 的一元二次方程x 2+(2+a)x =0有两个相等的实数根,有两个相等的实数根,∴△=(2+a)2−4×1×0=0, 解得:a =−2, 故答案为:−2.根据根的判别式得出△=(2+a)2−4×1×0=0,求出即可.,求出即可.本题考查了根的判别式和一元二次方程的解,能根据根的判别式和已知得出△=(2+a)2−4×1×0=0是解此题的关键.是解此题的关键.14.【答案】4【解析】解:根据题意得2n+2=13, 解得n =4,经检验:n =4是分式方程的解,是分式方程的解, 故答案为:4.根据概率公式得到2n+2=13,然后利用比例性质求出n 即可.即可.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.能出现的结果数. 15.【答案】54.6【解析】解:过点A 作AE ⊥a 于点E ,过点B 作BD ⊥PA 于点D , ∵∠PBC =75°,∠PAB =30°, ∴∠DPB =45°, ∵AB =80,∴BD =40,AD =40√3, ∴PD =DB =40,∴AP =AD +PD =40√3+40, ∵a//b ,∴AE=12AP=20√3+20≈54.6,故答案为:54.6.过点A作AE⊥a于点E,过点B作BD⊥PA于点D,然后锐角三角函数的定义分别求出AD、PD后即可求出两岸之间的距离.后即可求出两岸之间的距离.本题考查解直角三角形,解题的关键是熟练运用含30度角的直角三角形性质以及锐角三角函数的定义,本题属于中等题型.三角函数的定义,本题属于中等题型.16.【答案】245【解析】【分析】【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.由作法得MN垂直平分BD,则MB=MD,NB=ND,再证明△BMN为等腰三角形得到BM=BN,则可判断四边形BMDN为菱形,利用菱形的上的高.性质和勾股定理计算出BN=5,然后利用面积法计算▱ABCD的边BC上的高.【解答】【解答】解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,为平行四边形,∴AD//BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,为等腰三角形,∴BM=BN,∴BM=BN=ND=MD,∴四边形BMDN为菱形,为菱形,∴BN=√32+42=5,设▱ABCD的边BC上的高为h,∵MN⋅BD=2BN⋅ℎ,∴ℎ=6×82×5=245,即▱ABCD的边BC上的高为245.故答案为245.17.【答案】7或263【解析】【分析】【解析】【分析】本题考查轴对称的性质、直角三角形的性质、勾股定理等知识,分类讨论思想的应用注意分类的原则是不遗漏、不重复.意分类的原则是不遗漏、不重复.由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角的长.三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长.【解答】【解答】解:在Rt △ABC 中,BC =√AB 2−AC 2=√132−52=12. (1)当∠EDB′=90°时,如图1,过点B′作B′F ⊥AC ,交AC 的延长线于点F , 由折叠得:AB =AB′=13,BD =B′D =CF ,设BD =x ,则B′D =CF =x ,B′F =CD =12−x , 在Rt △AFB′中,由勾股定理得:中,由勾股定理得:(5+x)2+(12−x)2=132,即:x 2−7x =0,解得:x 1=0(舍去),x 2=7, 因此,BD =7.(2)当∠DEB′=90°时,如图2,此时点E 与点C 重合,重合,由折叠得:AB =AB′=13,则B′C =13−5=8, 设BD =x ,则B′D =x ,CD =12−x , 在Rt △B′CD 中,由勾股定理得:中,由勾股定理得:(12−x)2+82=x 2, 解得:x =263,因此BD =263. 故答案为7或263.18.【答案】①②③【解析】【分析】【解析】【分析】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,平行四边形和矩形的判定和性质,勾股定理,以及等腰直角三角形的性质,熟练掌握判定与性质是解本题的关键.与性质是解本题的关键.①连接AE ,利用四点共圆证明△APE 是等腰直角三角形,可得结论;是等腰直角三角形,可得结论; ②如图3,作辅助线,证明四边形DCGP 是平行四边形,可得结论;是平行四边形,可得结论; ③证明四边形OCGF 是矩形,可作判断;是矩形,可作判断;,可作判断.,可作判断.【解答】【解答】解:连接AE,∵∠ABC=∠APE=90°,∴A、B、E、P四点共圆,四点共圆,∴∠EAP=∠PBC=45°,∵AP⊥PE,∴∠APE=90°,∴△APE是等腰直角三角形,是等腰直角三角形,∴AP=PE,正确;故①正确;②如图3,连接CG,由①知:PG//AB,PG=AB,∵AB=CD,AB//CD,∴PG//CD,PG=CD,∴四边形DCGP是平行四边形,是平行四边形,∴CG=PD,CG//PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=√2CG=√2PD;故②正确;正确;③由②知:∠CGF=∠GFO=90°,∵四边形ABCD是正方形,是正方形,∴AC⊥BD,∴∠COF=90°,∴四边形OCGF是矩形,是矩形,∴CG=OF=PD,∴12BD=OB=BF−OF=BF−PD,正确;故③正确;④连接AC交BP于O,如图4,在△AOP 和△PFE 中,中, ∵{∠AOP =∠EFP =90°∠APF =∠PEF AP =PE, ∴△AOP≌△PFE(AAS), ∴S △AOP =S △PEF ,∴S △ADP <S △AOP =S △PEF , 故④不正确;不正确;本题结论正确的有:①②③,故答案为①②③.19.【答案】解:a 2+aa2−2a +1÷(2a −1−1a )=a(a +1)(a −1)2÷2a −(a −1)a(a −1) =a(a +1)(a −1)2⋅a(a −1)2a −a +1=a(a +1)a −1⋅aa +1=a2a −1,当a =(13)−1−(−2)0=3−1=2时,原式=222−1=4.【解析】【解析】根据分式的减法和除法可以化简题目中的式子,根据分式的减法和除法可以化简题目中的式子,根据分式的减法和除法可以化简题目中的式子,然后将然后将a 的值代入化简后的式子即可解答本题.子即可解答本题.本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确分式化简求值的方法.求值的方法.20.【答案】200 144°【解析】解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B 所对应的扇形的圆心角的度数是360°×80200=144°, 故答案为:200、144;(2)C 活动人数为200−(30+80+20)=70(人), 补全图形如下:补全图形如下:(3)画树状图为:画树状图为:或列表如下:男女1 女2 女3 男 --- (女,男) (女,男) (女,男) 女1 (男,女) --- (女,女) (女,女) 女2 (男,女) (女,女) --- (女,女) 女3(男,女)(女,女)(女,女)---∵共有12种等可能情况,1男1女有6种情况,种情况, ∴被选中的2人恰好是1男1女的概率612=12.(1)由A 活动的人数及其所占百分比可得总人数,用360°乘以B 活动人数所占比例即可得;得;(2)用总人数减去其它活动人数求出C 的人数,从而补全图形;的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.概率.本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.数与总情况数之比.21.【答案】解:(1)如图,△A 1B 1C 1为所作,为所作,∵OB =√12+42=√17,OA 1=√12+42=√17,BA 1=√52+32=√34,∴OB 2+OA 12=BA 12,∴以O ,A 1,B 为顶点的三角形为等腰直角三角形;为顶点的三角形为等腰直角三角形; (2)如图,△A 2B 2C 2为所作,点C 旋转到C 2所经过的路径长=90⋅π⋅3√2180=3√22π.【解析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,则描点即可得到△A1B1C1;为顶点的三角形的形状;然后利用勾股定理的逆定理判断以O,A1,B为顶点的三角形的形状;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而描点得到△A2B2C2,所经过的路径长.然后利用弧长公式计算出点C旋转到C2所经过的路径长.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.点,顺次连接得出旋转后的图形.的图象上,22.【答案】解:(1)∵点C(2,4)在反比例函数y=k2x的图象上,∴k2=2×4=8,∴y2=8x;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,的图象上,∴{2k1+b=4b=2,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由{y=x+2y=8x,解得{x=2y=4或{x=−4y=−2,∴D(−4,−2),∴S△COD=S△BOC+S△BOD=12×2×2+12×2×4=6;(3)由图可得,当0<x<2或x<−4时,k1x+b<k2x.【解析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;的面积;(3)根据图象即可求得k1x+b<k2x时,自变量x的取值范围.的取值范围.本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B 点的坐标是解题的关键.点的坐标是解题的关键. 23.【答案】解:(1)设y =kx +b(k ≠0,b 为常数)将点(50,160),(80,100)代入得代入得{160=50k +b100=80k +b解得{k =−2b =260∴y 与x 的函数关系式为:y =−2x +260 (2)由题意得:(x −50)(−2x +260)=3000化简得:x 2−180x +8000=0 解得:x 1=80,x 2=100∵x ≤50×(1+90%)=95∴x 2=100>95(不符合题意,舍去)答:销售单价为80元.元.(3)设每天获得的利润为w 元,由题意得元,由题意得w =(x −50)(−2x +260)=−2x 2+360x −13000=−2(x −90)2+3200∵a =−2<0,抛物线开口向下,抛物线开口向下∴w 有最大值,当x =90时,w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.元.【解析】(1)由待定系数法可得函数的解析式;由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w 元,由题意得二次函数,写成顶点式,可求得答案.元,由题意得二次函数,写成顶点式,可求得答案. 本题综合考查了待定系数法求一次函数的解析式、本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.用等知识点,难度中等略大. 24.【答案】(1)证明:连接OF , ∵四边形ACD 是矩形,是矩形, ∴∠ADC =90°,∴∠CAD +∠DCA =90°, ∵EC =EF ,∴∠DCA =∠EFC , ∵OA =OF ,∴∠CAD =∠OFA ,∴∠EFC +∠OFA =90°, ∴∠EFO =90°, ∴EF ⊥OF , ∵OF 是半径,是半径, ∴EF 是⊙O 的切线;的切线; (2)连接MF , ∵AM 是直径,是直径, ∴∠AFM =90°, 在Rt △AFM 中,cos∠CAD =AF AM =35,∵AF =6,∴6AM=35,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD=AD AC=35,∴8AC=35,∴AC=403,∴FC=403−6=223【解析】(1)根据等腰三角形的性质和直角三角形两锐角互余证得∠EFC+∠OFA=90°,,从而证得结论;即可证得∠EFO=90°,即EF⊥OF,从而证得结论;(2)根据圆周角定理得出∠AFM=90°,通过解直角三角形求得AM=10,得出AD=8,进而求得AC=403,即可求得FC=403−6=223.本题考查了切线的判定和性质,矩形的性质,圆周角定理的应用以及解直角三角形等,作出辅助线构建直角三角形是解题的关键.作出辅助线构建直角三角形是解题的关键.25.【答案】解:(1)当点D与点C重合时,CE//AB,是等腰直角三角形,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE//AB;(2)当点D与点C不重合时,(1)的结论仍然成立,的结论仍然成立,理由如下:在AF上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,中,在△EAF和△EDC中,{AE=ED∠EAF=∠EDCAF=DC,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE//AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=√3CD,∴FC=(√3−1)CD,∴EC =√22FC=√6−√22CD , ∵△ABC 是等腰直角三角形,是等腰直角三角形, ∴AB =√2AC =√6CD , ∴CEAB =√6−√22√6=3−√36,如图③,∠EAC =15°,由(2)得,∠EDC =∠EAC =15°,∴∠ADC =30°,∴CD =√3AC ,AB =√2AC , 延长AC 至G ,使AG =CD ,∴CG =AG −AC =DC −AC =√3AC −AC , 在△EAG 和△EDC 中,中, {AG =DC∠EAG =∠EDC AE =DE, ∴△EAG≌△EDC(SAS),∴EG =EC ,∠AEG =∠DEC , ∴∠CEG =90°,∴△CEG 为等腰直角三角形,为等腰直角三角形, ∴EC =√22CG=√6−√22AC , ∴CEAB =√3−12, 综上所述,当∠EAC =15°时,CEAB 的值为3−√36或√3−12.【解析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF 上截取AF =CD ,连接EF ,证明△EAF≌△EDC ,根据全等三角形的性质得到EF =EC ,∠AEF =∠DEC ,根据平行线的判定定理证明;,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.到答案.本题考查的是全等三角形的判定和性质、等腰直角三角形的性质、勾股定理,掌握全等三角形的判定定理和性质定理是解题的关键.三角形的判定定理和性质定理是解题的关键.26.【答案】解:(1)直线y =−x +4中,当x =0时,y =4∴C(0,4)当y =−x +4=0时,解得:x =4∴B(4,0)∵抛物线y =−x 2+bx +c 经过B ,C 两点两点 ∴{−16+4b +c =00+0+c =4 解得:解得:{b =3c =4∴抛物线解析式为y =−x 2+3x +4(2)∵B(4,0),C(0,4),∠BOC =90°∴OB =OC∴∠OBC =∠OCB =45° ∵ME ⊥x 轴于点E ,PB =√2t∴Rt△BEP中,sin∠PBE=PE PB=√22∴BE=PE=√22PB=t∴x M=x P=OE=OB−BE=4−t,y P=PE=t∵点M在抛物线上在抛物线上 ∴y M=−(4−t)2+3(4−t)+4=−t2+5t∴MP=y M−y P=−t2+4t∵PN⊥y轴于点N ∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形是矩形 ∴ON=PE=t∴NC=OC−ON=4−t∵MP//CN∴△MPQ∽△NCQ∴MP NC=MQ NQ=12∴−t2+4t4−t=12解得:t1=12,t2=4(点P不与点C重合,故舍去)∴t的值为12(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM//x轴,与题意矛盾轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=−x2+3x+4=0时,解得:x1=−1,x2=4∴A(−1,0)∵由(2)得,x M=4−t,ME=y M=−t2+5t∴AE=4−t−(−1)=5−t∴5−t=−t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(−1,0),M(4−t,−t2+5t),设直线AM解析式为y=ax+m ∴{−a+m=0a(4−t)+m=−t2+5t解得:解得:{a=t m=t∴直线AM:y=tx+t∴F(0,t)∴CF=OC−OF=4−t第21页,共22页。
2019年辽宁省葫芦岛市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣6的绝对值是()A.6 B.﹣6 C.D.2.下列运算正确的是()A.x2•x2=x6B.x4+x4=2x8C.﹣2(x3)2=4x6D.xy4÷(﹣xy)=﹣y33.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这5次测试成绩最稳定的是()A.甲B.乙C.丙D.丁4.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.某校女子排球队12名队员的年龄分布如下表所示:则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14 B.14,15 C.15,15 D.15,146.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=58.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°10.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.二、填空题(共8小题)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为.12.分解因式:x3y﹣xy3=﹣.13.若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是﹣.14.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为.15.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)16.如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则▱ABCD的边BC上的高为.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.18.如图,点P是正方形ABCD的对角线BD延长线上的一点,连接P A,过点P作PE⊥P A交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①P A=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP正确的是(填写所有正确结论的序号)三、解答题(共8小题)19.先化简,再求值:÷(﹣),其中a=()﹣1﹣(﹣2)0.20.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.21.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.22.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.23.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?24.如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长.25.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.26.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.2019年辽宁省葫芦岛市中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.【解答】解:|﹣6|=6,故选:A.【知识点】绝对值2.【分析】根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵x2•x2=x4,∴选项A不符合题意;∵x4+x4=2x4,∴选项B不符合题意;∵﹣2(x3)2=﹣2x6,∴选项C不符合题意;∵xy4÷(﹣xy)=﹣y3,∴选项D符合题意.故选:D.【知识点】同底数幂的乘法、合并同类项、幂的乘方与积的乘方、同底数幂的除法3.【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【解答】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∴成绩最稳定的是丁.故选:D.【知识点】算术平均数、方差4.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是四个小正方形,如图所示:故选:B.【知识点】简单组合体的三视图5.【分析】根据众数和中位数的定义求解可得.【解答】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15岁,故选:C.【知识点】众数、中位数6.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.【知识点】解一元一次不等式组、在数轴上表示不等式的解集7.【分析】根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:C.【知识点】由实际问题抽象出分式方程8.【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【解答】解:由二次函数图象,得出a<0,﹣<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D.【知识点】二次函数的图象、一次函数的图象9.【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【解答】解:连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.故选:B.【知识点】圆心角、弧、弦的关系10.【分析】连接FD,证明△BAE≌△DAF,得到∠ADF=∠ABE=45°,FD=BE,再说明GO为△BDF的中位线OG=FD,则y=x,且x>0,是在第一象限的一次函数图象.【解答】解:连接FD,∵∠BAE+∠EAD=90°,∠F AD+∠EAD=90°,∴∠BAE=∠F AD.又BA=DA,EA=F A,∴△BAE≌△DAF(SAS).∴∠ADF=∠ABE=45°,FD=BE.∴∠FDO=45°+45°=90°.∵GO⊥BD,FD⊥BD,∴GO∥FD.∵O为BD中点,∴GO为△BDF的中位线.∴OG=FD.∴y=x,且x>0,是在第一象限的一次函数图象.故选:A.【知识点】动点问题的函数图象二、填空题(共8小题)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据6 9600 0000用科学记数法表示为6.96×108.故答案为:6.96×108.【知识点】科学记数法—表示较大的数12.【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.【解答】解:x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).【知识点】提公因式法与公式法的综合运用13.【分析】根据根的判别式得出△=(2+a)2﹣4×1×0=0,求出即可.【解答】解:∵关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,∴△=(2+a)2﹣4×1×0=0,解得:a=﹣2,故答案为:﹣2.【知识点】根的判别式14.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=4,经检验:n=4是分式方程的解,故答案为:4.【知识点】概率公式15.【分析】过点A作AE⊥a于点E,过点B作BD⊥P A于点D,然后锐角三角函数的定义分别求出AD、PD后即可求出两岸之间的距离.【解答】解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.6【知识点】解直角三角形的应用16.【分析】由作法得MN垂直平分BD,则MB=MD,NB=ND,再证明△BMN为等腰三角形得到BM=BN,则可判断四边形BMDN为菱形,利用菱形的性质和勾股定理计算出BN=5,然后利用面积法计算▱ABCD的边BC上的高.【解答】解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,∴BM=BN,∴BM=BN=ND=MD,∴四边形BMDN为菱形,∴BN==5,设▱ABCD的边BC上的高为h,∵MN•BD=2BN•h,∴h==,即▱ABCD的边BC上的高为.故答案为.【知识点】平行四边形的性质、作图—基本作图、线段垂直平分线的性质17.【分析】由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长.【解答】解:在Rt△ABC中,BC===12,(1)当∠EDB′=90°时,如图1,过点B′作B′F⊥AC,交AC的延长线于点F,由折叠得:AB=AB′=13,BD=B′D=CF,设BD=x,则B′D=CF=x,B′F=CD=12﹣x,在Rt△AFB′中,由勾股定理得:(5+x)2+(12﹣x)2=132,即:x2﹣7x=0,解得:x1=0(舍去),x2=7,因此,BD=7.(2)当∠DEB′=90°时,如图2,此时点E与点C重合,由折叠得:AB=AB′=13,则B′C=13﹣5=8,设BD=x,则B′D=x,CD=12﹣x,在Rt△B′CD中,由勾股定理得:(12﹣x)2+82=x2,解得:x=,因此BD=.故答案为:7或.【知识点】翻折变换(折叠问题)18.【分析】①解法一:如图1,作辅助线,构建三角形全等和平行四边形,证明△BFG≌△EFP(SAS),得BG=PE,再证明四边形ABGP是平行四边形,可得结论;解法二:如图2,连接AE,利用四点共圆证明△APE是等腰直角三角形,可得结论;②如图3,作辅助线,证明四边形DCGP是平行四边形,可得结论;③证明四边形OCGF是矩形,可作判断;④证明△AOP≌△PFE(AAS),则S△AOP=S△PEF,可作判断.【解答】解:①解法一:如图1,在EF上取一点G,使FG=FP,连接BG、PG,∵EF⊥BP,∴∠BFE=90°,∵四边形ABCD是正方形,∴∠FBC=∠ABD=45°,∴BF=EF,在△BFG和△EFP中,∵,∴△BFG≌△EFP(SAS),∴BG=PE,∠PEF=∠GBF,∵∠ABD=∠FPG=45°,∴AB∥PG,∵AP⊥PE,∴∠APE=∠APF+∠FPE=∠FPE+∠PEF=90°,∴∠APF=∠PEF=∠GBF,∴AP∥BG,∴四边形ABGP是平行四边形,∴AP=BG,∴AP=PE;解法二:如图2,连接AE,∵∠ABC=∠APE=90°,∴A、B、E、P四点共圆,∴∠EAP=∠PBC=45°,∵AP⊥PE,∴∠APE=90°,∴△APE是等腰直角三角形,∴AP=PE,故①正确;②如图3,连接CG,由①知:PG∥AB,PG=AB,∵AB=CD,AB∥CD,∴PG∥CD,PG=CD,∴四边形DCGP是平行四边形,∴CG=PD,CG∥PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=CG=PD;故②正确;③如图4,连接AC交BD于O,由②知:∠CGF=∠GFD=90°,∵四边形ABCD是正方形,∴AC⊥BD,∴∠COF=90°,∴四边形OCGF是矩形,∴CG=OF=PD,∴BD=OB=BF﹣OF=BF﹣PD,故③正确;④如图4中,在△AOP和△PFE中,∵,∴△AOP≌△PFE(AAS),∴S△AOP=S△PEF,∴S△ADP<S△AOP=S△PEF,故④不正确;本题结论正确的有:①②③,故答案为:①②③.【知识点】正方形的性质、全等三角形的判定与性质三、解答题(共8小题)19.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:÷(﹣)====,当a=()﹣1﹣(﹣2)0=3﹣1=2时,原式=.【知识点】零指数幂、分式的化简求值、负整数指数幂20.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;(2)用总人数减去其它活动人数求出C的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为:200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:∴被选中的2人恰好是1男1女的概率=.【知识点】扇形统计图、条形统计图、列表法与树状图法21.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,则描点即可得到△A1B1C1;然后利用勾股定理的逆定理判断以O,A1,B为顶点的三角形的形状;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而描点得到△A2B2C2,然后利用弧长公式计算出点C旋转到C2所经过的路径长.【解答】解:(1)如图,△A1B1C1为所作,∵OB==,OA1==,BA1==,∴OB2+OA12=BA12,∴以O,A1,B为顶点的三角形为等腰直角三角形;(2)如图,△A2B2C2为所作,点C旋转到C2所经过的路径长==π.【知识点】作图-旋转变换、作图-平移变换、轨迹22.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<时,自变量x的取值范围.【解答】解:(1)∵点C(2,4)在反比例函数y=的图象上,∴k2=2×4=8,∴y2=;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,∴,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由,解得或,∴D(﹣4,﹣2),∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(3)由图可得,当0<x<2或x<﹣4时,k1x+b<.【知识点】反比例函数与一次函数的交点问题23.【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案.【解答】解:(1)设y=kx+b(k≠0,b为常数)将点(50,160),(80,100)代入得解得∴y与x的函数关系式为:y=﹣2x+260(2)由题意得:(x﹣50)(﹣2x+260)=3000化简得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w元,由题意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,抛物线开口向下∴w有最大值,当x=90时,w最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.【知识点】一元二次方程的应用、二次函数的应用24.【分析】(1)根据等腰三角形的性质和直角三角形两锐角互余证得∠EFC+∠OF A=90°,即可证得∠EFO=90°,即EF⊥OF,从而证得结论;(2)根据圆周角定理得出∠AFM=90°,通过解直角三角形求得AM=10,得出AD=8,进而求得AC=,即可求得FC=﹣6=.【解答】(1)证明:连接OF,∵四边形ACD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OF A,∴∠EFC+∠OF A=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD==,∵AF=6,∴=,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD==,∴=,∴AC=,∴FC=﹣6=【知识点】解直角三角形、圆周角定理、矩形的性质、切线的判定与性质25.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.【知识点】三角形综合题26.【分析】(1)求直线y=﹣x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由PB=t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证△MPQ∽△NCQ,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD=45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD=∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.【解答】解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.【知识点】二次函数综合题。
辽宁省葫芦岛市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A .B .C .D .2.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( ) A .x 1+x 2=1 B .x 1•x 2=﹣1 C .|x 1|<|x 2| D .x 12+x 1=123.下列各式计算正确的是( )A .(b+2a )(2a ﹣b )=b 2﹣4a 2B .2a 3+a 3=3a 6C .a 3•a=a 4D .(﹣a 2b )3=a 6b 3 4.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°5.下列说法正确的是( )A .某工厂质检员检测某批灯泡的使用寿命采用普查法B .已知一组数据1,a ,4,4,9,它的平均数是4,则这组数据的方差是7.6C .12名同学中有两人的出生月份相同是必然事件D .在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是136.下图是某几何体的三视图,则这个几何体是( )A.棱柱B.圆柱C.棱锥D.圆锥7.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A.8,6 B.7,6 C.7,8 D.8,78.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B.3C.2 D.239.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.11.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形12.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.14.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.15.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .16.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.17.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.18.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,抛物线y =ax 2+(a+2)x+2(a≠0),与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0<m <4),过点P 作x 轴的垂线交直线AB 于点N ,交抛物线于点M .(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 20.(6分)先化简,再求值:22111x x x x ⎛⎫-+ ⎪--⎝⎭,其中x 满足2410x x -+=. 21.(6分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×32723.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A 处测得塔顶C 的仰角为30°,向塔的方向移动60米后到达点B ,再次测得塔顶C 的仰角为60°,试通过计算求出文峰塔的高度CD .(结果保留两位小数)24.(10分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.25.(10分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.26.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.27.(12分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=kx(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=kx(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=92时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.2.D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 3.C【解析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.4.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.5.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.6.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.7.D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7 考点:(1)众数;(2)中位数.8.B【解析】【分析】由折叠的性质可得,DE=EF,AC=EF的长,即可求△ACE 的面积.【详解】解:∵点F是AC的中点,∴AF=CF=12 AC,∵将△CDE 沿CE 折叠到△CFE ,∴DE=EF ,∴AC=在Rt △ACD 中,.∵S △ADC =S △AEC +S △CDE , ∴12×AD×CD=12×AC×EF+12×CD×DE∴,∴DE=EF=1,∴S △AEC=12× 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键. 9.B【解析】【分析】根据倒数的定义解答即可.【详解】A 、只有0没有倒数,该项错误;B 、﹣1的倒数是﹣1,该项正确;C 、0没有倒数,该项错误;D 、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.10.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.11.C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A 错误;对角线相等的平行四边形是矩形,B 错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2n+1.【解析】【详解】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.14.(2,1)【解析】∵一次函数y=ax+b,∴当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1).15.31°.【解析】试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案是31°.考点:平行线的性质.16.3【解析】分析:由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:194xx=+,解此方程即可求得△EFC的面积.详解:∵在△ABC中,点E,F分别是AC,BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,设S△CEF=x,∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,∴1 94xx=+,解得:3x=,经检验:3x=是所列方程的解. 故答案为:3.17.203 【解析】 【分析】 在Rt △ABC 中,直接利用tan ∠ACB=tan30°=AB BC =3即可. 【详解】在Rt △ABC 中,tan ∠ACB=tan30°=AB BC =3,BC=60,解得AB=203. 故答案为203.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.18.1【解析】【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD =;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC ,树高为CD ,且∠ECF=90°,ED=3,FD=12,易得:Rt △EDC ∽Rt △DCF ,有ED DC DC FD=,即DC 2=ED×FD , 代入数据可得DC 2=31,DC=1,故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)213222x x -++;(2)m =3;(3145【解析】(1)本题需先根据图象过A 点,代入即可求出解析式;(2)由△OAB ∽△PAN 可用m 表示出PN ,且可表示出PM ,由条件可得到关于m 的方程,则可求得m 的值;(3)在y 轴上取一点Q ,使2O 3O 2Q P =,可证的△P 2OB ∽△QOP 2,则可求得Q 点坐标,则可把AP 2+32BP 2转换为AP 2+QP 2,利用三角形三边关系可知当A 、P 2、Q 三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)∵A (4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a =﹣12, ∴抛物线的解析式为y =213222x x -++; (2)∵213222y x x =++- ∴令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4﹣m ,∵PM ⊥x 轴,∴△OAB ∽△PAN , ∴OB PN OA PA=, ∴244mPN =-, ∴1PN (4m)2=-, ∵M 在抛物线上,∴PM =21322m m +-+2, ∵PN :MN =1:3,∴PN :PM =1:4, ∴2131m m 24(4m)222-++=⨯⨯-, 解得m =3或m =4(舍去);(3)在y 轴上取一点Q ,使2O 3O 2Q P =,如图,由(2)可知P 1(3,0),且OB =2, ∴22O 32OP Q OP OB ==,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴22OP 3BP 2=, ∴当Q (0,92)时,QP 2=232BP , ∴AP 2+32BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条线上时,AP 2+QP 2有最小值,∵A (4,0),Q (0,92), ∴AQ 22942⎛⎫+ ⎪⎝⎭145, 即AP 2+32BP 2145 【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.20.21x x+,1. 【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加【详解】 解:原式2(1)11(1)(1)x x x x x x x x ⎡⎤-=-+⎢⎥---⎣⎦ 2211(1)x x x x x x -+=--- 321(1)(1)x x x x x x x -+=--- 321(1)x x x x x -+-=- 2(1)(1)(1)x x x x x -+-=- 21x x+= ∵2410x x -+=,∴214x x +=, ∴原式44x x== 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.x=60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++= 解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 22.﹣1【解析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1.【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键. 23.51.96米.【解析】【分析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,sin60CD BC︒=,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,sin60CD BC︒=∴3sin606030351.96CD BC=⋅︒=⨯=≈(米).答:文峰塔的高度CD约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.24.(1);(2)12;(3)t=或t=或t=1.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,==,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.25.(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)1 2【解析】【分析】(1)由图1可得答案;(2)根据中位数的定义求解可得;(3)由近3年平均涨幅在30%左右即可做出估计;(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.故答案为:1365.45、414.4;(2)这组数据的中位数是84.38+103.22=93.79万人次,故答案为:93.79;(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.(4)画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.26.(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4),将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!27.(1)y=9x (x >0);(2)S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3);当S=92时,对应的t 值为32或6;(3)当t=32或3时,使△FBO 为等腰三角形. 【解析】【分析】(1)由正方形OABC 的面积为9,可得点B 的坐标为:(3,3),继而可求得该反比例函数的解析式.(2)由题意得P (t ,9t ),然后分别从当点P 1在点B 的左侧时,S=t•(9t-3)=-3t+9与当点P 2在点B 的右侧时,则S=(t-3)•9t =9-27t 去分析求解即可求得答案; (3)分别从OB=BF ,OB=OF ,OF=BF 去分析求解即可求得答案.【详解】解:(1)∵正方形OABC 的面积为9,∴点B 的坐标为:(3,3),∵点B 在反比例函数y=k x (k >0,x >0)的图象上, ∴3=3k , 即k=9, ∴该反比例函数的解析式为:y= y=9x (x >0); (2)根据题意得:P (t ,9t), 分两种情况:①当点P 1在点B 的左侧时,S=t•(9t ﹣3)=﹣3t+9(0≤t≤3); 若S=92, 则﹣3t+9=92, 解得:t=32; ②当点P 2在点B 的右侧时,则S=(t ﹣3)•9t =9﹣27t ; 若S=9t ,则9﹣27t =92, 解得:t=6; ∴S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3);当S=9t 时,对应的t 值为32或6; (3)存在.若CF=BC=3,∴OF=6,∴6=9t, 解得:t=32;若,则9t ,解得:t=2; 若BF=OF ,此时点F 与C 重合,t=3;∴当t=323时,使△FBO 为等腰三角形. 【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.1162.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.433.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根4.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-5.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.6.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.7.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( )A .B .C .D .8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+9.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >210.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( ) A .6B .8C .14D .16二、填空题(本题包括8个小题)11.某种水果的售价为每千克a 元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a 的代数式表示).12.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n (n>1)盆花,设这个花坛边上的花盆的总数为S ,请观察图中的规律:按上规律推断,S 与n 的关系是________________________________.14.计算:|﹣3|+(﹣1)2= .15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”). 17.因式分解:a 3﹣2a 2b+ab 2=_____.18.如图,数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,若原点O 是线段AC 上的任意一点,那么a+b-2c= ______ .三、解答题(本题包括8个小题)19.(6分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 20.(6分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a 元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x 取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.21.(6分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.22.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.23.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC=DE=4,当AE取最大值时,求AF的值.24.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.25.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.26.(12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41=164, 故选B . 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 2.A 【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A . 考点:正多边形和圆. 3.D 【解析】 【分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根. 【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根; 当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根. ∵a+1≠0, ∴a+1≠-(a+1),故选D.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.4.A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.5.A【解析】【分析】根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,∴-b>1,∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b <1,一次函数y=kx+b图象过原点⇔b=1.6.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.7.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.8.B【解析】【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE BECE=,3CE x∴=,在直角△ABE中,3x,AC=50米,3350x x=,解得253x=即小岛B到公路l的距离为2539.D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 10.C 【解析】 【分析】根据根与系数的关系得到x 1+x 2=2,x 1•x 2=-5,再变形x 12+x 22得到(x 1+x 2)2-2x 1•x 2,然后利用代入计算即可. 【详解】∵一元二次方程x 2-2x-5=0的两根是x 1、x 2, ∴x 1+x 2=2,x 1•x 2=-5,∴x 12+x 22=(x 1+x 2)2-2x 1•x 2=22-2×(-5)=1. 故选C . 【点睛】考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a. 二、填空题(本题包括8个小题) 11.(50-3a ). 【解析】试题解析:∵购买这种售价是每千克a 元的水果3千克需3a 元, ∴根据题意,应找回(50-3a )元. 考点:列代数式. 12.S=1n-1观察可得,n=2时,S=1; n=3时,S=1+(3-2)×1=12; n=4时,S=1+(4-2)×1=18; …;所以,S 与n 的关系是:S=1+(n-2)×1=1n-1. 故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 13.a (2x+y )(2x-y ) 【解析】 【分析】首先提取公因式a ,再利用平方差进行分解即可. 【详解】 原式=a (4x 2-y 2) =a (2x+y )(2x-y ), 故答案为a (2x+y )(2x-y ). 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 14.4. 【解析】 【详解】|﹣3|+(﹣1)2=4, 故答案为4. 15.1x <- 【解析】 【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答. 【详解】解:不等式()0kx b x a +-+>的解集是1x <-. 故答案为:1x <-.本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.甲.【解析】 乙所得环数的平均数为:0159105++++=5, S 2=1n[21x x (-)+22x x (-)+23x x (-)+…+2n x x (-)] =15[205(-)+215(-)+255(-)+295(-)+2105(-)] =16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.17.a (a ﹣b )1.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 1﹣1ab+b 1)=a (a ﹣b )1,故答案为a (a ﹣b )1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.1【解析】∵点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,∴由中点公式得:c=2a b +, ∴a+b=2c ,∴a+b-2c=1.故答案为1.三、解答题(本题包括8个小题)19.证明见解析【解析】解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac-≥,∴24b ac≥.20.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.21.(1)证明见解析;(2)阴影部分面积为4 3π【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.22.(1)答案见解析;(2)13.【解析】【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.23.(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=13【解析】【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF=22+,+=3616AE EF∴AF=213.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.24.(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣32,﹣74)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.25.(1)证明见解析;(2)2.【解析】【分析】(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴,∵AB=4,AE=1,∴,∴BF=2.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.26.(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°2.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.3.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根4.如图所示的几何体,它的左视图是()A.B.C.D.5.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米7.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<28.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.49.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣410.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2二、填空题(本题包括8个小题)11.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.12.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.13.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.14.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)15.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B 饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元. 16.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.17.如图,是用火柴棒拼成的图形,则第n 个图形需_____根火柴棒.18.计算:364-的值是______________.三、解答题(本题包括8个小题)19.(6分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A 到地面的铅直高度AC 长度为15米,原坡面AB 的倾斜角∠ABC 为45°,原坡脚B 与场馆中央的运动区边界的安全距离BD 为5米.如果按照施工方提供的设计方案施工,新座位区最高点E 到地面的铅直高度EG 长度保持15米不变,使A 、E 两点间距离为2米,使改造后坡面EF 的倾斜角∠EFG 为37°.若学校要求新坡脚F 需与场馆中央的运动区边界的安全距离FD 至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)20.(6分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 21.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.22.(8分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.23.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?24.(10分)如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC//BP交PA于点C,连接CB.=,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.已知AB6cm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:()1通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0 0.5 1 1.5 2 2.5 3y/cm 3 3.1 3.5 4.0 5.3 6(说明:补全表格时相关数据保留一位小数)()2建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:直接写出OBC周长C的取值范围是______.。
【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁葫芦岛2019年中考将于6⽉中旬陆续开始举⾏,辽宁葫芦岛中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁葫芦岛中考数学试卷及答案信息。
考⽣可点击进⼊辽宁葫芦岛中考频道《、》栏⽬查看辽宁葫芦岛中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁葫芦岛中考数学试卷答案信息,特别整理了《2019辽宁葫芦岛中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁葫芦岛中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
辽宁省葫芦岛市2019-2020学年数学毕业升学考试模拟试卷(含答案)一、单选题1.的相反数是( )A. B. ﹣ C. ﹣ D.【答案】B【考点】实数的相反数2.在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【考点】点的坐标与象限的关系3.如图,A,B,C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A. 30°B. 60°C. 90°D. 45°【答案】B【考点】圆周角定理4.一元二次方程x2+2x+4=0的根的情况是()A. 有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根【答案】 D【考点】一元二次方程根的判别式及应用5.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是()A. B. C. D.【答案】B【考点】锐角三角函数的定义6.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A. x>﹣4B. x>0C. x<﹣4D. x<0【答案】A【考点】一次函数与不等式(组)的综合应用7.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A. B. C. D.【答案】C【考点】剪纸问题二、填空题8.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高________℃.【答案】3【考点】运用有理数的运算解决简单问题9.在函数y= 中,自变量x的取值范围是________.【答案】x≥1【考点】函数自变量的取值范围10.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为________.【答案】(x﹣1)(x﹣2)【考点】因式分解法解一元二次方程11.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为________ cm.【答案】8【考点】勾股定理,垂径定理12.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为________.【答案】y=160﹣80x(0≤x≤2)【考点】一次函数的实际应用13.边长为6的正六边形外接圆半径是________.【答案】6【考点】等边三角形的判定与性质,正多边形的性质14.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为________.【答案】【考点】圆锥的计算三、解答题15.反比例函数的图象经过点A (2,-3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.【答案】(1)解:设反比例函数的解析式是,则,得.则这个函数的表达式是(2)解:因为,所以点不在函数图象上【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征16.如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).【答案】解:∵AC=BC,D是AB的中点,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【考点】等腰三角形的性质,解直角三角形的应用17.解方程组.【答案】解:把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,当x=﹣2时,y=﹣2,当x=1时,y=1,∴原方程组的解是或.【考点】解二元一次方程组18.某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?【答案】解:设该工程队原计划每周修建x米.由题意得:+1.整理得:x2+x﹣30=0.解得:x1=5,x2=﹣6(不合题意舍去).经检验:x=5是原方程的解.答:该工程队原计划每周修建5米.【考点】分式方程的实际应用19.如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.【答案】证明:方法(一)证明:∵AB、CD是⊙O的直径,∴弧CFD=弧AEB.∵FD=EB,∴弧FD=弧EB.∴弧CFD-弧FD=弧AEB-弧EB.即弧FC=弧AE.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理20.未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是________;这次调查的样本容量是________;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.【答案】(1)解: 填表如下:(2)0.25;100(3)解: 提出这项建议的人数人.【考点】用样本估计总体,频数与频率,频数(率)分布表,频数(率)分布直方图21.如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.【答案】(1)解:∵抛物线经过点A(1,0),∴,∴(2)解:∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB= ,①当PB=AB时,PB=AB= ,∴OP=PB﹣OB= .∴P(0,),②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).【考点】待定系数法求二次函数解析式,等腰三角形的性质,二次函数的实际应用-几何问题22.如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为________,图2中4条弧的弧长的和为________;(2)求图m中n条弧的弧长的和(用n表示).【答案】(1)π;2π(2)解:n条弧==(n﹣2)π.【考点】弧长的计算,探索图形规律23.4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第________接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?【答案】(1)1(2)解:设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+联立方程组,解得:,所以发令后第37秒两班运动员在275米处第一次并列.【考点】待定系数法求一次函数解析式,两一次函数图像相交或平行问题,通过函数图像获取信息并解决问题24.如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.求证:AD•CE=DE•DF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.【答案】(1)证明:连接AF,∵DF是⊙O的直径,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直线CD是⊙O的切线∴∠EDC=90°,∴∠EDC=∠DAF=90°(2)解:选取①完成证明∵直线CD是⊙O的切线,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD•CE=DE•DF.【考点】平行线的判定与性质,圆周角定理,切线的判定与性质,相似三角形的判定与性质25.阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n﹣1P n P n+1P n+2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形P n﹣1P n P n+1P n+2的面积(直接写出答案).【答案】(1)解:作P5H5垂直于x轴,垂足为H5,由图可知S P1P2P3P4=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2==4,S P2P3P4P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3==4(2)解:作P n﹣1H n﹣1、P n H n、P n+1H n+1、P n+2H n+2垂直于x轴,垂足为H n﹣1、H n、H n+1、H n+2,由图可知P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣4,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣4)2,(n﹣3)2,(n﹣2)2,四边形P n﹣1P n P n+1P n+2的面积为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣4Pn﹣4﹣S梯形Pn﹣4Hn﹣4Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2==4(3)解:S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣4Pn﹣4﹣S梯形Pn﹣4Hn﹣4Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn ﹣2Pn﹣2= -=4.【考点】探索图形规律,二次函数图象上点的坐标特征26.初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.( ≈1.732,≈1.414,结果精确到0.01米)【答案】解:过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,由题意知,AD⊥CD∴四边形BFDE为矩形∴BF=ED在Rt△ABE中,AE=AB•cos∠EAB在Rt△BCF中,BF=BC•cos∠FBC∴AD=AE+BF=20•cos60°+40•cos45°=20× +40× =10+20=10+20×1.414=38.28(米).即AD=38.28米.【考点】解直角三角形的应用﹣方向角问题。
第1页,总9页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
辽宁省葫芦岛市老官卜中学2019年九年级综合测试数学试
题
考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 一 二 三 总分 核分人 得分
注意
事项
:
1、
填
写
答
题
卡
的
内
容
用
2B
铅
笔
填
写
2、提前 15 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
评卷人 得分
一、单选题(共10题)
1. 的相反数是
A .2
B .
C .
D .
2. 计算结果为x 2-5x+6的是( )
A .(x -1)(x+6)
B .(x+1)(x -6)
C .(x -2)(x -3)
D .(x+2)(x+3)
3. 一次函数
(
,
)的图象不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4. 用两个完全相同的直角三角形不能拼成下列图形的是()
A .平行四边形
B .矩形
C .等腰三角形
D .梯形
5. (2007•乌兰察布)我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克.某地今年计划栽插这种超级杂交稻3000亩,预计该地今年收获这种杂交稻的总产量(用科学记数法表示)是( )
A .2.46×106千克
B .2.46×105千克
C .2.5×106千克
D .2.5×105千克
6. 函数
自变量x 的取值范围是( )
A .x≤
B .x≥
C .x≥
D .x≤
7. 某市社区调查队对城区内一个社区居民的家庭经济状况进行调查.调查的结果是该社区共有500户,高收入、中等收入和低收入家庭分别有125户,280户和95户.已知该市有100万户家庭,下列表述正确的是( )
答案第2页,总9页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A .该市高收入家庭约有25万户
B .该市中等收入家庭约有56万户
C .该市低收入家庭约有19万户
D .因为城市社区家庭经济状况较好,所以不能据此估计所有家庭经济状况
8. 如图,⊙O 的半径OA =3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B 、C ,则BC =( )
A .3
B .3
C .
D .
9. 如图,在⊙ABC 中,⊙A=30°,tanB=,AC=,则AB=( )
A .4
B .5
C .6
D .7
10. 如图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )
A .180万
B .200万
C .300万
D .400万
第Ⅱ卷 主观题
第Ⅱ卷的注释
评卷人 得分
一、填空题(共5题)
1. 从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是______.
2. 冬季某日,上海最低气温是3⊙,北京最低气温是-5⊙,这一天上海的最低气温比北京的最低气温高 ⊙.。