【课件】嵌入式开发教程之STM32F10x在应用中编程的实现方法精编版
- 格式:pptx
- 大小:414.85 KB
- 文档页数:63
第1章STM32F10X系统介绍STM32F10X 是一款由意法半导体(STMicroelectronics)推出的32位ARM Cortex-M3 微控制器系列。
该系列具有高性能和低功耗的特点,广泛应用于工业控制、汽车电子、家用电器、医疗设备等领域。
STM32F10X 系列采用了先进的微控制器技术,结合了ARM Cortex-M3 内核的强大处理能力和低功耗特性。
它具有高达72MHz 的处理器频率,并且内置了丰富的外设和功能模块,如多个通用定时器、I/O 端口、通用串行总线接口(USART)、SPI 接口、I2C 接口等。
此外,它还支持多种存储介质,如闪存、SRAM 以及嵌入式模拟存储器。
在系统结构上,STM32F10X系列采用了多层总线架构。
它由处理器总线、AHB总线和APB总线组成,这些总线分别用于连接处理器核心、内存和外设。
这种层次化的总线结构使得系统具有高灵活性和可扩展性,能够满足不同应用场景的需求。
值得一提的是,STM32F10X 系列采用了意法半导体独有的ART (Adaptive Real-Time)加速器技术。
该技术能够提高嵌入式应用的实时性能和性能效率,通过优化指令和数据缓存访问,显著提高数据处理速度和系统响应速度。
综上所述,STM32F10X系列是一款高性能、低功耗的32位微控制器,具有强大的处理能力和丰富的外设。
它在工业控制、汽车电子、家用电器等领域得到广泛应用,并且配备了丰富的调试和开发工具,极大地简化了软件开发过程。
随着意法半导体不断推出新的版本和增加新的功能模块,STM32F10X系列将继续为嵌入式系统的设计者和开发者提供更多新的选择和解决方案。
AN3241应用笔记QVGA TFT-LCD直接驱动使用STM32F10xx FSMC外设前言本应用笔记讲解的低成本解决方案可使用任何未配备片上LCD控制器的STM32F10xxx微控制器,直接驱动QVGA TFT-LCD。
强大的STM32F10xxx器件具有嵌入式的FSMC(灵活的静态存储控制器),它可与片上DMA控制器共同使用,实现对TFT-LCD的直接驱动。
此低成本解决方案为数字相框、独立信息显示器、静态广告板等应用的理想选择。
本应用笔记说明了怎样将STM32F10xx用作LCD控制器,驱动一个与FSMC接口的QVGA3.5" TFT面板。
此解决方案实现的优化意味着仅需1% CPU负荷即可显示静态图片。
固件的演示已在320x240像素分辨率的CT05350DW0000T QVGA 3.5" LCD模块上开发并测试。
2014年11月Doc ID 17695 Rev 11/21目录AN3241目录1STM32 QVGA TFT-LCD直接驱动 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1STM32 QVGA TFT-LCD直接驱动原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32STM32 QVGA TFT-LCD驱动实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1QVGA TFT-LCD信号与STM32F10xx FSMC接口 . . . . . . . . . . . . . . . . . . 62.2图片格式与分辨率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3图片源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4STM32 QVGA LCD-TFT直接驱动流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4.1显示模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.5TFT-LCD背光控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3硬件参考设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134固件包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16库 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16项目. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.1固件安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.2如何配置QVGA TFT-LCD参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5结论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6修订历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202/21Doc ID 17695 Rev 11 STM32 QVGA TFT-LCD直接驱动STM32微控制器具有一个嵌入式的灵活静态存储控制器(FSMC),可连接NAND、NOR、SRAM、PSRAM等外部存储器接口。
stm32嵌入式技术应用开发全案例实践pdf资料随着科技的不断发展,嵌入式技术在各个领域得到了广泛的应用。
而STM32作为一款性能强大、功能丰富的嵌入式微控制器,受到了众多开发者的青睐。
为了帮助开发者更好地掌握STM32的应用开发技术,一份全案例实践PDF资料应运而生。
这份资料以实际案例为基础,详细介绍了STM32嵌入式技术的应用开发过程。
首先,资料从STM32的基本概念和特点入手,让读者对STM32有一个全面的了解。
接着,资料介绍了STM32的开发环境搭建,包括软件和硬件的准备工作。
通过这一部分的学习,读者可以快速上手STM32的开发工作。
接下来,资料通过一系列的案例实践,详细介绍了STM32在各个领域的应用。
比如,资料介绍了如何使用STM32进行智能家居系统的开发,包括温度控制、灯光控制等功能。
此外,资料还介绍了如何使用STM32进行智能交通系统的开发,包括红绿灯控制、车辆识别等功能。
通过这些案例实践,读者可以深入了解STM32在实际应用中的使用方法和技巧。
除了案例实践,资料还提供了大量的实验和实例代码。
这些实验和实例代码可以帮助读者更好地理解和掌握STM32的开发技术。
同时,资料还提供了详细的步骤和说明,让读者可以轻松地进行实验和代码的编写。
通过这些实验和实例代码的学习,读者可以提高自己的实际操作能力,为将来的项目开发打下坚实的基础。
此外,资料还介绍了一些常见问题和解决方法。
在实际开发过程中,开发者常常会遇到各种各样的问题,比如硬件连接问题、软件调试问题等。
资料通过列举一些常见问题和解决方法,帮助读者更好地解决实际开发中的困难和疑惑。
总之,这份STM32嵌入式技术应用开发全案例实践PDF资料是一份非常实用的学习资料。
通过学习这份资料,读者可以全面了解STM32的应用开发技术,掌握STM32的开发环境搭建和实际应用开发方法。
同时,通过实验和实例代码的学习,读者可以提高自己的实际操作能力。
希望这份资料能够帮助更多的开发者更好地应用STM32嵌入式技术,推动嵌入式技术的发展。
嵌⼊式单⽚机STM32应⽤技术(课本)⽬录SAIU R20 1 6 第1页第1 章. 初识STM32 (1)1.1. 课前预习 (1)1.2. 概述 (1)1.3. 什么是STM32 (1)1.4. STM32 能做什么 (2)1.5. STM32 怎么选型 (3)1.5.1. STM32 分类 (3)1.5.2. STM32 命名⽅法 (4)1.5.3. 选择合适的MCU (4)1.5.4. PCB 哪⾥打样 (6)1.6. 总结 (7)1.7. 课后练习 (7)第2 章. STM32 的结构和组成 (8)2.1. 课前预习 (8)2.2. 概述 (8)2.3. 什么是寄存器 (8)2.4. STM 32 长啥样 (8)2.5. 芯⽚⾥⾯有什么 (10)2.5.1. ICode 总线 (10)2.5.2. 驱动单元 (10)2.5.3. 被动单元 (11)2.6. 存储器映射 (13)2.7. 寄存器映射 (14)2.7.1. STM32 的外设地址映射 (15)2.7.2. 总线基地址 (15)2.7.3. 外设基地址 (15)2.7.4. 外设寄存器 (16)2.8. C 语⾔对寄存器的封装 (16)2.8.1. 封装总线和外设基地址 (16)2.8.2. 封装寄存器列表 (17)2.9. 课后练习 (20)第3 章. 初识STM32 标准库 (21)3.1. 课前预习 (21)3.2. 概述 (21)3.3. 库⽬录、⽂件简介 (21)3.4. STM32F10x_StdPeriph_Driver ⽂件夹 (24)3.5. 库各⽂件间的关系 (26)3.6. 初识库函数 (28)⽬录第2 页SAIUR201 6陈德⾦⽼师编著3.7. 课后练习 (29)第4 章. GPIO 的使⽤ (30)4.1. 课前预习 (30)4.2. 概述 (30)4.3. GPIO 简介 (30)4.4. GPIO 框图剖析 (31)4.4.1. 保护⼆极管及上、下拉电阻 (31)4.4.2. P-MOS 管和N-MOS 管 (31)4.4.3. 输出数据寄存器 (33)4.4.4. 复⽤功能输出 (34)4.4.5. 输⼊数据寄存器 (34)4.4.6. 复⽤功能输⼊ (34)4.4.7. 模拟输⼊输出 (34)4.5. GPIO ⼯作模式 (35)4.5.1. 输⼊模式(模拟/浮空/上拉/下拉) (35)4.5.2. 输出模式(推挽/开漏) (35)4.5.3. 复⽤功能(推挽/开漏) (35)4.6. 点亮LED-硬件设计 (37)第5 章. STM32 RCC 时钟系统 (43)5.1. 课前预习 (43)5.2. 概述 (43)5.3. RCC 主要作⽤—时钟部分 (43)5.4. RCC 框图剖析—时钟部分 (43)5.5. 系统时钟 (44)5.5.1. HSE ⾼速外部时钟信号 (44)5.5.2. PLL 时钟源 (45)5.5.3. PLL 时钟PLLCLK (45)5.5.4. 系统时钟SYSCLK (45)5.5.5. AHB 总线时钟HCLK (45)5.5.6. APB2 总线时钟HCLK2 (45)⽬录SAIU R20 1 6 第3页5.5.7. 总线时钟HCLK1 (46)5.6. 设置系统时钟库函数 (46)5.7. 其他时钟 (47)5.7.1. USB 时钟 (47)5.7.2. Cortex 系统时钟 (47)5.7.3. ADC 时钟 (48)5.7.4. RTC 时钟、独⽴看门狗时钟 (48)5.7.5. MCO 时钟输出 (48)5.8. 配置系统时钟实验 (48)5.8.1. 使⽤HSE (48)5.8.2. 使⽤HSI (48)5.8.3. 硬件设计 (49)5.8.4. 软件设计 (49)5.8.5. 编程要点 (49)5.8.6. 代码分析 (49)5.8.7. 下载验证 (54)第6 章. STM32 中断应⽤概览 (55)6.1. 课前预习 (55)6.2. 概述 (55)6.3. 异常类型 (55)6.4. NVIC 简介 (56)6.5. NVIC 寄存器简介 (56)6.6. NVIC 中断配置固件库 (57)6.7. 优先级的定义 (58)6.7.1. 优先级定义 (58)6.7.2. 优先级分组 (58)6.8. 中断编程 (59)6.9. 课后练习 (60)第7 章. EXTI—外部中断/事件控制器 (61)7.1. 课前预习 (61)7.2. 概述 (61)7.3. EXTI 简介 (61)7.4. EXTI 功能框图 (61)7.5. 中断/事件线 (63)7.6. EXTI 初始化结构体详解 (64)7.7. 外部中断控制实验 (65)7.7.1. 硬件设计 (65)7.7.2. 软件设计 (65)⽬录第4 页SAIUR201 6陈德⾦⽼师编著7.7.3. 编程要点 (65)7.7.4. 代码分析 (65)7.7.5. 下载验证 (69)7.8. 课后练习 (69)第8 章. SysTick 系统定时器 (70)8.5.4. 代码分析 (73)8.6. 课后练习 (79)第9 章. USART—串⼝通讯 (80)9.1. 课前预习 (80)9.2. 概述 (80)9.3. 串⼝通讯协议简介 (80)9.3.1. 物理层 (80)9.3.2. 协议层 (84)9.4. STM32 的USART 简介 (85)9.5. USART 功能框图 (85)9.6. USART 初始化结构体详解 (90)9.7. USART1 接发通信实验 (91)9.7.1. 硬件设计 (92)9.7.2. 软件设计 (92)9.7.3. 编程要点 (92)9.7.4. 代码分析 (93)9.7.5. 下载验证 (97)9.8. 课后练习 (97)第10 章. DMA 直接存储区访问 (98)10.1. 课前预习 (98)10.2. 概述 (98)10.3. DMA 简介 (98)10.4. DMA 功能框图 (98)10.5. DMA 数据配置 (100)10.6. DMA 初始化结构体详解 (101)⽬录SAIU R20 1 6 第5页10.7. DMA 存储器到存储器模式实验 (103)10.7.1. 硬件设计 (103)10.7.2. 软件设计 (103)10.7.3. 编程要点 (103)10.7.4. 代码分析 (104)10.7.5. 下载验证 (107)10.8. 课后练习 (107)第11 章. TIM 基本定时器 (108)11.1. 课前预习 (108)11.2. 概述 (108)11.3. 定时器分类 (108)11.4. 基本定时器功能框图讲解 (109)11.5. 定时器初始化结构体详解 (110)11.6. 基本定时器定时实验 (111)11.6.1. 硬件设计 (111)11.6.2. 软件设计 (111)11.6.3. 编程要点 (111)11.6.4. 软件分析 (111)11.6.5. 下载验证 (114)11.7. 课后练习 (114)第12 章. TIM ⾼级定时器 (115)12.1. 课前预习 (115)12.2. 概述 (115)12.3. ⾼级控制定时器 (115)12.4. ⾼级控制定时器功能框图 (116)12.4.1. 时钟源 (117)12.4.2. 外部时钟模式1 (117)12.4.3. 外部时钟模式2 (118)12.4.4. 内部触发输⼊ (119)12.4.5. 输⼊捕获 (121)12.4.6. 输出⽐较 (122)12.4.7. 断路功能 (125)12.5. 输⼊捕获应⽤ (125)⽬录第6 页SAIUR201 6陈德⾦⽼师编著12.7.2. PWM 边沿对齐模式 (128)12.7.3. PWM 中⼼对齐模式 (129)12.8. 定时器初始化结构体详解 (129)12.8.1. TIM_TimeBaseInitTypeDef (130)12.8.2. TIM_OCInitTypeDef (130)12.8.3. TIM_ICInitTypeDef (131)12.8.4. TIM_BDTRInitTypeDef (132)12.9. PWM 互补输出实验 (133)12.9.1. 硬件设计 (133)12.9.2. 软件设计 (133)12.9.3. 编程要点 (133)12.9.4. 软件分析 (134)12.9.5. 下载验证 (136)第13 章. I2C 通讯 (138)13.1. 课前预习 (138)13.2. 概述 (138)13.3. I2C 协议简介 (138)13.3.1. I2C 物理层 (139)13.3.2. 协议层 (140)13.3.3. 通讯的起始和停⽌信号 (141)13.4. STM32 的I2C 特性及架构 (144)13.4.1. STM32 的I2C 外设简介 (144)13.4.2. STM32 的I2C 架构剖析 (145)13.4.3. 通讯过程 (147)13.5. I2C 初始化结构体详解 (149)13.6. I2C—读写EEPROM 实验 (150)13.6.1. 硬件设计 (150)13.6.2. 软件设计 (151)13.6.3. 编程要点 (151)13.6.4. 代码分析 (152)13.6.5. 下载验证 (167)13.7. 课后练习 (168)第14 章. SPI 通讯 (169)14.1. 课前预习 (169)14.2. 概述 (169)14.3. SPI 协议简介 (169)14.3.1. SPI 物理层 (169)14.3.2. 协议层 (171)⽬录SAIU R20 1 6 第7页14.4. STM32 的SPI 特性及架构 (173)14.4.1. STM32 的SPI 外设简介 (173)14.4.2. TM32 的SPI 架构剖析 (174)14.4.3. 通讯过程 (175)14.5. SPI 初始化结构体详解 (177)14.6. SPI—读写串⾏FLASH 实验 (178)14.6.1. 硬件设计 (179)14.6.2. 软件设计 (179)14.6.3. 编程要点 (180)14.6.4. 代码分析 (180)14.6.5. 下载验证 (198)14.7. 课后练习 (198)第15 章. 陀螺仪姿态检测 (199)15.1. 课前预习 (199)15.2. 概述 (199)15.3. 姿态检测 (199)15.3.1. 基本认识 (199)15.3.2. 坐标系 (200)15.4. 利⽤陀螺仪检测⾓度 (201)15.5. 利⽤加速度计检测⾓度 (202)15.9.2. MPU6050 模块的引脚功能说明 (205)15.9.3. MPU6050 模块的硬件原理图 (205)15.10. MPU6050 模块的特性参数 (206)15.11. MPU6050—获取原始数据实验 (207)15.11.1. 硬件设计 (207)15.11.2. 配套程序简介 (208)15.11.3. 软件设计 (209)15.11.4. 程序设计要点 (209)15.11.5. 代码分析 (209)15.11.6. 下载验证 (215)15.12. MPU6050—利⽤DMP 进⾏姿态解算 (216)15.12.1. 硬件设计 (216)15.12.2. 软件设计 (216)15.12.3. 程序设计要点 (216)⽬录第8 页SAIUR201 6陈德⾦⽼师编著15.12.4. 代码分析 (216)15.12.5. 下载验证 (226)15.13. MPU6050—使⽤第三⽅上位机 (227)15.13.1. 硬件设计 (227)15.13.2. 软件设计 (227)15.13.3. 程序设计要点 (227)15.13.4. 代码分析 (227)15.13.5. 下载验证 (231)第1 章.初识STM32SAIU R20 1 6 第1页第1 章. 初识STM321.1. 课前预习在书上找到答案。
嵌入式系统(STM32微控制器)实训指导书意法半导体公司的STM32微控制器具有32位字长的CPU,使用精简指令系统(RISC)。
精简指令系统的指令字长固定,译码方便,相对于复杂指令系统(CISC),精简指令系统的处理效率更高。
具有32位字长CPU的STM32系列微控制器的处理能力远高于8位和16位单片机,同时集成了与32位CPU相适应的强大外设(如双通道ADC、多功能定时器、7通道DMA、SPI等),能够完成过去一般单片机所无法达到控制功能。
现在,已经形成了以8位单片机为主流的低端产品和以32位微控制器为主流的高端产品两大市场。
对于自动化领域的从业人员,了解32位微控制器的结构、特点,掌握其使用方法,是很有必要的。
一、关于学习方法此前,我们已经学习过《C语言程序设计》、《微机原理》、《单片机原理及应用》等相关课程。
这些课程的学习是系统的、完整的、全面的,是有老师讲授的。
这种学习方法,适合在学校学习一些重要的基础理论课程。
在工作中,我们常常会遇到新的东西,需要以已有的知识作为基础,去解决问题、完成任务。
这就需要不同于前述的另一种学习方法。
这种方法是建立在自学基础上的,以解决实际问题为目的,允许通过局部的、模仿性的手段,来实现既定目标。
这种方法在工程实践中的应用是非常普遍的。
“白猫黑猫,能抓住老鼠就是好猫”。
能解决问题的方法就是好方法。
本次实训采取的方法是:将参考资料发给同学,同学自学其中需要的部分。
在指导教师引导下,体验各个控制项目、理解各组成部分,再以原控制软件为基础进行修改和移植,获得要达到的控制效果。
在本次实训中,我们使用的微控制器型号为STM32F103RB。
STM32F103RB是STM32微控制器系列中的一种,内部具有128KB程序存储器、20KB随机读写存储器、1个16位高级定时器、3个16位通用定时器、2个SPI、2个I2C、3个USART、1个USB、1个CAN、2个ADC。
芯片为64引脚LQFP封装,有51个I/O引脚。
AN2586应用笔记STM32F10xxx硬件开发使用入门前言这份应用笔记是为系统设计者提供的,他们需要对开发板硬件实现的特性有个总体认识,如供电、时钟管理、复位控制、启动模式的设置和调试管理等。
该文档说明了STM32F10xxx系列的大容量和中容量产品使用方法,并描述了应用STM32F10xxx开发所需要的最小硬件资源。
详细的参考设计图也包含在这篇文档里,包括主要组件、接口、模式的说明。
译注:本译文的英文版下载地址为:/stonline/products/literature/an/13675.pdf目录STM32F10xxx硬件开发使用入门目录1供电 (3)1.1简介 (3)1.1.1独立A/D转换器供电以及参考电压 (3)1.1.2备用电池 (3)1.1.3电压调压器 (4)1.2供电方案 (4)1.3复位及电源管理 (4)1.3.1上电复位(POR)/掉电复位(PDR) (4)1.3.2可编程电压监测器(PVD) (5)1.3.3系统复位 (5)2时钟 (7)2.1HSE时钟 (8)2.1.1外部时钟源(HSE旁路) (8)2.1.2外部晶体 / 陶瓷谐振器(HSE晶体) (8)2.2LSE时钟 (8)2.2.1外部源(LSE 旁路) (8)2.2.2外部晶体 / 陶瓷谐振器(LSE晶体) (9)2.3时钟输出能力 (9)2.4时钟安全系统(CSS) (9)3启动配置 (10)3.1启动模式选择 (10)3.2启动引脚连接 (10)3.3内嵌自举模式 (10)4调试管理 (11)4.1简介 (11)4.2SWJ调试端口(SERIAL WIRE和JTAG) (11)4.3引脚分布和调试端口脚 (11)4.3.1SWJ调试端口引脚 (11)4.3.2灵活的SWJ-DP引脚分配 (11)4.3.3JTAG引脚的内部上拉和下拉电阻 (12)4.3.4与标准JTAG连接器相连的SWJ调试端口 (13)5建议 (14)5.1印制电路板 (14)5.2器件位置 (14)5.3接地和供电(V SS,V DD) (14)5.4去耦合 (14)5.5其它信号 (14)5.6未用到的I/O及其特性 (15)6参考设计 (16)6.1描述 (16)6.1.1时钟 (16)6.1.2复位 (16)6.1.3启动模式 (16)6.1.4SWJ接口 (16)6.1.5供电 (16)6.2参考器件 (17)1 供电1.1 简介该芯片要求2.0~3.6V的操作电压(V DD),并采用嵌入式的调压器提供内部1.8V的数字电源。
嵌入式技术与应用开发项目教程
嵌入式技术与应用开发项目教程是针对 STM32 系列芯片的嵌入
式系统开发教程。
该教程包括外设中断函数文件 stm32f10xit.c 和stm32f10xit.h,以及固件库配置文件 stm32f10xconf.h。
其中,
stm32f10xit.c 和 stm32f10xit.h 是用于编写中断服务函数的文件,用户可以按照自己的需求加入自己的中断程序代码。
stm32f10xconf.h 则是固件库配置文件,用于选择固件库所使用的外设。
该教程还介绍了如何使用 KeilVision4 构建基于 STM32 固件
库的工程模板,并介绍了如何新建工程、复制固件库文件、设置芯片型号等步骤。
最后,教程还提供了一些典型的嵌入式应用开发项目,供学习者参考。
对于嵌入式系统开发者,学习嵌入式技术与应用开发项目教程可以帮助他们更好地理解 STM32 系列的嵌入式系统开发,以及掌握中
断机制、固件库等核心概念,为嵌入式应用开发打下坚实的基础。