分析MSA测量系统的方法
- 格式:doc
- 大小:92.50 KB
- 文档页数:17
MSA测量系统分析流程及方法MSA(测量系统分析)是对测量系统稳定性、可靠性和能力的评估,用于确认测量结果的准确性和可靠性。
它可以用于评估任何测量系统,包括设备、仪器和应用程序。
以下是MSA的流程和方法:1.确定测量系统的目的和应用:在开始MSA之前,首先需要明确测量系统的目的和应用。
这将有助于确定需要分析的关键因素以及选择适当的方法。
2.选择测量系统分析方法:根据测量系统的类型和目的,选择适当的MSA方法。
常见的方法包括GR&R(重复性与再现性)分析、准确性、稳定性和线性度分析。
3.收集数据:使用标准样本或实际样本来收集测量数据。
应该保证数据具有代表性和充分,以便能够全面评估测量系统的性能。
4.重复性与再现性(GR&R)分析:这是评估测量仪器和操作员之间的可重复性和再现性的方法。
它通常包括重复性(同一操作员重复测量同一样本)和再现性(不同操作员在不同时间重复测量同一样本)的分析。
5.准确性分析:准确性是评估测量结果与真实值之间的偏差程度。
可以使用标准样本或比较方法(如正交试验)来评估准确性。
如果测量系统有偏差,可以进行校正,以提高测量的准确性。
6.稳定性分析:稳定性是指测量系统的输出是否随时间而变化。
稳定性分析可以通过收集数据的不同时间点来进行。
7.线性度分析:线性度是指测量系统对于不同输入值的响应是否是线性的。
线性度分析可以通过收集不同输入值对应的测量数据来进行。
8.分析结果和改进措施:对收集到的数据进行分析,并得出结论和建议。
如果测量系统的性能不符合要求,应制定相应的改进措施,例如修理、更换或校准测量设备,培训操作员,改进测量方法等。
9.持续监控和改进:MSA是一个持续改进的过程,应确保测量系统的性能得到持续监控和改进。
定期重复MSA分析,以确保测量系统的稳定性和准确性,及时发现和纠正潜在问题。
总结起来,MSA的流程包括确定目的和应用、选择方法、收集数据、进行分析,最后制定改进措施和持续监控。
MSA –测量系统分析引言MSA(测量系统分析)是一种用于评估和验证测量系统准确性和可靠性的方法。
在许多行业中,准确的测量数据对于产品质量和过程改进至关重要。
因此,对测量系统进行分析和评估是确保数据质量的关键步骤。
本文将介绍MSA的基本概念、主要组成部分和常见的分析方法,以及如何使用Markdown文本格式输出。
MSA的概述测量系统是指用于测量和收集数据的工具、设备和方法。
这些测量系统可以包括各种仪器、传感器、计量设备和人工操作。
MSA的目标是确定测量系统的偏差、重复性和稳定性,以评估测量过程的可靠性和准确性。
MSA的主要目标是确定测量系统的变异来源,并分析其对于测量结果的影响。
通过评估测量系统的可行性和稳定性,我们可以确定任何必需的改进和修正。
MSA的组成部分MSA包括以下三个主要组成部分:1.制程能力分析(PPK):通过对测量系统进行评估,确定其是否能够满足产品或过程的需求。
制程能力分析是一种量化的方法,用于确定测量系统能够产生多大程度的变异。
2.重复性与再现性分析:重复性是指在同一测量条件下进行多次测量时,测量结果之间的差异。
再现性是指在不同测量条件或不同测量者之间进行测量时,测量结果之间的差异。
通过对重复性和再现性进行分析,可以确定测量系统的一致性和可靠性。
3.精确度分析:精确度是指测量结果与真实值之间的接近程度。
通过与参考标准进行比较,我们可以评估测量系统的准确性和偏差。
常见的MSA分析方法以下是几种常见的MSA分析方法:1.方差分析(ANOVA):ANOVA是一种统计分析方法,用于分解测量变异的来源。
通过将测量结果进行分解,我们可以确定各个变异来源的贡献程度,并确定潜在的改进措施。
2.控制图:控制图是一种用于监控和分析过程变异的图表。
通过绘制测量结果的控制图,我们可以可视化测量系统的偏差和变异,并及时发现异常情况。
3.直方图:直方图是一种图表,用于显示测量结果的频率分布。
通过绘制测量结果的直方图,我们可以了解测量数据的分布情况,并判断测量系统的精确度和稳定性。
MSA(MeasurementSystemAnalysis)使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否合适,并确定测量系统误差的主要成分。
以事实和数据驱动管理,而数据是测量的结果,因此在开展统计分析时,要特别强调数据本省的质量和相应的测量系统分析。
测量:是指对具体事物赋予数值,以表示它们与特定特性之间的关系。
在这个过程中,由人员、仪器或量具、测量对象、操作方法和环境构成的整体就是测量系统。
所谓测量系统分析,是指运用统计学的方法对测量系统进行评估,在合适的特性位置测量正确的参数,了解影响测量结果的波动来源及分布,并确认测量系统是否符合工程需求。
任何实测数据的波动都可以看作过程的波动和测量系统的波动之和,即σ2总=σ2过程+σ2测量系统六个常见的测量系统评估项目稳定性、偏倚、线性、分辨率、重复性和再现性。
其中偏倚是测量系统准确度的度量。
01偏倚Bias测量观察平均值与该零部件采用精密仪器测量的标准平均值的差值02线性表征量具预期工作范围内偏倚值的差别03稳定性表征测量系统对于给定的零部件或标准件随时间变化系统偏倚中的总偏差量,与通常意义上的统计稳定性是有区别的04重复性指同一个评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测量值(数据)的偏差05再现性指由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的偏差通常,前三种指标用于评价测量系统的准确性,后两种指标用于评价测量系统的精确性。
测量系统的准确性可以通过对设备的校准等对测量系统进行维护、监控,也就是说,通过对测量系统的分辨率、偏倚、线性和稳定性进行分析后进行校准后可以解决其准确性问题。
工程上通常用测量系统的精确性也就是其重复性和再现性来研究其统计特性,就是通常所说的“GR&R研究”。
测量系统分析流程及方法测量系统分析是一项重要的系统工程。
MSA第三版测量系统分析1. 引言测量系统分析〔Measurement System Analysis, MSA〕是一种用于评估和改良测量系统〔包括设备、人员和过程〕准确性和可靠性的方法。
它是质量管理的重要组成局部,用于确保测量数据可信并符合质量要求。
本文将介绍MSA第三版的测量系统分析方法和工具,包括测量系统的评估、误差分析和改良措施等内容。
2. MSA第三版概述MSA第三版是根据实践和经验教训进行了更新和改良的最新版本。
它提供了一套全面的方法和工具,用于评估和改善测量系统的能力。
在MSA第三版中,测量系统被定义为一个用于测量、检查或观察的设备、软件、人员和过程的组合。
它涵盖了测量仪器的准确性、稳定性、线性性、重复性等方面。
第三版还引入了测量系统能力指数〔Measurement System Capability, MSC〕,用于评估测量系统是否满足质量控制要求。
3. MSA第三版的主要内容3.1 测量系统评估测量系统评估是MSA的第一步,它用于确定测量系统的准确性和可靠性。
在评估过程中,可以使用不同的工具和方法,例如测量重复性与再现性分析、测量偏差分析和测量不确定度评估等。
3.2 测量误差分析测量误差分析是MSA的核心内容,通过分析测量系统的误差来源,可以确定造成测量偏差的主要原因。
常用的方法包括误差树分析、回归分析和变异分析等。
3.3 测量系统改良测量系统改良是MSA的最后一步,目的是减少测量误差并提高测量系统的准确性和稳定性。
改良方法可以包括校准和维护测量设备、培训和指导测量人员以及优化测量过程等。
3.4 测量系统能力评估测量系统能力评估是MSA第三版引入的重要概念。
它用于评估测量系统是否能够满足质量控制要求。
常用的指标包括测量系统的制程能力指数〔Process Capability Index, Cp〕和制程能力指数偏差〔Process Capability Index Deviation, Cpk〕等。
超详细MSA测量系统分析讲解MSA(Measurement System Analysis)是一种用于评估测量系统准确性和可重复性的方法。
它被广泛应用于各种工业领域,特别是质量管理和过程改进领域。
下面将详细介绍MSA的一些关键概念和测量过程。
首先,MSA的主要目标是确保测量系统能够准确地衡量一个过程或产品的特性。
测量系统可以是任何用于测量的工具、设备或方法,如卡尺、天平、人工测量等。
为了评估测量系统的准确性和可重复性,主要使用以下几个指标:1. 精确度(Accuracy): 指测量结果与真实值之间的接近程度。
通常通过与已知的标准进行比较来评估。
2. 可重复性(Repeatability): 指在重复测量同一样本时,测量系统的结果之间的一致性。
这可通过多次测量同一样本并比较结果来评估。
3. 重现性(Reproducibility): 指在不同的条件下,不同操作员使用相同的测量系统测量同一样本时,测量结果之间的一致性。
现在,我们将介绍MSA的几个主要步骤:1.选择适当的测量系统:首先需要确定要使用的测量系统,这取决于所需测量的特性以及资源和时间的限制。
为了选择合适的测量系统,需要考虑其测量范围、精度和可靠性等因素。
2.收集数据:在进行MSA时,需要收集足够的数据量以便对测量系统进行分析。
数据收集可以通过抽样、重复测量或使用模拟数据等方式进行。
3.分析数据:收集到数据后,需要对其进行统计分析。
常用的分析方法包括直方图、均值-方差图和相关性分析等。
通过这些分析,可以计算出测量系统的准确性和可重复性指标。
5.评估测量系统:通过上述步骤,可以评估测量系统的准确性和可重复性,并确定它是否符合要求。
如果发现测量系统存在问题,可以采取改进措施,如校准、调整或更换测量设备等。
需要注意的是,MSA不仅适用于新的测量系统,也适用于已经在使用的测量系统。
对于已经在使用的测量系统,MSA可以帮助识别潜在的问题并提出相应的改进建议。
MSA测量系统分析2引言测量系统分析(Measurement System Analysis,MSA)是用于评估和改进测量系统准确性和可靠性的一种方法。
在前一篇文章中,我们介绍了MSA的基本概念和一些常用的工具和技术。
在本文中,我们将继续探讨MSA方法的更多细节和实际应用。
数据收集在进行MSA之前,首先需要收集一组测量数据。
这些数据应该包括一系列实际测量结果,以及相应的参考值(如果可用)。
要确保准确性和可靠性,建议重复测量每个样本多次,并记录每次测量的结果。
MSA评估指标完成数据收集后,可以使用以下指标评估测量系统的准确性和可靠性:1. 重复性重复性是指在相同条件下,同一测量员对相同样本进行重复测量,所得结果的一致性。
可使用以下指标评估重复性:•极差(Range)•方差分析(ANOVA)•重复性与误差分解图2. 回归与线性度回归与线性度评估测量系统对于不同测量范围内的样本是否呈现线性关系。
可使用以下指标评估回归与线性度:•线性回归分析•相关系数(Correlation Coefficient)3. 值域值域评估测量系统对于整个测量范围内的样本是否具有准确测量的能力。
可使用以下指标评估值域:•极差(Range)•标准偏差(Standard Deviation)4. 稳定性稳定性评估测量系统在不同时间和环境条件下的一致性。
可使用以下指标评估稳定性:•控制图(Control Chart)•标准偏差(Standard Deviation)5. 偏倚偏倚评估测量系统是否存在系统性误差。
可使用以下指标评估偏倚:•均值•盒形图(Box Plot)MSA的改进方法通过评估测量系统的准确性和可靠性,我们可以确定是否需要改进该系统。
以下是一些常用的MSA改进方法:1. 校准设备如果发现测量系统存在准确性问题,可以考虑校准设备。
校准设备可以帮助消除系统中的误差和偏倚,并提高测量系统的准确性。
2. 优化测量方法优化测量方法可以提高测量的准确性和可靠性。
msa测量系统分析2篇第一篇:msa测量系统分析一、Msa测量系统分析概述Msa(Measurement System Analysis)是指用于分析和评估测量系统精度和可重复性的方法和工具。
测量系统是生产、质量管理、实验室和其他相关领域中重要的组成部分,对产品质量和生产效率起着关键作用。
Msa对测量系统进行评估,着重于评估测量系统的稳定性、重复性、线性度、准确性等方面,并提供改进建议,以确保测量数据的可靠性和一致性。
二、Msa测量系统分析的步骤1. 确定测量系统评估的目的和范围首先需要确定所要评估的测量系统的目的和使用范围。
例如,在制造过程中,可能需要测量零件尺寸以检查零件是否符合规格,此时需要评估测量系统的准确性和可靠性,以确定是否对生产过程有影响。
同时需要确定所需的测量器具和测量方法。
2. 确定样本量和分布根据测量系统的使用情况和评估目标,确定评估所需的样本量和分布。
样本的数量和分布应足以反映实际使用情况,并保持统计显著性。
3. 实施试验根据已确定的样本量和分布,收集数据并进行试验。
试验应该采用充分的随机化和重复性,以确保实验的可重复性和一致性。
4. 分析结果根据收集的数据进行分析,包括评估测量系统的稳定性、线性度、重复性和准确度等方面。
同时进行误差分析,并确定是否存在系统误差或随机误差。
5. 结论和改进建议根据分析结果形成结论和改进建议。
如果发现测量系统存在问题或不稳定,需要采取相应的改进措施,例如修理或更换测量器具,改变测量方法等。
改进措施应该根据实际情况制定,并进行风险评估。
三、Msa测量系统分析中的参数1. 稳定性测量系统的稳定性是指在测量条件没有变化的情况下,测量结果是否能够保持一致。
稳定性可以通过时间序列图、控制图等工具进行评估。
2. 重复性重复性是指多次对同一对象进行测量,结果是否相同。
重复性可以通过方差分析等工具进行评估。
3. 线性度线性度是指测量系统输出值与输入值之间是否存在线性关系。
MSA测试系统分析概述MSA(Measurement System Analysis)是指测量系统分析,是用来评估和确认测量系统的可靠性和准确性的一种方法。
在各行各业的生产和质量控制过程中,测量系统都扮演着十分重要的角色,因此,对测量系统进行分析和评估是非常必要的。
本文将介绍MSA测试系统分析的背景、涉及的主要步骤和相关的统计方法。
背景在生产过程中,对产品的测量和检验是十分重要的环节。
通过测量,可以评估产品特性是否符合要求,从而提高生产过程的控制和产品质量。
然而,测量结果的准确性和可靠性受到许多因素的影响,包括测量设备、操作人员和环境等。
为此,需要对测量系统进行分析和评估,以确保测量结果的准确性和可靠性。
MSA测试系统分析通常包括以下几个主要步骤:确定测量系统的目的首先,需要明确测量系统的目的和应用情境。
例如,是用于产品的检验还是生产过程的控制,或者是用于供应商评估等。
不同的目的和应用情境可能需要使用不同的测量方法和统计方法。
选择适当的指标选择适当的指标是进行MSA测试系统分析的关键步骤。
常见的指标包括测量误差、重复性、稳定性等。
根据不同的情况,选择合适的指标进行分析。
收集数据是进行MSA测试系统分析的必要步骤。
根据所选择的指标,使用适当的方法进行数据的采集和记录。
通常可以使用测量仪器来收集数据,并记录在数据表中。
分析数据在收集到足够的数据后,可以对数据进行分析。
常用的统计方法包括统计描述、方差分析、回归分析等。
通过这些统计方法,可以评估测量系统的准确性、稳定性和重复性等指标。
结果解释和改进措施根据数据分析的结果,可以对测量系统进行评估和解释。
如果测量系统存在问题,可以采取相应的改进措施,如调整测量设备、培训操作人员或改善环境等。
通过对测量系统进行分析和评估,可以得出结论和建议。
根据分析结果,可以评估测量系统的可靠性和准确性,并提出改进建议,以提高测量系统的性能和效果。
结论MSA测试系统分析是一种重要的方法,用于评估和确认测量系统的可靠性和准确性。
msa测量分析的方法MSA(多尺度分析)是一种测量分析方法,可以用来解决科学和工程中复杂的问题。
它是一种以实验和分析为基础,为了获得有效信息而开展的系统性工作。
在航空航天领域,MSA方法可用于优化飞行器的性能,以满足操作要求。
它可以用于多种应用,如飞行载荷的测量、飞行参数的分析、飞行控制系统的测试、机动特性的优化等。
MSA技术主要包括三个步骤:确定测量特征;选择恰当的测量仪器和传感器;建立可信赖的试验测量计划和数据处理等。
其预备工作还包括完整的设计评估以及相关实验、测量和分析工作,以确定测量需求和特征。
确定测量特征是MSA方法的第一步,应充分评估有关系统的性能要求。
首先,应明确检测物体的应用环境,如空气压、温度、海拔等,以确定检测装备的可能受到的影响及其对物体的影响。
其次,应评估测量所需的精度,并与现有的技术水平进行比较。
最后,应确定可接受的测量偏差范围。
选择恰当的测量仪器和传感器是MSA方法的第二步,应选择合适的测量仪器和传感器,使测量计划与系统要求相一致。
确定测量仪器和传感器时,应认真研究其有效范围、分辨率、精度、温度特性、数据存储形式等,以确保测量结果准确可靠。
建立可信赖的试验测量计划和数据处理是MSA方法的最后一步。
确定试验方案应考虑测量的精度要求、系统的可靠性级别以及检测的重复性质等。
此外,需要在实验试验中考虑控制变量以及其他条件,以尽可能地保证测量结果的准确性。
另外,在建立数据处理程序时,应考虑到测量数据的准确性和可靠性,以及测量实验的条件和步骤。
MSA方法对科学研究和工程应用具有重要意义。
它可以提供准确可靠的测量结果,为飞行器的性能优化提供可靠的信息,同时也可以很好地处理复杂的科学和工程问题。
在开展设计评估与实验测试研究的同时,应首先考虑MSA方法,以确保获得最优的结果。
分析/评定测量系统的方法测量系统变差的类型:●偏倚●重复性●再现性●稳定性●线性偏倚:●定义:值。
又称为“准确度”。
注:基准值可通过更高级别的测量设备进行多次测量取平均值。
●确定方法:1)在工具室或全尺寸检验设备上对一个基准件进行精密测量;2)让一位评价人用正被评价的量具测量同一零件至少10次;3)计算读数的平均值。
●偏倚原因:1)基准的误差;2)磨损的零件;3)制造的仪器尺寸不对;4)仪器测量非代表性的特性;5)仪器没有正确校准;6)评价人员使用仪器不正确。
●定义:次测量同一零件的同一特性时获得的测量值变差。
测量过程的重复性意味着测量系统自身的变异是一致的。
●确定方法:1)采用极差图;2)如果极差图受控,则仪器变差及测量过程在研究期间是一致的;3)重复性标准偏差或仪器变差距(σe)的估计为R/d2*;4)仪器变差或重复性将为5.15R/d2*或4.65 R;注(假定为两次重复测量,评价人数乘以零件数量大于15)5)此时代表正态分布测量结果的99%。
●极差图失控:1)调查识别为失控不一致性原因加以纠正;2)例外:当测量系统分辨率不足时。
●定义:测量同一零件的同一特性时测量平均值的变差。
●确定方法:1)确定每一评价人所有平均值;2)从评价人最大平均值减去最小的得到极差(R0)来估计;3)再现性的标准偏差(σ0)估计为R0/d2*;4)再现性为5.15R0/d2*或3.65 R0;5)代表正态分布测量结果的99%。
定义:Array是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
零件间变差:●定义:――零件间固有的差异;――不包含测量的变差。
●确定方法:使用均值控制图:1)子组平均值反映出零件间的差异;2)零件平均值的控制限值以重复性误差为基础,而不是零件间的变差;3)没有一个子组平均值在这些限值之外,则零件间变差隐蔽在重复性中,测量变差支配着过程变差,如果这些零件用来代表过程变差,则此测量系统用于分析过程是不可接受的;4)如果越多的平均值落在限值之外,该测量越有用。
测量系统分析(MSA)基础知识及操作指导在进行MSA之前,需要明确测量系统的目标,例如测量系统是否要用
于决策、控制过程或产品规范。
这将决定需要评估哪些方面的测量系统性能。
主要的MSA指标包括可重复性、再现性和准确性。
可重复性是指在相
同条件下,同一测量人重复测量同一件物品时,测量结果的一致性。
再现
性是指在相同条件下,不同测量人重复测量同一件物品时,测量结果的一
致性。
准确性是指测量结果与真实值之间的偏差,通常通过与已知参考值
进行比较来评估。
进行MSA的一种常用方法是通过使用方差分析(ANOVA)来评估测量
系统的偏差和变异。
这涉及到对多个测量人、多个测量仪器和多个样本进
行测量,并使用统计工具来分析数据。
ANOVA可以帮助确定是否存在系统
误差、测量人和仪器之间的差异以及这些差异对测量结果的影响。
进行MSA时,还需要确保测量系统的稳定性。
这意味着测量仪器应该
经过校准和维护,以确保其在测量过程中的稳定性和精确性。
此外,测量
人员也需要受过培训和了解测量程序,以减少人为误差。
基于MSA的结果,可以采取相应措施来改善测量系统的性能。
例如,
如果发现测量仪器存在较大的偏差,则可能需要调整或更换仪器。
如果发
现测量人员之间存在较大的差异,则可能需要对其进行培训或重新分配任务。
总之,测量系统分析(MSA)是一个评估测量系统性能的重要工具,
可用于确保测量结果的准确性和可靠性。
通过对测量系统进行分析和改进,可以提高质量控制和过程改进的效果,进而提高产品或服务的质量。
测量系统分析(MSA)方法测量系统分析(MSA)方法**** 1.目的对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。
2.范围适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。
3.职责3.1质管部负责测量系统分析的归口管理;3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析;3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。
4.术语解释4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。
4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。
4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。
4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。
4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。
4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。
4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。
4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。
用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。
关于有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。
4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。
4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。
冠卓咨询-测量系统分析(MSA)实施方式简述1.测量数据的类型在咱们实施六西格玛改善项目中,会用到各类测量数据。
从统计学的角度来讲,这些数据按测量方式分为持续型数据和非持续型数据(也叫离散型数据、计数数据)。
用持续坐标进行测量并得出的数据是持续型数据也称计量值数据。
如物体长度、重量、直径等。
非持续型数据对反映进程转变不如持续型数据灵敏。
比如合格/不合格、好/中/差、男/女、1~3个字符错误/4~10个字符错误/大于10个字符错误等。
【冠卓咨询专家团队为您分享】2.持续型数据测量系统分析实施方式那个地址要紧讲系统的重复性与再现性。
第一,安排测量系统分析实验。
选定测量对象、测量人员、测量样品等。
一样选择20件以上待测量样品并编号,但测量进程中编号不能让测量人员明白。
选择2名以上操作熟练的测量人员。
然后让所有测量人员对所有样品随机的测量一遍,改变随机顺序,所有测量人员对所有样品再测量一遍以上。
Minitab软件能够帮忙咱们生成实验安排。
设计好实验安排后严格依如实验顺序进行实验并记录数据。
将整理好的测量结果复制到Minitab软件中自动计算结果。
判定测量系统是不是合格的标准是:合计量具R&R二者都小于30%且可区分的类别数大于等于5。
3.离散型数据测量系统分析实施方式离散型数据测量系统分析步骤与持续型数据测量系统分析类似。
选择20件以上待测量样品并编号,选择2名以上操作熟练的测量人员对每件样品重复测量2次以上,所有测量顺序都是随机化且测量人员不明白样品编号。
记录实验数据如下:将数据整理后输入到Minitab软件中,查看计算结果如下:一样要求所有查验员与标准整体一致性比率在85%以上。
不然,需对测量系统进行改良。
除上述方式之外,还有一种通用方式一样适用于离散型数据测量系统分析。
(1)计算有效性:测量结果与标准一致的比率(分测量者和系统的有效性)。
如上数据中,1号零件所有测量结果与标准一致,为1条有效,10号零件有测量结果与标准不一致,为1条无效。
第一章通用测量系统指南MSA目的:。
选择各种方法来评定测量系统的质量.........受控:量具、仪器、检测人员、程序、软件活动:测量、分析、校正适用范围:用于对每一零件能重复读数的测量系统。
测量和测量过程:1)赋值给具体事物以表示它们之间关于特殊特性的关系;2)赋值过程定义为测量过程;3)赋予的值定义为测量值;4)测量过程看成一个制造过程,它产生数字(数据)作为输出。
量具:任何用来获得测量结果的装置;经常用来特指在车间的装置;包括用来测量合格/不合格的装置。
测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件、以及操作人员的集合;用来获得测量结果的整个过程。
测量变差:●多次测量结果变异程度;●常用σm表示;●也可用测量过程过程变差R&R表示。
注:a.测量过程(数据)服从正态分布;b.R&R=5.15σm测量系统质量特性:●测量成本;●测量的容易程度;●最重要的是测量系统的统计特性。
常用统计特性:●重复性(针对同一人,反映量具本身情况)●再现性(针对不同人,反映测量方法情况)●稳定性●线性(针对不同尺寸的研究)注:对不同的测量系统可能需要有不同的统计特性(相对于顾客的要求)。
测量系统对其统计特性的基本要求:●测量系统必须处于统计控制中;●测量系统的变异必须比制造过程的变异小;●变异应小于公差带;●测量精度应高于过程变异和公差带两者中精度较高者(十分之一);●测量系统统计特性随被测项目的改变而变化时,其最大的变差应小于过程变差和公差带中的较小者。
评价测量系统的三个问题:●有足够的分辨力;(根据产品特性的需要)●一定时间内统计上保持一致(稳定性);●在预期范围(被测项目)内一致可用于过程分析或过程控制。
(线性)评价测量系统的试验:●确定该测量系统是否具有满足要求的统计特性;●发现哪种环境因素对测量系统有显著的影响;●验证统计特性持续满足要求(R&R)。
程序文件要求:●示例;●选择待测项目和环境规范;●规定收集、记录、分析数据的详细说明;●关键术语和概念可操作的定义、相关标准说明、明确授权。
包括:a. 评定,b. 评定机构的职责,c. 对评定结果的处理方式及责任第二章分析/评定测量系统的方法测量系统变差的类型:●偏倚●重复性●再现性●稳定性●线性偏倚:●定义:值。
又称为“准确度”。
注:基准值可通过更高级别的测量设备进行多次测量取平均值。
●确定方法:1)在工具室或全尺寸检验设备上对一个基准件进行精密测量;2)让一位评价人用正被评价的量具测量同一零件至少10次;3)计算读数的平均值。
●偏倚原因:1)基准的误差;2)磨损的零件;3)制造的仪器尺寸不对;4)仪器测量非代表性的特性;5)仪器没有正确校准;6)评价人员使用仪器不正确。
●定义:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。
测量过程的重复性意味着测量系统自身的变异是一致的。
●确定方法:1)采用极差图;2)如果极差图受控,则仪器变差及测量过程在研究期间是一致的;3)重复性标准偏差或仪器变差距(σe)的估计为R/d2*;4)仪器变差或重复性将为5.15R/d2*或4.65 R;注(假定为两次重复测量,评价人数乘以零件数量大于15)5)此时代表正态分布测量结果的99%。
●极差图失控:1)调查识别为失控不一致性原因加以纠正;2)例外:当测量系统分辨率不足时。
●定义:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。
●确定方法:1)确定每一评价人所有平均值;2)从评价人最大平均值减去最小的得到极差(R0)来估计;3)再现性的标准偏差(σ0)估计为R0/d2*;4)再现性为5.15R0/d2*或3.65 R0;5)代表正态分布测量结果的99%。
是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
零件间变差:●定义:――零件间固有的差异;――不包含测量的变差。
●确定方法:使用均值控制图:1)子组平均值反映出零件间的差异;2)零件平均值的控制限值以重复性误差为基础,而不是零件间的变差;3)没有一个子组平均值在这些限值之外,则零件间变差隐蔽在重复性中,测量变差支配着过程变差,如果这些零件用来代表过程变差,则此测量系统用于分析过程是不可接受的;4)如果越多的平均值落在限值之外,该测量越有用。
(注:非受控,50%以上为好;即:R图受控,X图大部分点在界外)●测量系统标准差:σm= (σe2+σ02)●零件之间标准偏差的确定:――可由测量系统研究的数据或由独立的过程能力研究决定。
1)确定每一零件平均值;2)找出样品平均值极差(R P);3)零件间标准偏差(σP)估计为R P/d2*;4)零件间变差PV为5.15R P/d2*或3.65 R P;代表正态分布的99%测量结果。
5)总过程变差标准偏差:σt= (σp2+σm2) ;则 零件间标准偏差:σP = (σt 2-σm 2) ;6) 与测量系统重复性及再现性相关的容差的百分比R&R 为5.15*[σm /容差] 100;产品尺寸的数:[σp /σm ]*1.41或1.41(PV/R&R)确定。
PV=5.15σp TV=5.15σT线 性:● 定义:是在量具预期的工作范围内,偏倚值的差值。
注:● 在量程范围内,偏倚不是基准值的线性函数。
● 不具备线性的测量系统不是合格的,需要校正。
● 确定方法:1) 在测量仪器的工作范围内选择一些零件;2)被选零件的偏倚由基准值与测量观察平均值之间的差值确定;3)最佳拟合偏倚平均值与基准值的直线的斜率乘以零件的过程变差是代表量具线性的指数;4)将线性乘以100然后除以过程变差得到“%线性”。
非线性原因:1)在工作范围上限和下限内仪器没有正确校准;2)最小或最大值校准量具的误差;3)磨损的仪器;4)仪器固有的设计特性。
第三章测量系统研究程序1.准备工作:1)先计划将要使用的方法;2)确定评价人的数量、样品数量及重复读数:●关键尺寸需要更多的零件和/或试验;●大或重的零件可规定较少样品和较多试验;3)从日常操作该仪器的人中挑选评价人;4)样品必须从过程中选取并代表其整个工作范围;5)仪器的分辨力应允许至少直接读取特性的预期过程变差的十分之一;6)确保测量方法(即评价人和仪器)在按照规定的测量步骤测量特征尺寸。
2.测量顺序:1)测量应按照随机顺序;2)评价人不应知道正在检查零件的编号;3)研究人应知道正在检查零件的编号,并相应记下数据;即:评价人A,零件1,第一次试验;评价人B,零件2,第二次试验等;4)读数就取至最小刻度的一半;5)研究工作应由知其重要性且仔细认真的人员进行;6)每一位评价人应采用相同的方法(包括所有步骤)来获得读数。
3. 计量型测量系统研究指南: A. 确定稳定性用指南:1) 获得一样本并确定其相对于可追溯标准的基准值; 2) 定期(天、周)测量基准样品3~5次; 3) 或 控制图中标绘数据;4) 确定每个曲线的控制限并按标准曲线图判断失控或不稳定状态; 5) 计算测量结果的标准偏差并与测量过程偏差相比较,确定测量系统稳定性是否适于应用。
B. 确定偏倚用指南: 独立样本法:1) 获取一样本并确定其相对可追溯标准的基准值; 2) 让一位评价人以通常的方法测量该零件10次; 3) 计算这10次读数的平均值;4) 通过该平均值减去基准值来计算偏倚:偏 倚 = 观测平均值-基准值 过程变差= 6δ极差 偏 倚%=偏 倚 过程变差C. 确定重复性和再现性用指南:常用方法:极差法、均值和极差法.方差分析法等。
极差法:极差法是一种改进的计量型量具研究方法,可迅速提供一个测量变异的近似值。
使用两名评价人和五个零件进行分析:例:零件评价人A 评价人B 极差(A-B)1 0.85 0.80 0.052 0.75 0.70 0.053 1.00 0.95 0.054 0.45 0.55 0.105 0.50 0.60 0.10平均极差(R)=∑Ri/5=0.35/5=0.07GR&R=5.15( R)/d2*=5.15(0.07)/1.19=0.303过程变差=0.40%GR&G=100[GR&G/过程变差]=100[0.303/0.40]=75.5%均值和极差法:均值和极差法是一种提供测量系统重复性和再现性估计的数学方法。
重复性比再现性大的原因:➢仪器需要维护;➢量具应重新设计来提高刚度;➢夹紧和检验点需要改进;➢存在过大的零件变差。
再现性比重复性大的原因:➢评价人需要更好的培训如何使用量具仪器和读数;➢量具刻度盘上的刻度不清楚;➢需要某种夹具帮助评价人提高使用量具的一致性。
研究程序:I.取等得包含10个零件的一个样本,代表过程变差的实际或预期范围;II.指定评价人A、B和C,并按1至10给零件编号(评价人不能看到数字);III.如果校准是正常程序中的一部分,则对量具进行校准;IV.让评价人A随机测量10个零件,由观测人记录结果填入第1行,让评价人B和C随机测量这10个零件,由观测人记录结果填入第6、11行,三人测量时应互相不看对方的数据;V.使用不同的随机顺序重复上述操作过程;VI.数值计算:VII.从第1、2、3行的最大值减去它们中的最小值;把结果记入第5行。
在第6、7和8行,11、12和13行重复这一步骤,并将结果记录在第10和15行;VIII.把填入第5、10和15行的数据变为正数;IX.将第5行的数据相加并除以零件数量,得到第一个评价人的测量平均极差Ra。
同样对第10和15行的数据进行处理得到Rb和Rc;X.将第5、10和15行的数据(Ra、Rb、Rc)转记到第17行,将它们相加并除以评价人数,将结果记为R(所有极差的平均值);XI.将R(平均值)记入第19和20行并与D3和D4相乘得到控制下限和上限。
注意:如果进行2次试验则,D3为零,D4为3.27。
单个极差的上限值(UCL R)填入第19行。
小于7次测量的控制下限极差值(LCL R)等于0;XII.使用原来的评价人和零件重复读取任何极差大于计算的UCL R的读数,或剔除那些值并重新计算平均值;XIII.将行(第1、2、3、6、7、8、11、12和13行)中的值相加。
把每行的和除以零件数并将结果填入表中最右边标有“平均值“的列内;XIV.将第1、2第3行的平均值相加除以试验次数。
结果填入第4行的Xa 格内。
对第6,7和8;第11,12和13行重复这个过程,将结果分别填入第9和14行的Xb,Xc格内;XV.将第4、9和14行的平均值中最大和最小值填入第18行中适当的空格处,确定它们的差值,填入第18行X Diff处的空格内;XVI.将每个零件每次测量值相加并除以总的测量次数,填入第16行零件平均值的栏中;XVII.从最大的零件平均值减去最小的零件平均值,将结果填入第16行标有Rp的空格内;XVIII.将R,Xdiff 和Rp的计算值转填入报告表格的栏中;XIX.在表格左边标有“测量系统分析”的栏下进行计算;XX.在表格右边标有“总变差%”的栏下进行计算;XXI.检查结果确认没有产生错误。