版第二讲分治策略不可更改
- 格式:ppt
- 大小:5.04 MB
- 文档页数:18
分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。
解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。
例如,对于排序问题,可将一个大的数组分成两个较小的子数组。
2. 求解(Conquer):递归地求解这些子问题。
如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。
对于小到只有一个元素的子数组,它本身就是有序的。
3. 合并(Combine):将各个子问题的解合并为原问题的解。
在排序中,将两个已排序的子数组合并成一个大的有序数组。
题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。
例如在归并排序中,不断将数组对半分,子数组的长度不断减小。
2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。
以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。
3. 子问题与原问题形式相同:方便递归求解。
如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。
题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。
例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。
题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。
例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。
2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。
例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。
如何应用分治算法求解问题分治算法,英文名为Divide and Conquer Algorithm,是一种高效的算法设计策略,在计算机科学中有着广泛的应用。
该算法将一个大问题分解成多个小问题,各自独立地解决,再将结果合并起来得到最终结果。
在本文中,我们将阐述如何应用分治算法求解问题,并通过几个实例来具体说明该算法的应用。
一、分治算法的原理分治算法的核心思想是将一个大问题分解成若干个小问题来解决,然后将这些小问题的解组合起来生成大问题的解。
其具体步骤如下:1. 分解:将原问题划分成若干个规模较小的子问题。
2. 解决:递归地解决每个子问题。
如果子问题足够小,则直接求解。
3. 合并:将所有子问题的解合并成原问题的解。
分治算法的主要优点在于它可以有效地缩小问题规模,从而缩短整个算法的执行时间。
另外,该算法天然适用于并行计算,因为每个子问题都是独立求解的。
二、分治算法的应用分治算法在各种领域都有广泛应用,包括数学、自然科学、计算机科学等。
以计算机科学领域为例,分治算法常常用于解决以下类型的问题:1. 排序问题2. 查找问题3. 字符串匹配问题4. 最大子序列和问题5. 矩阵乘法问题6. 图形问题下面我们将一一讲解这些问题的分治算法实现。
1. 排序问题排序问题是在一组数据中将其按指定规律进行排列的问题。
在计算机科学中,排序算法是十分重要的一类算法。
其中,分治算法由于其高效性和可并行性被广泛应用。
常用的分治排序算法包括归并排序和快速排序。
归并排序的基本思想是将待排序元素以中心点为界分成两个序列,对每个序列进行排序,然后将两个序列合并成一个有序序列;而快速排序则利用了分割的思想,通过每次选取一个元素作为“轴点”,将数组分成小于轴点和大于轴点的两部分,对这两部分分别进行快速排序。
2. 查找问题查找问题是在一组数据中寻找某个元素的问题。
分治算法在查找问题中的应用主要体现在二分查找中。
在二分查找中,我们首先将已排序的数组分成两半,在其中一半中查找目标值。
第1章概论1.数据、数据元素、数据结构、数据类型的含义分别是什么?数据:对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并由计算机程序处理的符号的总称。
数据元素:数据的基本单位,在计算机程序中通常作为一个整体考虑。
数据结构:数据元素之间的关系+运算,是以数据为成员的结构,是带结构的数据元素的集合,数据元素之间存在着一种或多种特定的关系。
数据类型:数据类型是用来区分不同的数据;由于数据在存储时所需要的容量各不相同,不同的数据就必须要分配不同大小的内存空间来存储,所有就要将数据划分成不同的数据类型。
数据类型包含取值范围和基本运算等概念。
2.什么是数据的逻辑结构?什么是数据的物理结构?数据的逻辑结构与物理结构的区别和联系是什么?逻辑结构:数据的逻辑结构定义了数据结构中数据元素之间的相互逻辑关系。
数据的逻辑结构包含下面两个方面的信息:①数据元素的信息;②各数据元素之间的关系。
物理结构:也叫储存结构,是指逻辑结构的存储表示,即数据的逻辑结构在计算机存储空间中的存放形式,包括结点的数据和结点间关系的存储表示。
数据的逻辑结构和存储结构是密不可分的,一个操作算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采与的存储结构。
采用不同的存储结构,其数据处理的效率是不同的。
因此,在进行数据处理时,针对不同问题,选择合理的逻辑结构和存储结构非常重要。
3.数据结构的主要操作包括哪些?对于各种数据结构而言,他们在基本操作上是相似的,最常用的操作有:●创建:建立一个数据结构;●清除:清除一个数据结构;●插入:在数据结构中增加新的结点;●删除:把指定的结点从数据结构中删除;●访问:对数据结构中的结点进行访问;●更新:改变指定结点的值或改变指定的某些结点之间的关系;●查找:在数据结构中查找满足一定条件的结点;●排序:对数据结构中各个结点按指定数据项的值,以升序或降序重新排列。
4.什么是抽象数据类型?如何定义抽象数据类型?抽象数据类型(Abstract Data Type 简称ADT)是指一个数学模型以及定义在此数学模型上的一组操作。
分治算法主方法分治算法是一种算法设计策略,将问题分解成若干个规模较小且结构相似的子问题,然后递归地解决这些子问题,最后将子问题的解合并起来得到原问题的解。
分治算法主方法是指应用分治策略解决问题的通用模板,下面将详细介绍分治算法主方法的原理和应用。
一、原理分治算法主方法包含三个步骤:分解、解决和合并。
1. 分解:将原问题分解成若干个规模较小且结构相似的子问题。
分解的策略可以根据具体问题的特点来确定,通常是将原问题划分成两个或多个规模相等或相近的子问题。
2. 解决:递归地解决子问题。
当子问题的规模足够小时,可以直接求解。
否则,继续将子问题分解成更小的子问题,直到可以直接求解为止。
3. 合并:将子问题的解合并成原问题的解。
子问题的解可以通过递归得到,合并的操作可以根据具体问题的要求进行,通常是将子问题的解组合起来得到原问题的解。
二、应用分治算法主方法可以应用于解决各种问题,下面列举几个常见的应用场景。
1. 排序问题:如归并排序、快速排序等。
这些排序算法通过将待排序序列分解成若干个规模较小的子序列,然后递归地排序这些子序列,并将排好序的子序列合并起来得到最终的有序序列。
2. 查找问题:如二分查找。
二分查找通过将待查找的有序序列分解成两个规模相等的子序列,然后递归地在其中一个子序列中查找目标元素。
如果找到了目标元素,则返回其索引;如果未找到,则继续在另一个子序列中查找。
3. 求解最大子数组问题:给定一个整数数组,求其连续子数组中和最大的值。
最大子数组问题可以通过分治算法主方法求解。
将原数组分解成两个规模相等的子数组,分别求解左子数组和右子数组的最大子数组和,然后将其合并起来得到原数组的最大子数组和。
4. 求解最近对问题:给定平面上的n个点,求其中距离最近的两个点。
最近对问题可以通过分治算法主方法求解。
将平面上的点按照横坐标进行排序,然后将点集分解成两个规模相等的子集,分别求解左子集和右子集的最近对,然后将其合并起来得到原点集的最近对。
一、实验背景分治策略是一种常用的算法设计思想,它将一个复杂的问题分解成若干个相互独立、规模较小的子问题,分别解决这些子问题,再将子问题的解合并,从而得到原问题的解。
本实验旨在通过具体案例,深入理解分治策略的基本思想,掌握其应用方法,并分析其实际效果。
二、实验目的1. 理解分治策略的基本思想;2. 掌握分治策略的应用方法;3. 分析分治策略在解决实际问题中的效果;4. 提高算法设计与分析能力。
三、实验内容1. 分治策略案例分析实验中,我们选择了以下案例进行分析:(1)归并排序归并排序是一种典型的分治策略应用。
它将待排序的序列分为两半,分别对这两半进行归并排序,然后将两个有序序列合并为一个有序序列。
(2)二分查找二分查找也是一种分治策略应用。
它将待查找的序列分为两半,根据查找目标值与中间值的大小关系,确定目标值所在的一半,然后在该半序列中继续查找。
2. 分治策略实现(1)归并排序实现```cvoid mergeSort(int arr[], int left, int right) {if (left < right) {int mid = (left + right) / 2;mergeSort(arr, left, mid);mergeSort(arr, mid + 1, right);merge(arr, left, mid, right);}}void merge(int arr[], int left, int mid, int right) { int n1 = mid - left + 1;int n2 = right - mid;int L[n1], R[n2];for (int i = 0; i < n1; i++)L[i] = arr[left + i];for (int j = 0; j < n2; j++)R[j] = arr[mid + 1 + j];int i = 0, j = 0, k = left;while (i < n1 && j < n2) {if (L[i] <= R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++;}k++;}while (i < n1) {arr[k] = L[i];i++;k++;}while (j < n2) {arr[k] = R[j];j++;k++;}}```(2)二分查找实现```cint binarySearch(int arr[], int left, int right, int target) { while (left <= right) {int mid = (left + right) / 2;if (arr[mid] == target)return mid;else if (arr[mid] < target)left = mid + 1;elseright = mid - 1;}return -1;}```3. 分治策略效果分析(1)归并排序归并排序的平均时间复杂度为O(nlogn),空间复杂度为O(n)。
分治法的步骤分治法是一种常见的算法设计策略,它将问题分解成更小的子问题,然后递归地解决每个子问题,最后将这些子问题的解合并起来得到原问题的解。
下面将详细介绍分治法的步骤。
一、分治法的定义和基本思想分治法是一种算法设计策略,它将一个大问题分解成若干个相互独立且结构相同的小问题,递归地求解这些小问题,并将它们的结果组合起来得到原问题的解。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
二、分治法的步骤1. 分解:首先将原问题划分为若干个规模较小、结构相似且独立的子问题。
这个过程通常称为“分解”(divide)。
2. 解决:对每个子问题进行递归求解。
如果子问题足够小而可以直接求解,则直接求解。
这个过程通常称为“解决”(conquer)。
3. 合并:将所有子问题的结果合并成原问题的结果。
这个过程通常称为“合并”(combine)。
三、应用场景1. 排序算法:例如归并排序、快速排序等。
2. 查找算法:例如二分查找。
3. 图论算法:例如最大子数组、矩阵乘法、汉诺塔等。
四、分治法的优缺点1. 优点:分治法可以有效地解决一些具有重复性质或者可以通过递归实现的计算任务,具有较高的效率和可扩展性。
2. 缺点:分治法需要额外的空间来存储子问题的结果,而且在递归过程中可能会出现栈溢出等问题,需要进行合理的优化。
同时,如果分解得不够合理或者子问题之间存在依赖关系,则可能会导致算法效率下降。
五、总结分治法是一种常见的算法设计策略,它将一个大问题划分为若干个规模较小、结构相似且独立的子问题,并递归地求解这些子问题。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
虽然分治法具有较高的效率和可扩展性,但也存在额外空间开销和栈溢出等问题,需要进行合理优化。
分治策略凸多边形的相交检测算法1.引言1.1 概述分治策略凸多边形的相交检测算法是一种用于判断两个凸多边形是否相交的方法。
在计算机图形学和计算几何学中,相交检测是一个重要的问题,因为它可以应用于很多实际应用中,例如物体碰撞检测、路径规划等。
本文主要介绍了分治策略在凸多边形相交检测中的应用。
分治策略是一种将大问题划分为小问题并分别解决的方法,它可以有效地降低问题的复杂度。
在凸多边形相交检测中,我们可以将问题划分为多个子问题,然后通过递归地解决这些子问题来得到最终的结果。
凸多边形的定义与性质是分治策略凸多边形相交检测算法的基础。
凸多边形是指没有凹角的多边形,每条内部线段都包含在多边形内部。
凸多边形具有很多特性,例如任意两个顶点之间的线段都完全包含在多边形内部,任意两边不相交等。
在本文中,我们将详细介绍分治策略凸多边形相交检测算法的实现过程,并给出其正确性证明。
同时,我们还将进行算法的复杂度分析,通过对算法的时间复杂度和空间复杂度进行评估,来评判算法的效率和可行性。
总之,本文通过引言部分的概述,为读者提供了对分治策略凸多边形相交检测算法的整体认识。
接下来的正文部分将更加详细地介绍其中的关键内容和步骤。
通过阅读本文,读者将能够全面理解并应用该算法。
1.2 文章结构本文旨在介绍分治策略在凸多边形的相交检测算法中的应用。
文章分为引言、正文以及结论三个部分。
引言部分首先对文章的整体内容进行概述,介绍了本文所要解决的问题以及使用的方法。
接着,详细说明了文章的结构安排,将对分治策略和凸多边形的定义与性质进行深入探讨。
正文部分是本文的核心内容,首先详细介绍了分治策略的概念和基本原理,并阐述了其在解决凸多边形相交检测问题中的应用。
然后,对凸多边形的定义进行了详细说明,并探讨了凸多边形的一些重要性质。
通过结合分治策略和凸多边形的特性,提出了一种有效的相交检测算法。
结论部分对本文所提出的算法的有效性进行总结和评价,指出了该算法在凸多边形相交检测中的优势和适用性。
分治策略(Divide and Conquer)一、算法思想任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题规模越小,解题所需的计算时间往往也越少,从而也越容易计算。
想解决一个较大的问题,有时是相当困难的。
分治法的思想就是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分而治之方法与软件设计的模块化方法非常相似。
为了解决一个大的问题,可以:1) 把它分成两个或多个更小的问题;2) 分别解决每个小问题;3) 把各小问题的解答组合起来,即可得到原问题的解答。
小问题通常与原问题相似,可以递归地使用分而治之策略来解决。
1、解决算法实现的同时,需要估算算法实现所需时间。
分治算法时间是这样确定的:解决子问题所需的工作总量(由子问题的个数、解决每个子问题的工作量决定)合并所有子问题所需的工作量。
2、分治法是把任意大小问题尽可能地等分成两个子问题的递归算法3、分治的具体过程:begin {开始}if ①问题不可分then ②返回问题解else begin③从原问题中划出含一半运算对象的子问题1;④递归调用分治法过程,求出解1;⑤从原问题中划出含另一半运算对象的子问题2;⑥递归调用分治法过程,求出解2;⑦将解1、解2组合成整修问题的解;end;end; {结束}二、分治策略的应用(1)二分搜索(折半查找)算法思想:将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分。
通过一次比较,将查找区间缩小一半。
折半查找是一种高效的查找方法。
它可以明显减少比较次数,提高查找效率。
但是,折半查找的先决条件是查找表中的数据元素必须有序。
算法步骤描述:step1 首先确定整个查找区间的中间位置:mid = (left + right )/ 2step2 用待查关键字值与中间位置的关键字值进行比较;●若相等,则查找成功●若大于,则在后(右)半个区域继续进行折半查找●若小于,则在前(左)半个区域继续进行折半查找Step3 对确定的缩小区域再按折半公式,重复上述步骤。
分治算法探讨分治策略与应用场景随着计算机科学的快速发展,算法成为了解决问题的重要工具。
其中,分治算法在很多场景下展现出强大的能力,被广泛应用于各个领域。
本文将探讨分治策略的原理和常见应用场景。
一、分治策略的基本原理分治策略是一种将大问题划分为细分的子问题,并通过解决子问题来解决原始问题的思想。
其基本思路可以概括为以下三个步骤:1. 分解:将原始问题划分为若干规模较小的子问题。
2. 解决:递归地解决各个子问题。
3. 合并:将各个子问题的解合并为原始问题的解。
通过将大问题递归地划分为越来越小的子问题,最终解决各个子问题,再将子问题的解合并为原始问题的解,分治策略能够高效地解决很多复杂的问题。
二、分治策略的应用场景1. 排序算法排序是计算机科学中一个重要的问题,各种排序算法都可以使用分治策略来实现。
例如,快速排序和归并排序就是使用分治策略的经典排序算法。
在快速排序中,通过选择一个基准元素将问题划分为两个子问题,然后递归地排序子问题。
最后,再将排序好的子数组合并为原始数组的有序序列。
在归并排序中,通过将问题划分为两个子问题,递归地排序子数组。
最后,再将排序好的子数组合并为原始数组的有序序列。
归并排序的特点是稳定性好,适用于大规模数据的排序。
2. 查找问题分治策略也可以应用于查找问题。
例如,在有序数组中查找某个元素可以使用二分查找算法,该算法也采用了分治思想。
二分查找算法通过将问题划分为两个子问题,然后根据子问题的规模逐步缩小查找范围,最终找到目标元素。
这种分治思想使得二分查找具有高效性。
3. 矩阵乘法矩阵乘法是一个常见的数学运算问题。
通过分治策略,可以将矩阵乘法划分为多个小问题,并递归地解决这些小问题。
然后,再将这些小问题的解进行合并,得到原始问题的解。
分治法用于矩阵乘法算法的优化,可以减少运算量,提高计算效率。
4. 搜索问题分治策略也可以应用于搜索问题。
例如,在搜索引擎中,分治策略可以用于并行搜索,从而加快搜索速度。
分治法对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
分治法的基本思想任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作一次比较即可排好序。
n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法的适用条件分治法所能解决的问题一般具有以下几个特征:1.该问题的规模缩小到一定的程度就可以容易地解决;2.该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3.利用该问题分解出的子问题的解可以合并为该问题的解;4.该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。