矿山压力课程设计
- 格式:docx
- 大小:176.30 KB
- 文档页数:20
第四章矿山压力与控制第一节矿山压力与分布规律一、巷道地压1.矿山压力地下岩体在采动以前,由于自重的作用在其内部引起的应力,通常称为原岩应力。
因为开采前的岩体处于静止状态,所以原岩体处于应力平衡状态。
当开掘巷道或进行回采时,形成了地下空间,破坏了岩体的原始状态,引起岩体内应力重新分布,并一直延续到岩体内形成新的平衡为止破坏了原来的应力平衡状态,引起岩体内部的应力重新分布。
重新分布后的应力超过煤、岩的极限强度时,使巷道和回采工作面周围的煤、岩发生破坏,这种情况将持续到煤、岩内部再次形成新的应力平衡为止。
此时,巷道和回采工作面周围煤、岩体内形成一个与原岩应力场显然不同的新的应力场,有时称为二次应力场。
其形成的过程就是煤、岩体内应力重新分布的过程。
通常把这种由于在地下进行采掘活动造成围岩移动而在井巷、硐室及回采工作面周围煤、岩体内和支护物上所引起的压力,称为“矿山压力”,简称“矿压”或“地压”。
2.矿山压力显现在矿山压力作用下,将引起一系列力学现象,如围岩变形或挤入巷道、岩体离散、移动或冒落;煤体压松、片帮或突然抛出;木材支架压裂或折断;金属支架变形或压弯;充填物产生沉缩以及岩层和地表发生移动和塌陷等等。
在矿山压力作用下出现的冒顶、底鼓、煤岩片帮、支架破坏、煤和瓦斯突出等力学现象,称为矿山压力现象或矿山压力显现,简称“矿压显现”。
3 .矿山压力控制在大多数情况下,“矿压显现”会给地下开采工作造成不同程度的危害。
为使“矿压显现”不致于影响正常的开采工作和保证安全生产,就必须采取各种技术措施加以控制。
这种人为地调节,改变和利用矿山压力作用的各种措施,称为“矿山压力控制”,简称“矿压控制”。
七、巷道围岩控制降低巷道围岩应力,提高围岩稳定性以及合理选择支护是巷道围岩控制的基本途径。
回采引起的支承压力不仅数倍于原岩应力,而且影响范围大。
巷道受到回采影响后,围岩应力、围岩变形会成倍、甚至近十倍急剧增长。
因此,巷道围岩控制手段的实质是如何利用煤层开采引起采场周围岩体应力重新分布的规律,正确选择巷道布置和护巷方法,使巷道位于应力降低区内,从而减轻或避免回采引起的支承压力的强烈影响,控制围岩压力。
北京某大学《矿山压力与岩层控制》课程设计某矿综采工作面顶板控制(支护)初步设计小组成员:学院:安全工程学院专业班级:专业课程:矿山压力与岩层控制指导教师:2016 年1 月3日目录基础资料-----------------------------------------------------------2一、工作面条件-------------------------------------------------2二、设计内容---------------------------------------------------2第一章顶板的分级--------------------------------------------------3一、直接顶的分级------------------------------------------------3二、老顶的分级--------------------------------------------------31.老顶上的初次断裂步距----------------------------------------42.老顶分级----------------------------------------------------5 第二章支架选型----------------------------------------------------6一、支架高度----------------------------------------------------61.确定支架最大、最小高度--------------------------------------7二、支架工作阻力与初撑力确定----------------------------------81.合理支护强度------------------------------------------------82.支架额定阻力------------------------------------------------83.支柱的初撑力------------------------------------------------8三、支架类型确定---------------------------------------------- 9小结---------------------------------------------------------------10参考资料-----------------------------------------------------------11基础资料一、工作面条件所采煤层为近水平煤层,某综采工作面面长200米,煤层情况和围岩条件详见表1,工作面内无断层,水文条件简单。
矿山压力与岩层控制教学设计矿山开采过程中,岩层是一个十分关键的环节。
如果岩层的控制不得当,将会给矿山生产过程带来严重的损失。
因此,岩层控制成为了矿业工作者需要掌握的一门重要技能。
本文将从矿山压力和岩层控制两个角度出发,介绍一种矿山压力与岩层控制的教学设计。
矿山压力矿山开采过程中,矿山压力是一个重要的因素。
矿山压力分为两种情况,一种是地壳应力引起的压力,一种是矿山营业工序过程中形成的压力。
因此,需要对矿山的压力进行详细的了解,并掌握如何对其进行测量。
在教学中,可以首先从理论知识出发,介绍矿山压力的概念、分类及特点。
然后,引导学生进行实际测量操作。
可以选择在现场进行,或者在实验室中进行。
无论哪种方式,都需要对测量结果进行详细的分析和解读。
岩层控制岩层控制包括多个方面,如支护结构的选择、矿山开采方式、岩层断裂的处理等。
其中,岩层支护是岩层控制的重要环节。
在授课中,可以先介绍支护结构的种类,如矿山锚杆支护、锚喷支护、矿山加筋锚喷支护等。
然后,引导学生进行支护结构的设计和实际操作。
此外,在设计支护结构时,需要考虑到岩层断裂、地质杂事等不同情况。
因此,可以组织学生进行岩层控制的情景模拟,以便使学生在实践中掌握岩层控制技能。
教学设计为了使学生更好地掌握以上两个方面的知识和技能,可以设计教学实验组合,形成综合教学。
具体方式如下:1.分别对矿山压力测量和岩层支护进行理论授课。
对于前者,重点介绍矿山压力的概念、分类及特点;对于后者,重点介绍支护结构的种类、设计方法及其特点。
2.进行实验操作。
对于矿山压力测量,可以选择在现场进行实习,让学生亲身感受到矿山压力的实际情况。
对于岩层支护,可以选择在实验室中进行设计与实践操作。
通过这些操作,可以使学生更加深入地了解矿山压力和岩层支护的操作,同时掌握矿山的实际应用技能。
3.进行完整的岩层控制情景模拟。
将矿山压力和岩层支护联系起来,设计一个完整的岩层控制情景模拟,以让学生掌握在实践中进行综合能力的解决方法。
目录摘要 (3)1 课程设计的目的 (3)2 对采场矿山压力影响因素的探讨 (3)2.1 生产条件对采场矿山压力的影响 (4)2.2 生产工艺过程对顶板下沉速度上的影响 (4)2.3工作面推进速度对矿山压力的影响 (4)2.4 开采深度对矿山压力的影响 (4)2.5 支护材料及顶板管理方法对矿山压力的影响 (5)3 矿山压力的各种控制措施 (5)3.1 支架和围岩的相互关系 (5)3.2 巷道矿压控制方法及原理 (6)3.3 冲击地压压及其控制 (6)4 结论 (6)参考文献 (7)正文摘要:通过对采场矿山压力呈现规律的研究,总结了对采场矿山压力的6种影响因素:自然条件的影响、开采深度的影响、生产条件对采场矿山压力的影响、工作面推进速度的影响、支护材料及顶板管理方法对矿山压力的影响、采空区处理方式对采场压力产生的影响。
掌握对采场矿山压力的影响因素,对控制顶板具有非常大的意义。
介绍了对采场矿山压力假说的探讨,提出了对软顶板、厚煤层顶板管理的建议。
关键词:矿山压力控制研究1课程设计的目的《矿山压力与岩层控制课程设计》是安全专业主干的课程的一个重要事件环节。
通过课程设计使学生了解和掌握矿山压力与岩层控制的研究方法,加深对课程知识的理解,为以后得毕业设计及矿压理论研究奠定基础,使学生具备运用该方法解决安全工程实际问题的能力。
2 对采场矿山压力的影响2.1 生产条件对采场矿山压力的影响采面矿山压力与采高控顶距的关系。
直接顶下沉量应符合或接近于岩层整体移动曲线。
由于L远大于S0,因此岩层移动曲线可近似于直线,控顶距为R处的顶板下沉量SR与岩层最终下沉关系值为:SR/R=S0/L,因此: SR = S0/L×R,SR=1/L×[(kp -kp’)/ (kp -1)]×m×R,令:1/L×[(kp -kp’)/ (kp -1)]=η,则S=ηmR。
因此,回采工作面顶板下沉量决定于采高和控顶距R的大小。
《矿⼭压⼒及岩层控制》教学⼤纲《矿⼭压⼒及岩层控制》教学⽂件⼀、课程⼤纲(⼀)⼤纲说明1.课程的任务本课程是煤矿开采技术专业的⼀门重要的必修课。
《矿⼭压⼒及岩层控制》主要介绍了回采⼯作⾯和采区巷道矿⼭压⼒及其控制的基本理论和基本知识。
通过本课程的学习使学⽣对矿⼭压⼒的产⽣及应采取的控制措施有⼀个较为全⾯的了解,为学⽣以后的⽣产实践奠定较为全⾯⽽扎实的理论基础。
2.课程的教学基本要求以矿⼭压⼒基本概念的讲解为前体,突出矿压与岩层控制的具体应⽤。
将课程模块化分为采煤⼯作⾯和掘进⼯作⾯,每⼀部分均简要阐述原理,⽽后重点分析⼯作⾯的矿⼭压⼒显现规律,最终落脚于矿⼭压⼒的控制。
3.教学⽅法和教学形式本课程采⽤远程教学和⾯授辅导相结合的⽅式开展教学。
远程教学包括学⽣收看⽹上的IP课件和⽹上教学辅导等教学形式;⾯授辅导考虑学⽣在职和成⼈的特点和需求,在业余时间进⾏有针对性的学习指导。
(⼆)媒体使⽤和教学过程建议1.课程教学总时数和学分本课程3学分,共24学时,开设于第三学期。
2.教学媒体(1)⽂字教材⽂字教材采⽤《矿⼭压⼒与岩层控制》,主编:蒋⾦泉。
中国矿业⼤学出版社(2007年11⽉版)。
(2)压缩流媒体(IP)课件针对课程教学内容中的重点、难点,录制系统讲解的视频课件。
IP课件总学时为24学时。
3.教学环节(1)⾯授辅导与⾃学⾯授辅导依据教学⼤纲,密切配合IP课件和教学辅导资源,采⽤重点讲解、专题讨论、答疑等⽅式,通过解题思路分析和基本⽅法训练,培养学⽣分析问题和解决问题的能⼒。
(2)考试成绩本课程采⽤形成性考核和终结性考核相结合的⽅式。
形成性考核包括3次(最少)平时作业,平时作业成绩占学期总成绩的50%。
终结性考核即期末考试,期末考试成绩占学期总成绩的50%。
课程总成绩按百分制记分,60分为合格。
4.学时分配(三)教学内容和教学要求1.绪论(2学时)(1)了解矿⼭压⼒及其控制的基本概念和学习本课程的意义。
《矿山压力及其控制》课程教学大纲英文名称:Mining Pressure and Strata Controling学时数:72其中实验学时数:3 课外学时数:0学分数:6适用专业:煤矿开采技术一、本课程的性质、目的和任务本课程的任务是在学习《数学》、《制图》、《工程力学》、《煤矿地质》、《井巷工程》、《采掘机械》、《煤矿开采学》等课程的基础上,系统地讲授矿山压力的基本理论、矿山压力显现规律、矿山压力控制理论和方法,矿山压力的研究方法等内容。
本课程的性质:本课程是研究地下煤矿开采过程中,回采工作面和采区巷道矿山压力的成因、显现规律、控制理论和方法的技术科学,是煤矿开采技术专业的主要专业课。
本课程的目的是:通过本课程的学习,使学生较全面的了解矿山压力理论的形成和发展,掌握回采工作面和采区巷道矿山压力的规律及控制手段和方法,从而具备选择采场、巷道支护设备和方式的能力,具备选择合理的矿井布置、开采方法、开采顺序、巷道位置的能力,并为今后从事矿山压力的研究奠定一定的基础。
课程教学目标:(一)知识目标了解岩石及围岩的基本性质,理解矿山压力的基本概念;了解岩层运动规律,了解矿山压力及其显现与上覆岩层运动的关系;了解解采煤工作面和巷道矿压的控制理论和方法;掌握巷道矿压及其显现规律;掌握采煤工作面上覆岩层移动及其矿山压力显现规律;了解影响采煤工作面矿山压力显现的主要因素;了解常用矿山压力观测仪器的原理及结构;掌握采煤工作面“三量”观测的内容及方法;了解煤矿冲击地圧发生的条件及原因。
(二)能力目标能使用常用矿压观测的仪器进行矿压观测;能进行采煤工作面顶板运动的预测预报;能进行采区巷道矿压观测;能进行矿压观测数据的分析和处理,会编写矿压观测报告;能对巷道冒顶进行预防和处理;能对采煤工作面顶板控制进行设计;能对各种条件下的采煤工作面顶板事故进行防治。
(三)思想教育目标具备辩证思维的能力;具有热爱科学、实事求是的学风和吃苦耐劳、敢于奉献、敬业爱岗的精神,具有创新意识、创新精神;加强职业道德意识和修养。
矿山的课程设计一、教学目标本课程旨在让学生了解矿山的形成、种类、开采和保护等方面的知识,掌握一定的矿山地质学基本概念和技能,培养学生的实践能力和创新精神,提高学生对矿山资源的合理利用和环境保护的意识。
具体目标如下:1.知识目标:学生能够理解矿山的基本概念、形成原因、开采方法及其对环境的影响;掌握矿山地质学的基本原理和知识。
2.技能目标:学生能够运用地质学知识对矿山进行简单的评价和分析;具备一定的实地考察和数据处理能力。
3.情感态度价值观目标:学生能够认识到矿山资源的重要性,理解合理利用和保护矿山资源的意义,培养热爱科学、关注社会、珍惜资源的情感态度和价值观。
二、教学内容本课程的教学内容主要包括矿山地质学基本概念、矿山的形成与演化、矿山开采技术、矿山环境保护等方面。
具体安排如下:1.矿山地质学基本概念:矿山的定义、分类及其特征;矿山地质学的基本原理和研究方法。
2.矿山的形成与演化:矿床的形成过程、成因类型及其演化规律;主要矿物的特征和识别方法。
3.矿山开采技术:矿山开采的基本方法及其适用条件;矿山开采对地质环境的影响。
4.矿山环境保护:矿山环境问题的产生原因及危害;矿山环境保护的措施和技术。
三、教学方法为提高教学效果,本课程将采用多种教学方法相结合的方式,包括讲授法、案例分析法、实地考察法等。
具体方法如下:1.讲授法:通过讲解矿山地质学的基本概念、理论和方法,使学生掌握相关知识。
2.案例分析法:分析典型的矿山案例,使学生了解矿山开采和环境保护的实际情况。
3.实地考察法:学生参观矿山,亲身体验矿山开采和环境保护的工作。
四、教学资源本课程将充分利用校内外资源,包括教材、参考书、多媒体资料、实验设备等。
具体资源如下:1.教材:选用权威、实用的矿山地质学教材,为学生提供系统的理论知识。
2.参考书:提供相关的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的课件、视频等资料,提高学生的学习兴趣。
4.实验设备:购置必要的实验设备,为学生提供实践操作的机会。
课程设计题目
某矿综采工作面顶板控制(支护)初步设计
一、工作面条件:
所采煤层为近水平煤层,某综采工作面面长200米,煤层情况和围岩条件详见表1,工作面内无断层,水文条件简单。
二、设计内容:试确定直接顶、老顶分级,在此基础上设计支架高度、支架工作阻力、初撑力,并确定支掩式支架架型。
某矿单体液压支柱工作面顶板控制(支护)初步设计
一、工作面条件:
所采煤层为近水平煤层,某普采工作面面长150米,煤层情况和围岩条件详见表1,工作面内无断层,水文条件简单。
二、设计内容:试确定直接顶、老顶分级,在此基础上设计支柱高度、支柱工作阻力、初撑力,支护密度、并确定外注式单体液压支柱类型(采用HDJA-800型铰接顶梁)。
参考资料:
1、窦林名、陆菜平、牟宗龙等,采场顶板控制及监测技术,中国矿业大学出版社,2009年第3版。
2、张荣立、何国纬、李铎主编.《采矿工程设计手册》(上册、中册、下册). 北京:煤炭工业出版社,2003
3、刘文韬。
煤矿矿井支护新技术与支护设计计算及支护产品选型、设计、维护实用手册。
《矿山压力与岩层控制》课程教学大纲(理论课程)一课程说明1.课程基本情况课程名称:矿山压力与岩层控制英文名称:mining pressure and strata control课程编号:3211215开课专业:采矿工程开课学期:6学分/周学时:3/4课程类型:专业主干课2.课程性质本课程有关采矿工程学科核心理论与关键技术,是采矿工程专业的专业主干课之一;任务在于使学生掌握矿山压力的基本概念、基本理论和研究方法,为学生今后在矿山工作奠定基础。
3.本课程的教学目的和任务本课程是以研究采场及采准巷道在煤矿开采过程中所形成的矿山压力及其显现规律为中心,掌握矿山压力控制技术为目的的课程。
其任务是在学习了数学和力学课程的基础上,配合开采方法,重点讲授采场覆岩活动及其分析,采场矿压显现基本规律和采场矿压控制原理及方法,主要介绍采准巷道矿压研究方法。
通过课程学习、实验、生产实习等教学环节,使学生掌握采场和采区巷道矿压及其控制的基本知识和基本理论深入了解采煤工艺选择、巷道布置和维护方法等基本原理,为在校期间的毕业设计和毕业后从事科研、设计及煤矿技术管理工作打基础。
4.本课程与相关课程的关系、教材体系特点及具体要求开设本课程前,应先学习《材料力学》、《弹性力学》、《煤矿地质学》、《岩石力学》等课程并具有一定的煤矿知识,已开《煤矿开采学》和《井巷工程》课程和进行现场实习。
5.教学时数及课时分配二教材及主要参考书教材:钱鸣高,石平五,许家林编著,《矿山压力与岩层控制》,中国矿业大学出版社,2010。
主要参考书:钱鸣高,缪协兴等编著,《岩层控制的关键层理论》,中国矿业大学出版社,2000年。
马念杰,侯朝炯编著,《采准巷道矿压理论及应用》,煤炭工业出版社,1995年。
陈炎光,钱鸣高编著,《中国煤矿采场围岩控制》,中国矿业大学出版社,1994。
三教学方法和教学手段说明采用多媒体与板书、理论与实践相结合的教学方法。
四成绩考核办法期末考试以闭卷形式进行,占80%,平时作业和课堂考勤占10%,期中考试占20%。
《矿山压力及岩层控制》教案教案:矿山压力及岩层控制一、教学目标:1.了解矿山压力对矿山岩层稳定性的影响;2.掌握矿山压力的测量和岩层控制的方法;3.初步了解矿山压力及岩层控制的相关理论知识。
二、教学内容:1.矿山压力的概念和类型;2.矿山压力测量的方法;3.岩层控制的方法和措施;4.矿山压力及岩层控制理论知识的介绍。
三、教学过程:第一节:矿山压力的概念和类型(20分钟)1.引入矿山压力的概念和意义;2.介绍矿山压力的分类和影响因素;3.讲解不同类型矿山压力的特点和应对方法。
第二节:矿山压力测量的方法(30分钟)1.介绍矿山压力测量的基本原理;2.教学矿山压力测量的仪器和设备;3.演示如何进行矿山压力测量。
第三节:岩层控制的方法和措施(40分钟)1.介绍岩层控制的基本原理;2.讲解岩层控制方法:预应力锚杆支护、钢支架支护等;3.介绍岩层控制措施:控制岩层索敌、防治岩爆等。
第四节:矿山压力及岩层控制理论知识介绍(50分钟)1.介绍矿山压力与岩层控制的相关理论知识;3.总结矿山压力及岩层控制的关键要点。
四、教学方法:1.讲授法:通过教师的讲解和演示,向学生传授相关知识;2.实践法:通过实际操作和测量,让学生亲自实践并掌握操作技巧;3.讨论法:通过提问和讨论,激发学生的思考和学习兴趣;4.案例分析法:通过研究实际案例,让学生掌握解决问题的方法和技巧。
五、教学评估:1.课堂小测:通过选择题和简答题考察学生对于矿山压力及岩层控制的基本概念和方法的掌握程度;2.论文写作:布置论文写作任务,要求学生选择一个实际的矿山压力及岩层控制问题进行研究,并撰写一篇2000字以上的论文。
六、教学资源:1.教材:《矿山压力及岩层控制》教材;2.仪器设备:矿山压力测量仪器、岩层控制设备;3.多媒体:投影仪、电脑、PPT等。
七、教学反思:通过本次教学,学生可以初步了解矿山压力对矿山岩层稳定性的影响,掌握矿山压力的测量和岩层控制的方法,并了解矿山压力及岩层控制的相关理论知识。
中国矿业大学矿业工程学院矿山压力与岩层控制课程设计姓名:班级学号:指导老师:吴锋锋目录矿山压力与岩层控制课程设计1 课程设计的目的《矿山压力与岩层控制课程设计》是《矿山压力与岩层控制》采矿专业主干课程的一个重要实践环节。
通过课程设计使学生了解和掌握矿山压力与岩层控制的研究方法,加深对课程知识的理解,为以后的毕业设计及矿压理论研究奠定基础,使学生具备运用该方法解决采矿工程实际问题的能力。
2 课程设计的内容结合某一给定回采工作面的地质及生产技术条件,设计完成以下内容,并配有必要的图表。
2)依据覆岩岩性特征,采用力学分析计算直接顶初次垮落步距,老顶初次断裂步距,老顶周期来压步距;3)结合三铰拱平衡理论,计算上覆岩层“三带”中垮落带高度;4)依据液压支架选型原则及步骤,考虑大采高综采、综采放顶煤(采煤机割煤高度)开采2种条件,分别计算顶板压力大小,进行液压支架工作的合理选型,画出支架简图;5)假定回采巷道选用锚网支护,理论计算确定锚杆的型号、间排距及支护方案简图。
3 课程设计资料工作面地质条件某综采工作面井下位置西为东四辅撤运输巷,北为正在掘进的另一工作面,南为另一工作面采空区,东为矿界,工作面之间留有60m的煤柱。
所采煤层为3#煤层,煤体黑色,条带状结构,中部夹厚泥岩,赋存稳定,变异系数为%,可采指数为。
煤的容重m3,煤质普氏硬度1~2,盖山厚度292~480m。
煤层底板标高488~624m,地面标高 780~1104m。
工作面所采煤层厚度~,平均,煤层倾角为1~14o,平均5°。
工业储量,可采储量6246165t。
依据该工作面钻孔数据,煤层上方伪顶为黑色炭质泥岩,层厚为;直接顶为灰黑色层理发育的砂质泥岩,层厚;老顶为浅灰色的坚硬中粒砂岩,成份以石英,长石为主,层厚;直接底为灰黑色砂质泥岩,中厚层状,有斜节理,含云母碎片,中夹薄层细砂岩,层厚;老底为黑灰色泥岩,有节理,质不坚硬,局部夹薄层状砂泥岩、粉砂岩,层厚。
矿山压力与顶板控制教案
由于采掘工程破坏了原岩应力而引起了围岩应力重新分布,这种应力重新分布过程中的力称为矿山应力,简称矿压。
应力重新分布结果必然使采煤工作面周围的一部分岩体存受较高的应力。
重新分布的应力高于原岩应力的,称为支撑压力。
矿压是矿压显现的原因,矿压显现是矿压作用的结果。
矿压存在是绝对的、不可控制的,矿压显现是相对的、有条件的、可以控制的。
矿压显现与矿压大小并不成比例。
一、影响矿山压力显现的因素
矿压显现规律的影响因素,总体来说可分为地质因素和开采技术因素。
1、地质因素:
地质因素是自然形成的不可改变的客观的因素,只能适应和利用其为生产实践服务,主要有岩石力学性质、开采深度、煤层倾角、断层、裂隙节理和地下水等。
(1)岩石力学性质
研究表明对矿压显现起主要作用的是岩石(围岩)的力学性质,一般情况下可根据它来判断矿压显现概况及应采取的技术措施。
(2)开采深度
开采深度增加,矿压显现趋于明显,特别是有煤(岩)突出矿井,开采深度增加突出次数和强度均显著增加,这是一般规律,对巷道矿压来讲,开采深度浅,两帮的支撑压力小,因此航道矿压显现不明显,易于维护,特别适用于推广锚杆支护技术。
(3)煤层倾角
煤层倾角对矿压显现影响也特别大,近水平煤层矿压显现要比倾斜或急清晰煤层剧烈。
(4)断层、裂隙及节理
节理和裂隙的存在对岩石强度有显著影响,使强度降低,顶板容易垮落,则工作面矿压显现缓和。
2、开采技术因素
(1)巷道位置
(2)开采程序
(3)支护方法
(4)顶板控制方法。
矿压课程设计个人总结一、课程目标知识目标:1. 让学生掌握矿井压力的基本概念,理解矿压产生的原因及影响;2. 帮助学生了解矿井压力的分布规律,掌握矿井压力的计算方法;3. 引导学生了解矿井压力与矿井安全的关系,掌握矿井压力监测与控制的基本原理。
技能目标:1. 培养学生运用矿压知识分析矿井安全问题,提高解决实际问题的能力;2. 培养学生运用矿井压力计算方法,进行矿井压力预测和风险评估的能力;3. 提高学生的矿井压力监测与控制技能,为矿井安全生产提供技术支持。
情感态度价值观目标:1. 培养学生对矿产资源保护和矿井安全生产的责任感和使命感;2. 增强学生对矿工生命的尊重,树立安全第一的观念;3. 激发学生热爱科学、追求真理的精神,培养严谨、勤奋的学术态度。
本课程旨在结合学生年级特点和知识背景,通过矿压课程的学习,使学生在掌握矿井压力基本知识的同时,提高解决实际问题的能力,增强矿井安全生产意识。
课程目标具体、可衡量,为后续教学设计和评估提供了明确的方向。
在教学过程中,注重理论与实践相结合,充分调动学生的主观能动性,培养学生的创新精神和实践能力。
二、教学内容本章节教学内容主要包括以下几部分:1. 矿井压力基本概念:介绍矿井压力的定义、产生原因及影响因素,帮助学生建立矿压知识体系。
2. 矿井压力分布规律:分析矿井压力在时间和空间上的分布特点,掌握矿井压力变化规律。
3. 矿井压力计算方法:学习矿井压力计算的基本原理,掌握计算公式,学会运用计算方法进行矿压分析。
4. 矿井压力与矿井安全:探讨矿压与矿井安全的关系,分析矿井压力过大或过小对矿井安全生产的影响。
5. 矿井压力监测与控制:学习矿井压力监测技术,了解矿压控制方法,提高矿井安全生产水平。
教学内容依据教材相关章节进行组织,具体安排如下:1. 矿井压力基本概念(第1章)2. 矿井压力分布规律(第2章)3. 矿井压力计算方法(第3章)4. 矿井压力与矿井安全(第4章)5. 矿井压力监测与控制(第5章)在教学过程中,按照教学大纲逐步推进,注重内容的科学性和系统性,确保学生能够扎实掌握矿压相关知识。
矿山专业的课程设计一、教学目标本课程的教学目标是使学生掌握矿山专业的基本概念、原理和方法,培养学生对矿山资源的开发、利用和保护的意识和能力。
具体来说,知识目标包括了解矿山的基本概念、掌握矿山资源的开采和利用原理、了解矿山环境保护的方法。
技能目标包括能够运用矿山专业知识和方法分析解决实际问题、能够进行矿山资源的和评价、能够制定矿山环境保护方案。
情感态度价值观目标包括培养学生对矿山资源的珍惜和保护意识、培养学生对矿山安全的重视、培养学生对矿山环境保护的责任感。
二、教学内容本课程的教学内容主要包括矿山专业的基本概念、原理和方法。
具体包括矿山概述、矿床地质、矿山开采技术、矿山环境保护等方面。
教学内容将按照矿山专业的发展趋势和实际需求进行和安排,确保内容的科学性和系统性。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法。
包括讲授法、讨论法、案例分析法、实验法等。
讲授法用于传授基本知识和理论,讨论法用于培养学生的思考和分析能力,案例分析法用于培养学生解决实际问题的能力,实验法用于培养学生的实践操作能力。
同时,将采用多媒体教学和现场教学等方式,丰富学生的学习体验。
四、教学资源为了支持教学内容和教学方法的实施,本课程将选择和准备适当的教学资源。
教材方面,将选择权威的矿山专业教材,并结合国内外的实际情况进行讲解。
参考书方面,将推荐学生阅读相关的矿山专业书籍和论文,以拓宽知识面。
多媒体资料方面,将收集和制作与矿山专业相关的视频、图片和图表等,以直观地展示矿山的情况。
实验设备方面,将利用学校实验室的设备,进行相关的实验操作,培养学生的实践能力。
五、教学评估本课程的评估方式将包括平时表现、作业和考试等几个方面,以全面客观地评价学生的学习成果。
平时表现将根据学生在课堂上的参与度、提问和回答问题的表现等进行评估。
作业方面,将布置课堂作业和课后作业,要求学生在规定时间内完成,并进行批改和反馈。
考试方面,将设置期中和期末考试,考试内容将涵盖课程的主要知识点,考试形式可以是闭卷考试或开卷考试,根据实际情况进行选择。
中国矿业大学矿业工程学院矿山压力与岩层控制课程设计姓名:班级学号:指导老师:吴锋锋目录矿山压力与岩层控制课程设计 .................................................................................................1 课程设计的目的...............................................................................................................2 课程设计的内容...............................................................................................................3 课程设计资料...................................................................................................................3.1 工作面地质条件 ........................................................................................................3.2 工作面生产技术条件 ................................................................................................3.3 其它参数 ....................................................................................................................一.依据岩层控制的关键层理论,确定主、亚关键层位置; .........................................二.计算直接顶初次跨落步距,老顶初次断裂步距,老顶周期来压步距 .....................2.1直接顶初次跨落步距: ...............................................................................................2.2老顶初次断裂步距如下: ...........................................................................................2.3老顶初次断裂步距如下: ...........................................................................................三:结合三铰拱平衡理论,计算上覆岩层“三带”中垮落带高度; ...........................................................................................................................1:什么是三铰拱平衡理论?四:依据液压支架选型原则及步骤,考虑大采高综采、综采放顶煤(采煤机割煤高度2.5m)开采2种条件,分别计算顶板压力大小,进行液压支架工作的合理选型,画出支架简图;1 液压支架的基本形式 .....................................................................................................2.1 顶底板性质 ..................................................................................................................2.2 煤层条件 ......................................................................................................................2.3 经济成本 ......................................................................................................................五:假定回采巷道选用锚网支护,理论计算确定锚杆的型号、间排距及支护方案简图。
矿山压力课程设计 Prepared on 22 November 2020中国矿业大学矿业工程学院矿山压力与岩层控制课程设计姓名:班级学号:指导老师:吴锋锋目录矿山压力与岩层控制课程设计1 课程设计的目的《矿山压力与岩层控制课程设计》是《矿山压力与岩层控制》采矿专业主干课程的一个重要实践环节。
通过课程设计使学生了解和掌握矿山压力与岩层控制的研究方法,加深对课程知识的理解,为以后的毕业设计及矿压理论研究奠定基础,使学生具备运用该方法解决采矿工程实际问题的能力。
2 课程设计的内容结合某一给定回采工作面的地质及生产技术条件,设计完成以下内容,并配有必要的图表。
2)依据覆岩岩性特征,采用力学分析计算直接顶初次垮落步距,老顶初次断裂步距,老顶周期来压步距;3)结合三铰拱平衡理论,计算上覆岩层“三带”中垮落带高度;4)依据液压支架选型原则及步骤,考虑大采高综采、综采放顶煤(采煤机割煤高度)开采2种条件,分别计算顶板压力大小,进行液压支架工作的合理选型,画出支架简图;5)假定回采巷道选用锚网支护,理论计算确定锚杆的型号、间排距及支护方案简图。
3 课程设计资料工作面地质条件某综采工作面井下位置西为东四辅撤运输巷,北为正在掘进的另一工作面,南为另一工作面采空区,东为矿界,工作面之间留有60m的煤柱。
所采煤层为3#煤层,煤体黑色,条带状结构,中部夹厚泥岩,赋存稳定,变异系数为%,可采指数为。
煤的容重m3,煤质普氏硬度1~2,盖山厚度292~480m。
煤层底板标高 488~624m,地面标高780~1104m。
工作面所采煤层厚度~,平均,煤层倾角为1~14o,平均5°。
工业储量,可采储量6246165t。
依据该工作面钻孔数据,煤层上方伪顶为黑色炭质泥岩,层厚为;直接顶为灰黑色层理发育的砂质泥岩,层厚;老顶为浅灰色的坚硬中粒砂岩,成份以石英,长石为主,层厚;直接底为灰黑色砂质泥岩,中厚层状,有斜节理,含云母碎片,中夹薄层细砂岩,层厚;老底为黑灰色泥岩,有节理,质不坚硬,局部夹薄层状砂泥岩、粉砂岩,层厚。
工作面上覆岩层及其物理力学参数如表1所示。
表1 覆岩岩层其物理力学参数岩层序号岩性厚度/m 弹性模量/Mpa 抗压强度/Mpa 抗拉强度/Mpa 体积力(N/m3)C30 砂质泥岩27280 C29 细粒砂岩27640 C28 砂质泥岩27280 C27 砂岩层27630 C26 砂质泥岩27280 C25 细粒砂岩 1 27640 C24 泥岩18 27420 C23 砂质泥岩27280 C22 细粒砂岩27640 C21 泥岩18 27420 C20 砂质泥岩27280 C19 细粒砂岩27640 C18 泥质砂岩 3 27280 C17 细粒砂岩27640 C16 泥岩18 27420 C15 砂质泥岩27280 C14 细粒砂岩27640C13 泥质砂岩27280 C12 泥岩 1 18 27420 C11 砂质泥岩27280 C10 细粒砂岩27640 C9 砂质泥岩27280 C8 中粒砂岩27620 C7 砂质泥岩27280 C6 砂质泥岩 5 27280 C5 细粒砂岩27640 C4 泥岩18 27420 C3 中粒砂岩27620 C2 砂质泥岩27280 C1 3号煤15530工作面生产技术条件工作面顺槽沿煤层底板布置,设计为矩形断面,采用锚网支护方式,断面大小均为×。
切眼为×的矩形断面。
工作面采用全部机械化的走向长壁大采高后退式自然垮落综合机械化采煤方法。
工作面设计采高为。
其它参数老顶及其上附加岩层的碎胀系数,可取为~;直接顶碎胀系数,可取为~。
也可参照《矿山压力与岩层控制》教材中的相关参数取值。
一.依据岩层控制的关键层理论,确定主、亚关键层位置;将对岩体局部或直至地表的全部岩体的运动起控制作用的坚硬岩层称为关键层, 前者称为亚关键层, 后者称为主关键层;关键层判别方法分为以下3个步骤进行: .第1步, 由下往上确定覆岩中的坚硬岩层位置. 此处的坚硬岩层非一般意义上的坚硬岩层, 它是指那些在变形中挠度小于其下部岩层, 而不与其下部岩层协调变形的岩层. 假设第 1 层岩层为坚硬岩层, 其上直至第 m 层岩层与之协调变形, 而第 m+ 1 层岩层不与之协调变形, 则第 m + 1 层岩层是第 2 层坚硬岩层. 由于第 1 层至第 m 层岩层协调变形, 则各岩层曲率相同, 各岩层形成组合梁, 由组合梁原理可导出作用在第 1 层硬岩层上的载荷为Q1(x )|m =E 1h 31∑h i m i=1γi /∑E i h 3im i=1 (1)式中: q1 ( x ) m 为考虑到第m 层岩层对第1层坚硬岩层形成的载荷; hi , i , Ei 分别为第i 岩层的厚度、容重、弹性模量( i = 1, 2, …, m) .考虑到第m + 1层对第1层坚硬岩层形成的载荷为Q1(x )|m +1=E 1h 31∑h i m+1i=1γi /∑E i h 3i m+1i=1(2) 由于第 m + 1 层为坚硬岩层, 其挠度小于下部岩层的挠度, 第 m + 1 层以上岩层已不再需要其下部岩层去承担它所承受的载荷, 则必然有Q1(x )|m <Q1(x )|m +1 (3)将式( 1) , ( 2) 代入式( 3) 并化简可得311211i i m imi i m m h E h hE∑∑+=++>γγ(4)式(4)即为判别坚硬岩层位置的公式.具体判别时,从煤层上方第1层岩层开始往上逐层计算imi i m m h hEγ∑=++1211及hE i m ∑+1γ当满足式(4)则不再往上计算,此时从第1层岩层往上,第m+1层岩层为第1层硬岩层.从第1层硬岩层开始,按上述方法确定第2层硬岩层的位置,以此类推,直至确定出最上一层硬岩层(设为第n 层硬岩层).通过对坚硬岩层位置的判别,得到了覆岩中硬岩层位置及其所控软岩层组.。
第2步,计算各硬岩层的破断距.坚硬岩层破断是弹性基础上板的破断问题,但为了简化计算,硬岩层破断距采用两端固支梁模型计算,则第k 层硬岩层破断距Lk 可由下式计算kk kq R h l 2k = (k= 1,2,…,n), (5)式中:h k 为第k 层硬岩层的厚度,m;R k 为第k 层硬岩层的抗拉强度,MPa;q 为第k 层硬岩层承受的载荷,MPa.由式(1)可知,q k 可按下式确定由于表土层的弹性模量可视为0,设表土层厚度为H,容重为C,则最上一层硬岩层即第n 层硬岩层上的载荷可按下式计算jk m j jk jk m i jk k k k h EhhE q kk,0,,0,30,0,∑∑===γ (k= 1,2,…,n -1) . (6)式(6),(7)中,下标k 代表第k 层硬岩层;下标j 代表第k 层硬岩层所控软岩层组的分层号;m 为第k 层硬岩层所控软岩层的层数;E k,j ,h k,j ,C k,j 分别为第k 层硬岩层所控软岩层组中第j 层岩层弹性模量、分层厚度及容重,单位分别为GPa,m,MN/m3.当j= 0时,即为硬岩层的力学参数.例如E 1,0,h 1,0,C 1,0分别为第1层硬岩层的弹性模量、厚度及容重,E 1,1,h 1,1,C 1,1分别为第1层硬岩层所控软层组中第1层软岩的弹性模量、厚度及容重.第3步,按以下原则对各硬岩层的破断距进行比较,确定关键层位置.1)第k 层硬岩层若为关键层,其破断距应小于其上部所有硬岩层的破断距,即满足lk<lk+1 (k= 1,2,…,n-1) . (8)2)若第k 层硬岩层破断距lk 大于其上方第k+1层硬岩层破断距,则将第k+1层硬岩层承受的载荷加到第k 层硬岩层上,重新计算第k 层硬岩层的破断距.若重新计算的第k 层硬岩层的破断距小于第k+1层硬岩层的破断距,则取lk=lk+1.说明此时第k 层硬岩层破断受控于第k+1层硬岩层,即第k+1层硬岩层破断前,第k 层硬岩层不破断,一旦第k+1层硬岩层破断,其载荷作用于第k 层硬岩上,导致第k 层硬岩随之破断.这一现象在文献[2]的数值模拟研究中得到了证实,限于篇幅,在此不作详细介绍.3)从最下一层硬岩层开始逐层往上判别lk<lk+1(k=1,2,…,n-1)是否成立,及当lk>lk+1时重新计算第k 层硬岩层破断距.例如,假设由第1,2步确定出覆岩中有3层硬岩层,各自破断距分别为L1,L2,L3,具体计算过程如下==222h q γ27280*=(kPa)=++=333322332232223)()(h E h E h h h E q γγ33340.8*2.63(0.02728*2.630.02762*7.1)72.4*7.140.8*2.63++=按两端固支梁分别计算C2,C3岩层的破断距:==22222q R h l==36333)(2q R h l (36)(q 由下面计算可知)所以C3为关键层。
333*0.02762*7.1q h γ====++=333344334433334)()(h E h E h h h E q γγ =++++=35534433355443333335)()(h E h E h E h h h h E q γγγ =++++++=3663553443336655443333336)()(h E h E h E h E h h h h h E q γγγγ =++++++++=377366355344333776655443333337)()(h E h E h E h E h E h h h h h h E q γγγγγ按两端固支梁分别计算C3,C7岩层的破断距:==36333)(2q R h l==726777)(2q R h l (726)(q 由下面计算可知,且由下面可知C7关键层负载只到C(26)所以C7为关键层。
777h q γ===++=388377887737778)()(h E h E h h h E q γγ =++++=39938837799887737779)()(h E h E h E h h h h E q γγγ =++++++=310103993883771010998877377710)()(h E h E h E h E h h h h h E q γγγγ =++++++++=311113101039938837711111010998877377711)()(h E h E h E h E h E h h h h h h E q γγγγγ同理可求=712)(q ,=713)(q ,=714)(q ,=715)(q ,=716)(q ,=717)(q ,=718)(q ,=719)(q ,=720)(q ,=721)(q ,=722)(q ,=723)(q ,=724)(q ,=725)(q ,=726)(q ,=727)(q 。