6第6章气体吸收2011习题
- 格式:ppt
- 大小:401.00 KB
- 文档页数:2
第七章1.已知101.3kPa,25℃时,100g水中溶有1g氨,其平衡分压为0.987kPa,在此浓度范围内气液平衡关系服从亨利定律。
试求:亨利系数E,以kPa表示;H以kPa.m3/kmol表示;以及相平衡常数m值。
2.在20℃时,氧溶解于水中的平衡关系为p e=4.06×106x。
式中p e为氧的平衡分压,kPa;x为氧在水中的摩尔分数。
试求:(1)与101.325kPa之大气充分接触的20℃水中最大溶氧浓度为多少?分别以摩尔分数和质量比表示。
(2)若将20℃的饱和含氧水加热至95℃,则最大溶氧浓度又为多少?分别以摩尔分数和质量比表示。
3.常压、30℃条件下,于填料塔中用清水逆流吸收空气-SO2混合气中的SO2。
已知入塔混合气中含SO2为5%(体积分数),出塔气中SO2为0.2%(体积分数);出塔吸收液中每100g 含SO2为0.356g。
若操作条件下气液平衡关系为y e=47.87x,试求塔底和塔顶处的吸收推动力,分别以Δy、Δx、Δp、Δc表示。
4.在1.1768Mpa、20℃条件下,用清水于填料塔内逆流吸收H2-CO2混合气中的CO2。
已知入塔混合气中含CO2为30%(体积分数),假若出塔吸收液中CO2达到饱和,那么1kg水可吸收多少千克CO2。
假定此吸收和解吸的平衡关系服从亨利定律。
5.在0℃、101.3kPa下,Cl2在空气中进行稳态分子扩散。
若已知相距50mm两截面上Cl2的分压分别为26.66kPa和6.666kPa,试计算以下两种情况Cl2通过单位横截面积传递的摩尔流量。
(1)Cl2与空气作等分子反向扩散;(2)Cl2通过静止的空气作单向扩散。
6.在一直立的毛细玻璃管内装有乙醇,初始液面距管口10mm,如附图所示。
管内乙醇保持为293K(乙醇饱和蒸气压为1.9998kPa),大气压为101.3kPa。
当有一空气始终缓吹过管口时,经100h后,管内乙醇液面下降至距管口21.98mm处。
第6章 气体吸收1)总压100,温度25℃的空气与水长时刻接触,水中的的浓度为多少?别离用摩尔浓度和摩尔分率表示。
空气中 的体积百分率为。
解:将空气看做理想气体:y= p*=yp=79kPa查表得 E=×510kPa610/*-==E p xH=)./(10342.6)181076.8/(1000)/(65m kN kmoL EMS -⨯=⨯⨯=ρ C=p*.H=79××10-5=×10-4kmol/m 32)已知常压、25℃下某体系的平稳关系符合亨利定律,亨利系数E 为大气压,溶质A 的分压为大气压的混合气体别离与三种溶液接触:①溶质A 浓度为 的水溶液;②溶质A 浓度为的水溶液;③溶质A 浓度为 的水溶液。
试求上述三种情形下溶质A 在二相间的转移方向。
解: E=×104atm ,p=,P=1atm ,y=p/P=① m EP==⨯015104. x 135002110183610=⨯=⨯-.. ∴y mx 110054*.== ∴∆y y y =-=10*∴平稳② x 2350001110181810=⨯=⨯-.. ∴y mx 220027*.== ∴∆y y y =-20* ∴气相转移至液相 ③ x 3350003110185410=⨯=⨯-.. ∴y mx 330081*.== ∴∆y y y =-30*∴液相转移至气相④ P=3atm y= E=×104atm∴m=E/P=×104 x 4=x 3=×10-5∴y mx 440027*.== ∴∆y y y =-40* ∴气相转移至液相 3)某气、液逆流的吸收塔,以清水吸收空气~硫化氢混合气中的硫化氢。
总压为1大气压。
已知塔底气相中含%(摩尔分率),水中含的浓度为 (摩尔分率)。
试求塔底温度别离为5℃及30℃时的吸收进程推动力。
解:查表得(50C ) E1=×104kpa m 1=E 1/P=315 p*1=Ex=KPa 5724.0108.11055=⨯⨯⨯-6222222222225422224205111111111.111063.6/*0040.0*011.033.101/1106.1/**1106.1108.11017.6*609/,1017.6301096.2/*0093.0*015.00057.033.101/5742.0/**---⨯=-=-=∆=-=∆====⨯⨯⨯====⨯=⨯=-=-=∆=-=∆====x m y x x x y y y P p y kpa x E p p E m KPa E C x m y x x x y y y y P p y 液相推动力:气相推动力:):查表得(液相推动力:气相推动力:4)总压为100 ,温度为15℃时 的亨利系数E 为 。
气体吸收(化工原理)习题及答案气液平衡1.在常压、室温条件下,含溶质的混合气的中,溶质的体积分率为10%,求混合气体中溶质的摩尔分率和摩尔比各为多少?解:当压力不太高,温度不太低时,体积分率等于分摩尔分率,即y=0.10根据 y-1y Y =,所以0.110.1-1 0.1Y == 2.向盛有一定量水的鼓泡吸收器中通入纯的CO 2气体,经充分接触后,测得水中的CO 2平衡浓度为2.875×10-2kmol/m 3,鼓泡器内总压为101.3kPa ,水温30℃,溶液密度为1000 kg/m 3。
试求亨利系数E 、溶解度系数H 及相平衡常数m 。
解:查得30℃,水的kPa 2.4=s pkPa 1.972.43.101*=-=-=s A p p p稀溶液:3kmol/m 56.55181000==≈S M c ρ421017.556.5510875.2--⨯=⨯==c c x A kPa 10876.11017.51.9754*⨯=⨯==-x p E A )m kmol/(kPa 1096.21.9710875.2342*⋅⨯=⨯==--A Ap c H 18543.10110876.15=⨯==p E m 3.在压力为101.3kPa ,温度30℃下,含CO 2 20%(体积分率)空气-CO 2混合气与水充分接触,试求液相中CO 2的摩尔浓度、摩尔分率及摩尔比。
解:查得30℃下CO 2在水中的亨利系数E 为1.88×105kPaCO 2为难溶于水的气体,故溶液为稀溶液 kPa)kmol/(m 1096.2181088.11000345⋅⨯=⨯⨯==-S SEM H ρ kPa 3.2033.10120.0*A =⨯==yp p334*km ol/m 1001.63.201096.2--⨯=⨯⨯==A A Hp c 18523.1011088.15=⨯==p E m 4-101.0818520.20m y x ⨯=== 4-4--4101.08101.081101.08x -1x X ⨯=⨯⨯=-= 4.在压力为505kPa ,温度25℃下,含CO 220%(体积分率)空气-CO 2混合气,通入盛有1m 3水的2 m 3密闭贮槽,当混合气通入量为1 m 3时停止进气。
06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。
4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。
5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。
6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。
7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。
理想气体做功为 500 J 。
补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。
8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。
9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。
(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。
第六章气体吸收教学重点1、亨利定律、菲克定律2、吸收速率方程3、吸收塔的物料衡算与操作线方程4、吸收剂用量的决定、填料层高度的基本计算式5、对数平均推动力法计算传质单元数6、掌握填料塔的构造和吸收操作控制。
教学方法1、用化工生产实例引入吸收单元操作,介绍其在化工生产中的广泛应用,用动画展示吸收操作流程,以提高学生的学习兴趣。
2、在学生已熟悉的组成表示方法基础上引入新的相组成的表示法——摩尔比。
3、简单复习气体在液体中的溶解度的影响因素,引导学生回忆《物化》中讲过的亨利定律的表达形式,为了吸收计算的方便,引入其他表示形式。
4、类比动量传递中的牛顿粘性定律、传热过程中的傅立叶定律,引入传质过程中的菲克定律;5、与列管式换热器中的传热过程相类比,引出传质过程中的双膜理论。
6、根据传递速率的普遍规律写出吸收速率方程式的各种表达形式、运用吸收塔的物料衡算得出各操作参数和操作线方程。
7、分析最小液气比的影响因素,确定最佳吸收剂用量、运用前面学过的物料衡算、平衡关系和速率关系,引导学生得出填料层高度的基本计算式。
8、结合吸收操作过程理解传质单元高度与传质单元数的概念、运用难点分解法讲授传质单元数的求法。
第一节:概述一、化工生产中的传质过程传质分离过程:利用物系中不同组分的物理性质或化学性质的差异来造成一个两相物系,使其中某一组分或某些组分从一相转移到另一相,即进行相际传质,并由于混合物中各组分在两相间平衡分配不同,则可达到分离的目的。
以传质分离过程为特征的基本单元操作:气体吸收, 液体蒸馏, 固体干燥, 液-液萃取,结晶, 吸附, 膜分离等。
本章介绍气体吸收。
二、相组成表示法1、质量分数与摩尔分率(质量分数与摩尔分数)质量分数:是指在混合物中某组分的质量占混合物总质量的分率。
m m w AA =摩尔分率:摩尔分率是指在混合物中某组分的摩尔数n A 占混合物总摩尔数n 的分率。
气相: n n y AA =液相: n n x AA =质量分数与摩尔分率的关系为:A x =NN B B A A A A /M w /M w /M w /M w ⋅⋅⋅++ 2、质量比与摩尔比质量比:是指混合物中某组分A 的质量与惰性组分B (不参加传质的组分)的质量之比。
第六章 吸收习题参考答案(注:红色字体标注部分对教材所给答案进行了修正,请核查)【6-1】 含有8%(体积分数)22C H 的某种混合气体与水充分接触,系统温度为20℃,总压为101.3kPa 。
试求达平衡时液相中22C H 的物质的量浓度。
解:混合气体按理想气体处理,则22C H 在气相中的分压为101.30.088.104p p y kPa kPa ==⨯=总22C H 为难溶于水的气体,故气液平衡关系符合亨利定律,并且溶液的密度可按纯水的密度计算。
查得20℃水的密度为ρ=998.23/kgm 。
由 *Ac Hp =, SH EM ρ=故 *ASpc EM ρ=查表8-1可知,20℃时22C H 在水中的亨利系数E=1.23⨯510kPa ,故 *333A5998.28.104/ 3.65410/1.231018c kmol m kmol m -⨯==⨯⨯⨯ 【6-2】 总压为101.3 kPa ,温度为20 ℃的条件下,使含二氧化硫为3.0%(体积分数)的混合空气与含二氧化硫为3503/gm 的水溶液接触。
试判断二氧化硫的传递方向,并计算以二氧化硫的分压和液相摩尔分数表示的总传质推动力。
已知操作条件下,亨利系数E=3.55310⨯kPa ,水溶液的密度为998.2kg/3m 。
解:由道尔顿分压定律101.30.03 3.039p p y kPa kPa ==⨯=总液相摩尔分数为(溶液近似按纯水计算):0.35640.0000986998.218x ==稀溶液符合亨利定律,所以:*33.55100.00009860.35p Ex kPa ==⨯⨯=p >p *,二氧化硫由气相向液相传递,进行吸收过程。
用气相分压表示的总推动力为:3.0390.35 2.689p p kPa *-=-=与气相浓度相平衡的液相平衡浓度:33.0390.0008563.5510p x E *===⨯ 用液相摩尔分数表示的总推动力为:0.0008560.00009860.0007574x x *-=-=【6-3】 在某填料塔中用清水逆流吸收混于空气的2CO ,空气中2CO 的体积分数为8.5%,操作条件为15℃、405.3kPa ,15℃时2CO 在水中的亨利系数为1.24510⨯kPa ,吸收液中2CO 的组成为411.6510x -=⨯。
一、单选题1.用纯溶剂吸收混合气中的溶质。
逆流操作,平衡关系满足亨利定律。
当入塔气体浓度y1上升,而其它入塔条件不变,则气体出塔浓度y2和吸收率ϕ的变化为:()。
C(A)y2上升,ϕ下降(B)y2下降,ϕ上升(C)y2上升,ϕ不变(D)y2上升,ϕ变化不确定2.在填料塔中,低浓度难溶气体逆流吸收时,若其它条件不变,但入口气量增加,则气相总传质单元数()。
BA 增加 B减少 C不变 D不定3.在填料塔中,低浓度难溶气体逆流吸收时,若其它条件不变,但入口气量增加,则出口气体组成将()。
AA 增加 B减少 C不变 D不定4.在填料塔中,低浓度难溶气体逆流吸收时,若其它条件不变,但入口气量增加,则出口液体组成()。
AA 增加 B减少 C不变 D不定5.低浓度的气膜控制系统,在逆流吸收操作中,若其它条件不变,但入口液体组成增高时,则气相总传质单元数将()。
CA 增加 B减少 C不变 D不定6.低浓度的气膜控制系统,在逆流吸收操作中,若其它条件不变,但入口液体组成增高时,则气相总传质单元高度将()。
CA 增加 B减少 C不变 D不定7.低浓度的气膜控制系统,在逆流吸收操作中,若其它条件不变,但入口液体组成增高时,则气相出口组成将()。
AA 增加 B减少 C不变 D不定8.低浓度的气膜控制系统,在逆流吸收操作中,若其它条件不变,但入口液体组成增高时,则液相出口组成将()。
AA 增加 B减少 C不变 D不定9.正常操作下的逆流吸收塔,若因某种原因使液体量减少以至液气比小于原定的最小液气比时,下列哪些情况将发生? C(A)出塔液体浓度增加,回收率增加(B)出塔气体浓度增加,但出塔液体浓度不变(C)出塔气体浓度与出塔液体浓度均增加(D)在塔下部将发生解吸现象10.最大吸收率与()无关。
DA 液气比 B液体入塔浓度 C相平衡常数 D吸收塔型式11.逆流填料吸收塔,当吸收因数A<1且填料为无穷高时,气液两相将在()达到平衡。
气体吸收(化工原理)习题及答案气液平衡1.在常压、室温条件下,含溶质的混合气的中,溶质的体积分率为10%,求混合气体中溶质的摩尔分率和摩尔比各为多少?解:当压力不太高,温度不太低时,体积分率等于分摩尔分率,即y=0.10根据 y-1y Y =,所以0.110.1-1 0.1Y == 2.向盛有一定量水的鼓泡吸收器中通入纯的CO 2气体,经充分接触后,测得水中的CO 2平衡浓度为2.875×10-2kmol/m 3,鼓泡器内总压为101.3kPa ,水温30℃,溶液密度为1000 kg/m 3。
试求亨利系数E 、溶解度系数H 及相平衡常数m 。
解:查得30℃,水的kPa 2.4=s pkPa 1.972.43.101*=-=-=s A p p p稀溶液:3kmol/m 56.55181000==≈S M c ρ421017.556.5510875.2--⨯=⨯==c c x A kPa 10876.11017.51.9754*⨯=⨯==-x p E A )m kmol/(kPa 1096.21.9710875.2342*⋅⨯=⨯==--A Ap c H 18543.10110876.15=⨯==p E m 3.在压力为101.3kPa ,温度30℃下,含CO 2 20%(体积分率)空气-CO 2混合气与水充分接触,试求液相中CO 2的摩尔浓度、摩尔分率及摩尔比。
解:查得30℃下CO 2在水中的亨利系数E 为1.88×105kPaCO 2为难溶于水的气体,故溶液为稀溶液 kPa)kmol/(m 1096.2181088.11000345⋅⨯=⨯⨯==-S SEM H ρ kPa 3.2033.10120.0*A =⨯==yp p334*km ol/m 1001.63.201096.2--⨯=⨯⨯==A A Hp c 18523.1011088.15=⨯==p E m 4-101.0818520.20m y x ⨯=== 4-4--4101.08101.081101.08x -1x X ⨯=⨯⨯=-= 4.在压力为505kPa ,温度25℃下,含CO 220%(体积分率)空气-CO 2混合气,通入盛有1m 3水的2 m 3密闭贮槽,当混合气通入量为1 m 3时停止进气。